TEREZA JEŘÁBKOVÁ ESO GARCHING & UNIVERSITY OF BONN & CHARLES UNIVERSITY IN PRAGUE

Size: px
Start display at page:

Download "TEREZA JEŘÁBKOVÁ ESO GARCHING & UNIVERSITY OF BONN & CHARLES UNIVERSITY IN PRAGUE"

Transcription

1 1 TEREZA JEŘÁBKOVÁ ESO GARCHING & UNIVERSITY OF BONN & CHARLES UNIVERSITY IN PRAGUE www: sirrah.troja.mff.cuni.cz/~tereza 17 MODEST UNDER PRAGUE S STARRY SKIES CZECH REPUBLIC OF SEPTEMBER 2017 STELLAR POPULATIONS IN EXTREME STAR BURST CLUSTERS AND ULTRA-COMPACT DWARF GALAXIES (UCD s) TH

2 MOTIVATION STELLAR POPULATIONS WHAT WE CAN SEE NEARBY? 2 Galactic star forming regions similar environments ( %, T,... ) and basically solar metallicity we observe very young objects (formation snapshot) BUT at similar initial conditions it is difficult to study environmental dependencies of star formation and stellar IMF s

3 MOTIVATION STELLAR POPULATIONS WHAT WE CAN SEE NEARBY? 3 Galactic star forming regions similar environments ( %, T,... ) and basically solar metallicity we observe very young objects (formation snapshot) BUT at similar initial conditions it is difficult to study environmental dependencies of star formation and stellar IMF Older objects - Galactic star clusters and GCs and extragalactic UCDs most likely formed under different physical conditions compared to local star formation BUT highly evolved systems degenerate with age (initial conditions?) we observe only low mass stars and dynamically evolved systems s s

4 MOTIVATION STELLAR POPULATIONS WHAT WE CAN SEE NEARBY? 4 Galactic star forming regions similar environments ( %, T,... ) and basically solar metallicity we observe very young objects (formation snapshot) BUT at similar initial conditions it is difficult to study environmental dependencies of star formation and stellar IMF Older objects - Galactic star clusters and GCs and extragalactic UCDs most likely formed under different physical conditions compared to local star formation BUT highly evolved systems degenerate with age we observe only low mass stars and dynamically evolved systems QUESTION: CAN WE OBSERVE PROGENITORS OF GC s AND UCD s?

5 LAYOUT OF THE PROJECT 5 see also (Renzini,A&A,2017) see e.g Glazebrook+(2017,Nat.) & Vanzella+(2017,MNRAS) Aim: How extreme star formation environments may appear at high redshifts. (Predictions of observables with James Web Space Telescope) 1. Construction of stellar population models for progenitors of UCDs and GCs Using PEGASE code (Fioc & Rocca-Volmerange 1997) 2. Computation of photometric (magnitudes, colours) and other (SN rates, spectral slopes) diagnostics With underlying question: Can a systematic variation of the stellar IMF in massive star-bursts be confirmed using observations with the JWST? + potential for constraining the formation of multiple stellar populations

6 ASSUMPTIONS & PARAMETRISATION OF THE STAR CLUSTER SPACE 1. Assumption: UCDs and GCs form by monolithic collapse (At least some need to Jerabkova +, A&A, 2017) + formation channel through merged star cluster complexes can be constrained 2. Assumption: Red-shift computed based on CDM and Planck data (Planck Collaboration +, 2016a,b) redshift considered: z=0,3,6,9 (13.5, 2.1, 0.9, 0.6 Gyr after Big-Bang) 3. Assumption: General shape of the IMF: multi-power law Canonical IMF - nearby star forming regions (Kroupa 2001) - green in all plots 2 6 log (m)[relative] =1.3 2 =2.3 3 =2.3 Salpeter slope =2.3 canonical IMF log (m [M ])

