Chapter 7: From theory to observations

Size: px
Start display at page:

Download "Chapter 7: From theory to observations"

Transcription

1 Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective temperature T eff, and possibly even the surface chemical composition. How can these parameters be linked to observables?

2 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

3 Spectra and magnitudes One important way is the use of the Color Magnitude Diagram (CMD), which is the observational counterpart of the HRD. HRD of selected stellar evolutionary tracks (dashed lines) with the same initial solar chemical composition. The heavy solid lines display two isochrones for the same chemical composition and ages of 600 Myr (the brighter sequence) and 10 Gyr. CMD of the globular cluster M3 using the Johnson BV filters. Remember that the magnitude scale is backward wrt intensity; a larger value of B V implies a cool object.

4 Magnitude definition The apparent magnitude is defined as ( ) fλ S λ dλ m A 2.5log + m f 0 A 0 λ S λ dλ where f λ is the monochromatic flux (or spectrum) of a star received at the top of the Earth s atmosphere while fλ 0 denotes the spectrum of a reference star that produces a known apparent magnitude ma 0, which is called the zero point of the band for a given photometric system. This system specifies a specific choice of the response function, S λ. Many photometric systems exist! Measured magnitudes do depend on both the f λ and the actual photometric system used (i.e., the shape of the filter). So in general, one should not compare magnitudes defined for different photometric systems.

5 Various photometric systems The very popular Johnson system, for example, uses the star Vega (A0V at the distance of 7.7 pc; M = 2.14M ) to fix the zero points. It assumes that m V = 0 and that the color indices are equal to zero for the star, whereas other systems may have slightly different values. The absolute magnitude is defined as the apparent magnitude a star would have at a distance of 10 pc (if the radiation travels undisturbed from the source to the observer): M A 2.5log [ ( d 10 pc ) 2 ] fλ S λ dλ + m f 0 A 0 λ S λ dλ = m A 5(log(d) 1) where d is the distance in parsec. In the cosmological context, the distance is so called luminosity distance d L. m A M A (m M) A is called the distance modulus.

6 Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = ergs s 1 and M bol, = 4.75.

7 Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = ergs s 1 and M bol, = What do you think about a comparison of this M bol value with M K, = 3.4?

8 Absolute bolometric magnitude The absolute magnitude of the Sun is then M A, 2.5log [ ( d 10 pc ) 2 ] fλ, S λ dλ + m f 0 A 0 λ S λ dλ. By setting S λ = 1 at all wavelengths in the above two definitions (thus the subscript change from A to bol ) and adopting the Sun as the reference star (placing it at the distance of 10 pc), we have the definition of the absolute bolometric magnitude of a star as M bol M bol, 2.5log(L/L ) where L = ergs s 1 and M bol, = What do you think about a comparison of this M bol value with M K, = 3.4? The absolute bolometric magnitude is independent of any photometry system!

9 Bolometric correction The bolometric correction to a given photometric band A is defined as BC A M bol M A. If the stellar bolometric luminosity is known (from a model), one can predict the corresponding M A. In practice, tables of bolometric corrections and color indices are available, for a grid of gravities and T eff that cover all the major phases of stellar evolution, and for a number of chemical compositions. Interpolations among the grid points provide the sought BC A for the model.

10 Bolometric correction The bolometric correction to a given photometric band A is defined as BC A M bol M A. If the stellar bolometric luminosity is known (from a model), one can predict the corresponding M A. In practice, tables of bolometric corrections and color indices are available, for a grid of gravities and T eff that cover all the major phases of stellar evolution, and for a number of chemical compositions. Interpolations among the grid points provide the sought BC A for the model. Observationally, one needs to select proper filters that are sensitive to the desirable measurements, particular for T eff. Evolution of a 1 M star with Z = and Y = from the ZAMS until the tip of the RGB, displayed in the HRD and various CMDs.

11 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

12 The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ, A λ A A A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A.

13 The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ, A λ A A A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A. With this extinction-corrected magnitude, m A,0, together with the distance module, we can then calculate the absolute magnitude, A (= M A ).

14 The effects of interstellar extinction If the extinction (A λ ) is important, the observed flux is then Defining A A as f λ = f λ,0 e τ λ f λ, A λ A A A λ f λ,0 S λ dλ, fλ,0 S λ dλ assuming certain A λ and f λ,0 (as functions of λ), we have m A = m A,0 + A A. With this extinction-corrected magnitude, m A,0, together with the distance module, we can then calculate the absolute magnitude, A (= M A ). The effect of extinction on a color index (A B) is (A B) = (A B) 0 + E(A B) where E(A B) = A A A B is called the color excess or reddening.

15 The extinction law, A λ /A V, is usually determined empirically, where A V is the extinction in the Johnson V band. Notice the 2175 Å bump. The ratio R V A V /E(B V ) is nearly a constant and equal to 3.1 for stars in the Galaxy. More accurately, A V can be determined in a color-color plot, e.g., U B vs. B V. For large reddening (e.g., toward the Galactic center), one needs to account for the non-constancy of A λ and hence the substantial spectral change in a given filter range.