7 ASSUMPTIONS & PARAMETRISATION OF THE STAR CLUSTER SPACE 7 1. Assumption: UCDs and GCs form by monolithic collapse (At least some need to Jerabkova +, A&A, 2017) + formation channel through merged star cluster complexes can be constrained 2. Assumption: Red-shift computed based on CDM and Planck data (Planck Collaboration +, 2016a,b) redshift considered: z=0,3,6,9 (13.5, 2.1, 0.9, 0.6 Gyr after Big-Bang) 3. Assumption: General shape of the IMF: multi-power law Canonical IMF - nearby star forming regions (Kroupa 2001) - green in all plots Top-heavy IMF if: large densities, small [Fe/H] Larson (1998), Adams+(1996), Dib+(2007), Papadopoulos (20) Dabringhausen 2009&20,Marks+2012, Kirk+2012, Zonoozi+2016, Haghi+2017,Romano+(2017) Bottom-heavy IMF if: metal rich (Marks+2012) large densities (Conroy & van Dokkum) log (m)[relative] centres of ellipticals Chabrier+(2014) - increased density leads to bottom heavy IMF BUT potential problems: Bertelli Motta+(2016), Liptai+(2017) BOTTOM-HEAVY 1 =1.3 2 =2.3 more massive stars per cluster mass TOP-HEAVY 3 =2.3 Salpeter slope canonical IMF log (m [M ])

8 ASSUMPTIONS & PARAMETRISATION OF THE STAR CLUSTER SPACE 8 1. Assumption: UCDs and GCs form by monolithic collapse (At least some need to Jerabkova +, A&A, 2017) + formation channel through merged star cluster complexes can be constrained 2. Assumption: Red-shift computed based on CDM and Planck data (Planck Collaboration +, 2016a,b) redshift considered: z=0,3,6,9 (13.5, 2.1, 0.9, 0.6 Gyr after Big-Bang) 3. Assumption: General shape of the IMF: multi-power law Canonical IMF - nearby star forming regions (Kroupa 2001) - green in all plots BOTTOM-HEAVY 2 1 =1.3, 2 = 3 =2.3 Top-heavy IMF 3 < 2.3 varies with initial conditions Marks+(2012), Bottom-heavy IMF 1 = 2 = 3 =2.3 Dabringhausen+(2008), SAL IMF 1 = 2 = 3 =3.0 log (m)[relative] van Dokkum&Conroy+(20), =1.3 2 =2.3 more massive stars per cluster mass TOP-HEAVY 3 =2.3 Salpeter slope canonical IMF log (m [M ])

9 ASSUMPTIONS & PARAMETRISATION OF THE STAR CLUSTER SPACE 9 1. Assumption: UCDs and GCs form by monolithic collapse (At least some need to Jerabkova +, A&A, 2017) + formation channel through merged star cluster complexes can be constrained 2. Assumption: Red-shift computed based on CDM and Planck data (Planck Collaboration +, 2016a,b) redshift considered: z=0,3,6,9 (13.5, 2.1, 0.9, 0.6 Gyr after Big-Bang) 3. Assumption: General shape of the IMF: multi-power law SAL IMF Kroupa(2001) Marks+(2012) Dabringhausen+(2008) van Dokkum&Conroy+(20) 4. Assumption: other parameters time grid: (1- Myr, -0 Myr, 0-00 Myr, 1-13 Gyr) initial stellar masses:, SFE = 0.33 [Fe/H] = -2, 0 6, 7, 8, 9 M Megeath+(2016), Banerjee(2017) Star formation history: simultaneous, constant over 5- Myr PEGASE time-dependent stellar population synthesis code Fioc&Rocca-Volmerange(1997) (comparison with SB99)

10 RESULTS For the introduced parameters we construct a grid of SEDs which allow us to construct observables and other characteristic. Luminosity, color-(color)magnitude diagrams, SED slopes Mass-to-light ratios, supernovae rates for each set of parameters For the first time we predict how the progenitors of UCDs and massive GCs might look like when formed at high redshifts and compute observability with the JWST. MKD IMF F [(ergs 1 cm 2 Hz 1 )] 11 12? 20Myr Marks et al. (2012) [Å] 6Myr 7Myr 8Myr 9Myr Myr 20Myr [Å] 6Myr 7Myr 8Myr 9Myr Myr mk mn Gyr z=9 zoomed plot m J m K log (time [Myr]) J and K filter cover similar wavelength range as F115W and F200W (NIRCam) N filter covers similar wavelength range as F00W (MIRI)

11 RESULTS: BOLOMETRIC LUMINOSITY 11 As bright as quasars! Supernova explosions may cause photometric variability Degeneracies 12 M UCD = 8 M L bol à M UCD (NOT for MKDP) QUASARS 25.0 Lbol [L ] M [Fe/H]= 2 [Fe/H]= 0 SUPERNOVAE Mbol [mag] larger stellar mass top-heavy IMF age of the system SAL IMF 8 M 7 M time [Myr] UCD DATA Consistency check

12 RESULTS: COLOR-MAGNITUDE DIAGRAM 12 Also colours can be consistent with QSO! 25 QUASARS 25 QUASARS [Fe/H]=0 [Fe/H]= 2 20 time 20 time MV MV 15 9 M 8 M 7 M 15 UCD data M V M Ic 9 M 8 M 7 M M V M Ic dots/squares: 0 Myr, 500 Myr, 1 Gyr, 5 Gyr, Gyr QSO data: Dunlop+(1993),Dunlop+(2003),Souchay+(2015) high redshift quasars: Morltlock+(2011)

13 % remnants time [Myr] 3 7 M 8 M 9 M [Fe/H]=0 4 See our paper (Jerabkova+2017) 0% remnants % remnants NO remnants 3 4 SN kicks are not able to remove large fraction of BHs 1 2 % remnants NO remnants 3 SAL IMF 1 MBH ø 0 SAL IMF 7 M 8 M 9 M [Fe/H]=-2 MBH ø 1 M/LV M/LV RESULTS: MASS-TO-LIGHT RATIOS time [Myr] 3 4 and poster: The black hole retention fraction in star clusters (P2) no degeneracies, t < 0 Myr

14 % remnants time [Myr] 3 7 M 8 M 9 M [Fe/H]=0 4 % remnants NO remnants time [Myr] 3 M/LV SAL IMF 5 Gyr Gyr 13 Gyr [Fe/H]= MV [mag] [Fe/H]= 0 20 M/LV LV [LV ] 8 4 and poster: The black hole retention fraction in star clusters (P2) no degeneracies, t < 0 Myr 9, 8, 7 M MV [mag] See our paper (Jerabkova+2017) 0% remnants 3 4 SN kicks are not able to remove large fraction of BHs 1 2 % remnants NO remnants 3 SAL IMF 1 MBH ø 0 SAL IMF 7 M 8 M 9 M [Fe/H]=-2 MBH ø 1 M/LV M/LV RESULTS: MASS-TO-LIGHT RATIOS 6 observations 7 LV [LV ] 8 Results are sensitive to [Fe/H]

15 RESULTS: SUMMARY AND CONCLUSIONS Progenitors of UCDs and massive GCs are observable with JWST 2. For objects younger than 0 Myr we can constrain their IMF ( if we observe them) 3. Older objects suffer from degeneracies and constraining the IMF is more difficult 4. Some observed quasars have similar photometric properties as very young UCDs with top-heavy IMF (Are all quasars quasars?) 5. The kick retention fraction of stellar remnants is near to 0% for systems with birth masses larger than 7 M In prep.: Similar analysis aiming at multiple populations in young GCs Can we disentangle different formation scenarios? What is the effect of binaries? See also: Bekki, Jerabkova, Kroupa, MNRAS, 2017 (variable IMF in GCs) and: Yan, Jerabkova, Kroupa, A&A, 2017 (systematic variation of the IMF in python - on Github)

16 z=3 RESULTS: REDSHIFTED SED 16 J and K filter cover similar wavelength range as F115W and F200W (NIRCam) N filter covers similar wavelength range as F00W (MIRI) 30 8 Myr 8 Myr MKD IMF F [(ergs 1 cm 2 Hz 1 )] z=6 z=9 z=3 z=6 z=9 33 J filt. K filt. N filt. J filt. K filt. N filt [Å] [Å]

17 RESULTS: FORMATION AND WHERE TO LOOK 17 The most massive clusters are near the centres of galaxies with high star formation rate Ferrarese&Merritt (2002), Dabringhausen+(2012), Weidner+(2004), Randriamanakoto+(2013),Li+(2017) Possible formation scenario 1. Formation of massive galaxies - large star formation rates (large densities, merging of proto-galactic gas clumps) 2. The most massive clusters are forming as monolithically collapsed in the deepest potential wells of these (decouple from gas when become stellar systems) 3. Merging proto-galaxies - many formed clusters ending up on orbits about the central galaxy 4. Under more benign conditions we expect to form stellar systems from mergers of star cluster complexes

arxiv: v2 [astro-ph.ga] 23 Oct 2017

arxiv: v2 [astro-ph.ga] 23 Oct 2017 Astronomy & Astrophysics manuscript no. 31240_corr c ESO 2018 April 8, 2018 The formation of UCDs and massive GCs: Quasar-like objects to test for a variable stellar initial mass function T. Jeřábková