16 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

17 K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object.

18 K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object. One claim for the origin of the term K correction is the correction as a Konstante (German for constant ) used by Carl Wirtz.

19 K-correction for high-redshift objects When an observing object (typically a galaxy) has a non-negligible redshift, one also needs to make the so-called K-correction, converting a measurement to an equivalent measurement in the rest frame of the object. One claim for the origin of the term K correction is the correction as a Konstante (German for constant ) used by Carl Wirtz. To determine the appropriate K-correction, one obviously needs to know the shape of the object intrinsic spectrum, or its evolution with time (e.g., related to the evolution of the stellar content, which may be modeled theoretically for a galaxy).

20 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

21 Spectroscopic notation of the stellar chemical composition Theoretically, it is customary and convenient to specify the composition in terms of X, Y, and Z, as we have done so far. But not all element abundances can be directly measured, even spectroscopically, for a star. Low mass stars, for example, have typically too cold atmosphere to show any helium spectral lines. The stellar metal abundances, Z, are typically traced with certain spectroscopic indicators and are usually determined differentially wrt the Sun. One needs to be careful about the specific version of the solar compositions; e.g., Z= (Anders & Grevesse 1989) while Z= (Asplund et al. 2005). Oxygen abundance, in particular, differs by up to about one third among various versions commonly used versions. An element number abundance is defined as [Fe/H] log[n(fe)/n(h)] log[n(fe)/n(h)] Here Fe is chosen partly because its lines are prominent and easy to measure.

22 If the element distribution is assumed to follow the solar mixture, the conversion from Z to [Fe/H] is then given by ( ) ( ) ( ) Z Z Z [Fe/H] = log log = log X X X where Z X is the metal to hydrogen mass ratio. The dominant X can typically be considered approximately a constant. The above equation can then be simplified into ( ) Z [Fe/H] = log Z Typical errors of the spectroscopic determinations of [Fe/H] are of the order of at least 0.10 dex.

23 If the element distribution is assumed to follow the solar mixture, the conversion from Z to [Fe/H] is then given by ( ) ( ) ( ) Z Z Z [Fe/H] = log log = log X X X where Z X is the metal to hydrogen mass ratio. The dominant X can typically be considered approximately a constant. The above equation can then be simplified into ( ) Z [Fe/H] = log Z Typical errors of the spectroscopic determinations of [Fe/H] are of the order of at least 0.10 dex. If the assumption of a universal scaled solar metal mixture needs to be relaxed, the above equations can still be used, but the left side now refers to the ratio of the total number abundance of metal to hydrogen, [M/H].

24 One can often approximately group the metals into two categories: The α-elements and Fe elements. α-elements (mainly O, Ne, Mg, Si, S, Ca, and Ti) are mostly the products of core-collapsed SNe (including Type II and Ib,c). The Fe elements are mostly from Type Ia SNe. Type Ia SNe start to explore and contribute to the chemical composition of the ISM much later ( 1 Gyr) than core-collapsed SNe do.

25 One can often approximately group the metals into two categories: The α-elements and Fe elements. α-elements (mainly O, Ne, Mg, Si, S, Ca, and Ti) are mostly the products of core-collapsed SNe (including Type II and Ib,c). The Fe elements are mostly from Type Ia SNe. Type Ia SNe start to explore and contribute to the chemical composition of the ISM much later ( 1 Gyr) than core-collapsed SNe do. As a result, old metal-poor stars are typically α-enhanced in the halo and bulge of our Galaxy ([Fe/H]< 0.6; [α/fe] ). For these α-enhanced mixtures, the approximate relationship can be generally given by [M/H] [Fe/H] + log( [α/fe] ). On the other hand, younger stellar generations (like our Sun) are characterized by a metal mixture with a small α/fe ratio wrt the oldest stars.

26 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

27 Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum.

28 Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum. If we know the angular diameter of a nearby star, θ (via interferometric observations), we can infer T eff from the bolometric flux, F bol, and the relation where d/r = 2θ 1. T eff = ( Fbol σ ) 1/4 ( ) 1/2 d R

29 Stellar model calibration and uncertainty In addition to the chemical compositions, we need to know T eff and gravities to predict a stellar spectrum. If we know the angular diameter of a nearby star, θ (via interferometric observations), we can infer T eff from the bolometric flux, F bol, and the relation where d/r = 2θ 1. T eff = ( Fbol σ ) 1/4 ( ) 1/2 d R But, this expensive approach can be applied only to some of nearby stars, which cover a narrow range of the composition, but is certainly useful to test the stellar models. To determine the gravity, we need to measure the mass and radius. How could these parameters be done?

30 Stellar model uncertainty With the above parameters measured, one can test/calibrate the theoretical stellar evolution models against observed spectra. There are two main shortcomings of current models: Many spectral lines predicted by the models are not observed in the Sun. Or the relative strengths of many lines are not well reproduced. Existing convective model atmosphere is still treated with the MLT. More sophistical models are needed that cover all the relevant evolutionary, mass, and chemical ranges. The resultant uncertainties are typically about several % in magnitude. Another approach to judge the adequacy of the models is to compare the predictions of different models.