More information

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova 1 Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova SN Location SNLS-03D3bb is located at RA: 14:16:18.920 Dec: +52:14:53.66 (J2000) in the D3 (extended Groth Strip)

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

On MOND and dark matter in ultra compact dwarf galaxies

On MOND and dark matter in ultra compact dwarf galaxies On MOND and dark matter in ultra compact dwarf galaxies Jörg Dabringhausen Argelander-Institut für Astronomie, University of Bonn Pavel Kroupa Michael Hilker, Michael Fellhauer, Steffen Mieske, Michael

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

The impact of binaries on the determination of the stellar IMF

The impact of binaries on the determination of the stellar IMF The impact of binaries on the determination of the stellar IMF ESO Garching workshop: The impact of binaries on stellar evolution 3-7 July 2017 Pavel Kroupa Helmholtz-Institute for Radiation und Nuclear

More information

Is the IMF a probability density distribution function or is star formation a self-regulated process?

Is the IMF a probability density distribution function or is star formation a self-regulated process? Is the IMF a probability density distribution function or is star formation a self-regulated process? Observatoire astronomique de Strasbourg 25th of September 2015 Pavel Kroupa Helmholtz-Institut fuer

More information

Stellar populations of quasar host galaxies

Stellar populations of quasar host galaxies Knud Jahnke AIP Galaxies division Hauskolloquium 10.01.2003 Introduction/motivation Multicolour imaging On-nucleus spectroscopy What does this teach us? Outlook Overview Introduction Introduction HE 1043

More information

NUCLEAR STAR CLUSTERS IN 228 SPIRAL GALAXIES WITH HUBBLE

NUCLEAR STAR CLUSTERS IN 228 SPIRAL GALAXIES WITH HUBBLE Inter-Departmental Science Workshop Aranjuez, Spain, 20 October 2013 NUCLEAR STAR CLUSTERS IN 228 SPIRAL GALAXIES WITH HUBBLE Iskren Georgiev International Research Fellow ESTEC, Noordwijk, Netherlands

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do. Color is only a weak function of age after ~3Gyrs (for a given metallicity) (See MBW pg 473) But there is a strong change in M/L V and weak change in M/L K Age Dating A SSP Quick quiz: please write down

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

Imaging with Micado at the E-ELT. WORKSHOP: Imaging at the E-ELT

Imaging with Micado at the E-ELT. WORKSHOP: Imaging at the E-ELT Imaging with Micado at the E-ELT Renato Falomo INAF Observatory of Padova, Italy WORKSHOP: Imaging at the E-ELT 29 May 2009, Garching Resolved stellar population in Virgo (high SB) Detailed View of high

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)

Stellar Population Mass Estimates. Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan) Overview Stellar Mass-to-Light (M/L) ratios from SEDs Comparing different SED fitting techniques Comparing

More information

Chapter 8: Simple Stellar Populations

Chapter 8: Simple Stellar Populations Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary

More information

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion 11 days exposure time 10,000 galaxies 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion Galaxies with disks Clumpy spiral shapes Smooth elliptical

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

SUPER STAR CLUSTERS: High Resolution Observations. James R. Graham (UCB) Nate McCrady (UCLA) & Andrea Gilbert (LLNL) KIPT

SUPER STAR CLUSTERS: High Resolution Observations. James R. Graham (UCB) Nate McCrady (UCLA) & Andrea Gilbert (LLNL) KIPT SUPER STAR CLUSTERS: High Resolution Observations James R. Graham (UCB) Nate McCrady (UCLA) & Andrea Gilbert (LLNL) KIPT 2007-8-16 M82 N 100 pc McCrady & Graham 2007 ACS F814W & NICMOS F160W/F222M images

More information

The Origin of Type Ia Supernovae

The Origin of Type Ia Supernovae The Origin of Type Ia Supernovae Gijs Nelemans Radboud University Nijmegen with Rasmus Voss, Mikkel Nielsel, Silvia Toonen, Madelon Bours, Carsten Dominik Outline Introduction: supernovae Relevance Type

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

Deriving stellar masses from SDSS

Deriving stellar masses from SDSS Deriving stellar masses from SDSS Reference: Bruzual and Charlot 2003MNRAS.344.1000B Kauffmann et al. 2003MNRAS.341.33 Salim et al. 2007ApJS..173..267S Bell et al. 2003ApJS..149..289B Outline! Basic idea!

More information

An update on SMBHs in UCDs

An update on SMBHs in UCDs An update on SMBHs in UCDs Steffen Mieske ESO Chile MODEST 17 meeting Prague Sept. 18-22, 2017 Seth Voggel Chilingarian Afanasyev Neumayer Frank Baumgardt Hilker Lützgendorf Hilker UCD UCDs are believed

More information

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 Goal: Determine n * (M *,t age,[fe/h],r) for a population of galaxies How many stars of what mass and metallicity formed

More information

Massive black hole formation in cosmological simulations

Massive black hole formation in cosmological simulations Institut d Astrophysique de Paris IAP - France Massive black hole formation in cosmological simulations Mélanie HABOUZIT Marta Volonteri In collaboration with Yohan Dubois Muhammed Latif Outline Project:

More information

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-1 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-2 9. Evolution with redshift - z > 1.5 Selection in

More information

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Artist impression of a stellar mass BH detected in NGC 3201 (Giesers et al. 2018)

More information

arxiv: v1 [astro-ph.co] 15 Nov 2010

arxiv: v1 [astro-ph.co] 15 Nov 2010 Dwarf galaxies in the nearby Lynx-Cancer void: photometry, colours and ages Simon Pustilnik, Alexei Kniazev, Yulia Lyamina and Arina Tepliakova arxiv:1011.3430v1 [astro-ph.co] 15 Nov 2010 Abstract The

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

HR Diagram, Star Clusters, and Stellar Evolution

HR Diagram, Star Clusters, and Stellar Evolution Ay 1 Lecture 9 M7 ESO HR Diagram, Star Clusters, and Stellar Evolution 9.1 The HR Diagram Stellar Spectral Types Temperature L T Y The Hertzsprung-Russel (HR) Diagram It is a plot of stellar luminosity

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

Co-Evolution of Central Black Holes and Nuclear Star Clusters

Co-Evolution of Central Black Holes and Nuclear Star Clusters Co-Evolution of Central Black Holes and Nuclear Star Clusters Oleg Gnedin (University of Michigan) Globular clusters in the Galaxy median distance from the center is 5 kpc Resolved star cluster highest

More information

Stellar populations model predictions in the UV spectral range

Stellar populations model predictions in the UV spectral range INSTITUTO DE ASTROFÍSICA DE CANARIAS Alexandre Vazdekis M. Koleva, E. Ricciardelli, Falcón-Barroso Stellar populations model predictions in the UV spectral range The UV spectral range The youngest stellar

More information

arxiv:astro-ph/ v1 15 Nov 2004

arxiv:astro-ph/ v1 15 Nov 2004 Submitted to The Astrophysical Journal Letters Preprint typeset using L A TEX style emulateapj v. 6/22/04 ARE SUPERNOVA KICKS RESPONSIBLE FOR X-RAY BINARY EJECTION FROM YOUNG CLUSTERS? J. Sepinsky 1, V.

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Massive Stellar Black Hole Binaries and Gravitational Waves

Massive Stellar Black Hole Binaries and Gravitational Waves BH-BH binaries: modeling Massive Stellar Black Hole Binaries and Gravitational Waves Chris Belczynski1 Tomek Bulik1 Daniel Holz Richard O Shaughnessy Wojciech Gladysz1 and Grzegorz Wiktorowicz1 1 Astronomical

More information

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano

Science with Micado. the high resolution camera for the E-ELT Renato Falomo. INAF Observatory of Padova, Italy. 25 February IASF, Milano Science with Micado the high resolution camera for the E-ELT Renato Falomo INAF Observatory of Padova, Italy 25 February 2010 -- IASF, Milano Overview of MICADO (Tehnology & Science) Resolved stellar population

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Identification of classical Cepheids: We identified three classical Cepheids amongst the 45 short-period variables discovered. Our sample includes classical Cepheids, type II Cepheids, eclipsing binaries

More information

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model

Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Gravitational Radiation from Coalescing SMBH Binaries in a Hierarchical Galaxy Formation Model Motohiro ENOKI (National Astronomical Observatory of Japan) Kaiki Taro INOUE (Kinki University) Masahiro NAGASHIMA

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

13.1 Galaxy Evolution: Introduction

13.1 Galaxy Evolution: Introduction 13.1 Galaxy Evolution: Introduction Galaxies Must Evolve Stars evolve: they are born from ISM, evolve, shed envelopes or explode, enriching the ISM, more stars are born Structure evolves: density fluctuations

More information

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers)

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers) Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers) Chris Belczynski 1,2 1 Warsaw University Observatory 2 University of Texas, Brownsville Theoretical Rate Estimates (MOSTLY NS-NS MERGERS:

More information

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS)

The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) Russell J. Smith 1 John R. Lucey 1 Charlie Conroy 2 1 Centre for Extragalactic Astronomy, Durham University, United Kingdom 2 Harvard Smithsonian

More information

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr. Outline: Part I Outline: Part II The end of the dark ages Dark ages First stars z 20 30 t Univ 100 200 Myr First galaxies z 10 15 t Univ 300 500 Myr Current observational limit: HST and 8 10 m telescopes

More information

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away Marc Freitag ARI, Heidelberg freitag@ari.uni-heidelberg.de http://obswww.unige.ch/~freitag Collaboration with Atakan

More information

Coalescing Binary Black Holes Originating from Globular Clusters

Coalescing Binary Black Holes Originating from Globular Clusters Coalescing Binary Black Holes Originating from Globular Clusters Abbas Askar (askar@camk.edu.pl) Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw, Poland Abbas Askar Globular

More information

IMF variations in unresolved stellar populations: Challenges

IMF variations in unresolved stellar populations: Challenges Department of Space and Climate Physics Mullard Space Science Laboratory http://www.ucl.ac.uk/mssl IMF variations in unresolved stellar populations: Challenges Ignacio Ferreras Mullard Space Science Laboratory

More information

Simple Stellar Populations

Simple Stellar Populations Stellar Objects: Simple Stellar Populations 1 Simple Stellar Populations 1 Theoretical isochrones Update date: December 14, 2010 Simple Stellar Population consists of stars born at the same time and having

More information

arxiv: v1 [astro-ph.ga] 16 May 2016

arxiv: v1 [astro-ph.ga] 16 May 2016 Draft version September 25, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 A POSSIBLE SOLUTION FOR THE M/L-[FE/H] RELATION OF GLOBULAR CLUSTERS IN M31: A METALLICITY AND DENSITY DEPENDENT

More information

A library of synthetic galaxy spectra for GAIA

A library of synthetic galaxy spectra for GAIA A library of synthetic galaxy spectra for GAIA P.Tsalmantza, M. Kontizas, B. Rocca-Volmerange *, C. Bailer_Jones + 7 coauthors, I. 27, Astron Astrophys, 47, 761 II. In preparation * Institut d Astrophysique

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

Can black holes be formed in dynamic interactions in star clusters?

Can black holes be formed in dynamic interactions in star clusters? Can black holes be formed in dynamic interactions in star clusters? Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Warsaw, Poland mig@camk.edu.pl MODEST 14 Workshop Bad Honnef, Germany

More information

Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies

Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies Sirio Belli Max-Planck Institute for Extraterrestrial Physics Deep Keck Spectroscopy of High-Redshift Quiescent Galaxies with Andrew Newman and Richard Ellis Introduction Schawinski et al. 2014 red sequence

More information

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations Abbas Askar Carl Tryggers Postdoctoral Fellow at Lund Observatory Department

More information

Part two of a year-long introduction to astrophysics:

Part two of a year-long introduction to astrophysics: ASTR 3830 Astrophysics 2 - Galactic and Extragalactic Phil Armitage office: JILA tower A909 email: pja@jilau1.colorado.edu Spitzer Space telescope image of M81 Part two of a year-long introduction to astrophysics:

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Steffen Mieske ESO Chile. MODEST 14 June 6, 2014

Steffen Mieske ESO Chile. MODEST 14 June 6, 2014 1. Supermassive black holes in UCDs 2. How erosion of GCs has affected their specific frequencies 3. Is omega Centauri a star cluster after all? Steffen Mieske ESO Chile MODEST 14 June 6, 2014 Supermassive

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

Supernova Explosions. Novae

Supernova Explosions. Novae Supernova Explosions Novae Novae occur in close binary-star systems in which one member is a white dwarf. First, mass is transferred from the normal star to the surface of its white dwarf companion. 1

More information

A1199 Are We Alone? " The Search for Life in the Universe

A1199 Are We Alone?  The Search for Life in the Universe ! A1199 Are We Alone? " The Search for Life in the Universe Instructor: Shami Chatterjee! Summer 2018 Web Page: http://www.astro.cornell.edu/academics/courses/astro1199/! HW2 now posted...! So far: Cosmology,

More information

LIGO Discovery of Gravitational Waves: What does it mean for Astrophysics? (1) LIGO first observed Gravitational Waves on Sept. 14, 2015.

LIGO Discovery of Gravitational Waves: What does it mean for Astrophysics? (1) LIGO first observed Gravitational Waves on Sept. 14, 2015. LIGO Discovery of Gravitational Waves: What does it mean for Astrophysics? Prof. Rogier Windhorst (ASU) (1) LIGO first observed Gravitational Waves on Sept. 14, 2015. (2) These were caused by two merging

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Evidence of multiple stellar components in high-z elliptical galaxies from spectral indices and high resolution images

Evidence of multiple stellar components in high-z elliptical galaxies from spectral indices and high resolution images Evidence of multiple stellar components in high-z elliptical galaxies from spectral indices and high resolution images ILARIA LONOCE ADRIANA GARGIULO Paolo Saracco Marcella Longhetti Sonia Tamburri Outline

More information

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies Lecture Three: ~2% of galaxy mass in stellar light Stellar Populations What defines luminous properties of galaxies face-on edge-on https://www.astro.rug.nl/~etolstoy/pog16/ 18 th April 2016 Sparke & Gallagher,

More information

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints New Scenario for IMBH Formation in Globular Clusters - Recent Developments and Observational Imprints Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Warsaw, Poland mig@camk.edu.pl

More information

Constraining the progenitors of long and short GRBs through the study of their environments

Constraining the progenitors of long and short GRBs through the study of their environments Constraining the progenitors of long and short GRBs through the study of their environments Paolo D Avanzo INAF Osservatorio Astronomico di Brera GRBs are short flashes of gamma rays How much short? Two

More information

The effect of primordial mass segregation on the size scale of the star clusters

The effect of primordial mass segregation on the size scale of the star clusters The effect of primordial mass segregation on the size scale of the star clusters Hosein Haghi In collaboration with: HoseiniRad, Zonoozi, Kuepper Institute for Advanced Studies in Basic Sciences (IASBS),Zanjan

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Michael Shull (University of Colorado)

Michael Shull (University of Colorado) Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008 Submillimeter Galaxies: only the brightest? How long? [dust

More information

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13

Using Globular Clusters to. Study Elliptical Galaxies. The View Isn t Bad... Omega Centauri. Terry Bridges Australian Gemini Office M13 Using Globular Clusters to Omega Centauri Study Elliptical Galaxies Terry Bridges Australian Gemini Office 10,000 1,000,000 stars up to 1000 stars/pc3 typical sizes ~10 parsec Mike Beasley (IAC, Tenerife)

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

Studying stars in M31 GCs using NIRI and GNIRS

Studying stars in M31 GCs using NIRI and GNIRS Studying stars in M31 GCs using NIRI and GNIRS Ricardo Schiavon Gemini Observatory GSM 2012 San Francisco July 19, 2012 Collaborators Andy Stephens (Gemini) Nelson Caldwell (SAO) Matthew Shetrone (HET)

More information

Direct N-body simulations of distant halo globular clusters

Direct N-body simulations of distant halo globular clusters Direct N-body simulations of distant halo globular clusters Hosein Haghi Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan, IRAN in collaboration with Akram Hasani Zonoozi (IASBS), Holger

More information

Understanding Black Hole

Understanding Black Hole Understanding Black Hole Formation and Natal Kicks: The Case of Cygnus X-1 TsingWai Wong Francesca Valsecchi, Tassos Fragos, Bart Willems, Vicky Kalogera Background & Purpose Find the mass relationship

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize Amy Reines Einstein Fellow National Radio Astronomy Observatory

A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize Amy Reines Einstein Fellow National Radio Astronomy Observatory A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize 2-10 Amy Reines Einstein Fellow National Radio Astronomy Observatory Supermassive black holes and galaxy evolution Supermassive black holes

More information

Lecture 3 The IGIMF and implications

Lecture 3 The IGIMF and implications Stellar populations and star clusters as galactic building blocks Lecture 3 The IGIMF and implications Selected Chapters on Astrophysics Charles University, Praha, November & December 2015 Pavel Kroupa

More information

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore WFIRST and JWST synergies in the study of First Light M. Stiavelli STScI, Baltimore 1 WFIRST and JWST synergies in the study of First Light Plan: - Detecting the First Stars WFIRST-AFTA as an object finder

More information

4/12/18. Our Schedule. Measuring big distances to galaxies. Hamilton on Hawking tonight. Brightness ~ Luminosity / (Distance) 2. Tully-Fisher Relation

4/12/18. Our Schedule. Measuring big distances to galaxies. Hamilton on Hawking tonight. Brightness ~ Luminosity / (Distance) 2. Tully-Fisher Relation ASTR 1040: Stars & Galaxies Stefan s Quintet Our Schedule Next class (Tues Apr17) meets in Fiske Planetarium Mid-Term Exam 3 in class next Thur Apr 19 Review Sheet #3 still available, with review next

More information

Lecture Five: The Milky Way: Structure

Lecture Five: The Milky Way: Structure Lecture Five: The Milky Way: Structure The Celestial Sphere http://www.astro.rug.nl/~etolstoy/pog14 We use equatorial coordinates to determine the positions of stars in the sky. A stars declination (like

More information

Starburst clusters with E-ELT - the harvest beyond the Milky Way

Starburst clusters with E-ELT - the harvest beyond the Milky Way Starburst clusters with E-ELT - the harvest beyond the Milky Way Andrea Stolte I. Physikalisches Institut Universität zu Köln E-ELT Science ESO/VLT May 2009 ESO Garching 1 Starburst clusters with E-ELT

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

Where are We Going! How to Calculate Your Own Star!

Where are We Going! How to Calculate Your Own Star! Where are We Going! How to build up the galaxies we observe from what we know about stars!! Next presentation: read 2003MNRAS. 341...33 Kauffmann, G et al (1287 citations) and take a look at Tinsley,B.

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Two Main Techniques. I: Star-forming Galaxies

Two Main Techniques. I: Star-forming Galaxies p.1/24 The high redshift universe has been opened up to direct observation in the last few years, but most emphasis has been placed on finding the progenitors of today s massive ellipticals. p.2/24 Two

More information

Introduction and Background:

Introduction and Background: Introduction and Background: Often times identifying the characteristics of extreme examples of galaxy morphology and properties (e.g. Perseus A, Malin 1, NGC 1569) provides very important constraints

More information

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund The Red Supergiant Progenitors of Core-collapse Supernovae Justyn R. Maund Stellar Populations Workshop IAG-USP 1 st December 2015 Astronomy and Astrophysics at Sheffield 8 Academic staff 5 Postdocs 13

More information

How HST/WFC3 and JWST can measure Galaxy Assembly and AGN growth

How HST/WFC3 and JWST can measure Galaxy Assembly and AGN growth How HST/WFC3 and JWST can measure Galaxy Assembly and AGN growth Rogier A. Windhorst and Seth H. Cohen School of Earth & Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA Abstract.

More information

Science with the Intermediate Layer

Science with the Intermediate Layer Science with the Intermediate Layer 20 deg 2 to depth of grizy=28.6,28.1,27.7,27.1,26.6 10 7 Mpc 3 at z 2 Jenny E. Greene (Princeton/Carnegie, Hubble Fellow) Watching Galaxies Assemble Thomas et al. 2005

More information

The Evolution of Stellar Triples

The Evolution of Stellar Triples The Evolution of Stellar Triples Silvia Toonen toonen@uva.nl Simon Portegies Zwart, Tjarda Boekholt, Adrian Hamers, Hagai Perets, Fabio Antonini Triple evolution Isolated Hierarchical Stellar triples:

More information

2. Correlations between Stellar Properties

2. Correlations between Stellar Properties Hertzsprung-Russell (Colour-Magnitude) Diagram 2. Correlations between Stellar Properties 2.1 Mass-luminosity relationship (ZG: 12.2; CO: 7.3) Most stars obey L s = constant M s 3 < < 5 Exercise 2.1: Assuming

More information

Open problems in compact object dynamics

Open problems in compact object dynamics Open problems in compact object dynamics Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University www.astro.lu.se Key ideas and open questions in compact object dynamics Melvyn

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information