31 Outline Spectra and magnitudes The effects of interstellar extinction K-correction for high-redshift objects Spectroscopic notation of the stellar chemical composition Calibration and uncertainty Review

32 Review Key concepts: apparent and absolute magnitudes, photometric system, zero points, distance modulus, absolute bolometric magnitude, bolometric correction, color excess, extinction law, K-correction. 1. Please draw a CMD or HRD diagram and compare star concentrations for a flux or volume limited sample. How to construct an honest sample of stars for the study of their evolution? 2. What is the reference star used for defining an absolute bolometric magnitude? Is it the same as for a magnitude in the Johnson photometric system? 3. How can the apparent K-band magnitude of a star in the Galaxy be corrected if we know the color excess E(B V ) along the line of sight? 4. What may be the procedure to estimate the apparent magnitude of a star of a certain type in the Galactic center from a stellar model? 5. Interesting questions to muse: What are the pros and cons of the CMD and spectroscopic approaches? What about other possible approaches (e.g., SED and color-color diagrams)? 6. How may the effective surface temperature of a star, T eff, be determined from the absolute bolometric magnitude of a nearby star and its diameter?

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Update date: December 13, 2010 Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle,

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, give the prediction of the

More information

Chapter 8: Simple Stellar Populations

Chapter 8: Simple Stellar Populations Chapter 8: Simple Stellar Populations Simple Stellar Population consists of stars born at the same time and having the same initial element composition. Stars of different masses follow different evolutionary

More information

Simple Stellar Populations

Simple Stellar Populations Stellar Objects: Simple Stellar Populations 1 Simple Stellar Populations 1 Theoretical isochrones Update date: December 14, 2010 Simple Stellar Population consists of stars born at the same time and having

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

Lab Exercises for Low Mass Stars

Lab Exercises for Low Mass Stars School of Physics and Astronomy February 2016 Lab Exercises for Low Mass Stars 1. Isochrones for the globular cluster M4 One common use of stellar models is to determine ages for stellar populations. This

More information

The magnitude system. ASTR320 Wednesday January 30, 2019

The magnitude system. ASTR320 Wednesday January 30, 2019 The magnitude system ASTR320 Wednesday January 30, 2019 What we measure: apparent brightness How bright a star appears to be in the sky depends on: How bright it actually is Luminosity and its distance

More information

Lab Exercises for Low Mass Stars

Lab Exercises for Low Mass Stars School of Physics and Astronomy February 2016 Lab Exercises for Low Mass Stars 1. Isochrones for the globular cluster M4 One common use of stellar models is to determine ages for stellar populations. This

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Birth Life Death Part I: Stellar Atmospheres Part I: Stellar Atmospheres Jan. 23: Intro and Overview of Observational Data (Chapters 3 and 5) Jan. 28: Basics of Stellar

More information

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars Characterization of the exoplanet host stars Exoplanets Properties of the host stars Properties of the host stars of exoplanets are derived from a combination of astrometric, photometric, and spectroscopic

More information

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies Lecture Three: ~2% of galaxy mass in stellar light Stellar Populations What defines luminous properties of galaxies face-on edge-on https://www.astro.rug.nl/~etolstoy/pog16/ 18 th April 2016 Sparke & Gallagher,

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

Classical Methods for Determining Stellar Masses, Temperatures, and Radii Classical Methods for Determining Stellar Masses, Temperatures, and Radii Willie Torres Harvard-Smithsonian Center for Astrophysics 2010 Sagan Exoplanet Summer Workshop 1 Outline Basic properties of stars

More information

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16

University of Naples Federico II, Academic Year Istituzioni di Astrofisica, read by prof. Massimo Capaccioli. Lecture 16 University of Naples Federico II, Academic Year 2011-2012 Istituzioni di Astrofisica, read by prof. Massimo Capaccioli Lecture 16 Stellar populations Walter Baade (1893-1960) Learning outcomes The student

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018 Hertzprung-Russel and colormagnitude diagrams ASTR320 Wednesday January 31, 2018 H-R diagram vs. Color- Magnitude Diagram (CMD) H-R diagram: Plot of Luminosity vs. Temperature CMD: Plot of magnitude vs.

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances 12. Physical Parameters from Stellar Spectra Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances 1 Fundamental Properties of Stars Temperature (T) Radius (R) Chemical

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Lecture 12. November 20, 2018 Lab 6

Lecture 12. November 20, 2018 Lab 6 Lecture 12 November 20, 2018 Lab 6 News Lab 4 Handed back next week (I hope). Lab 6 (Color-Magnitude Diagram) Observing completed; you have been assigned data if you were not able to observe. Due: instrumental

More information

Fundamental stellar parameters

Fundamental stellar parameters Fundamental stellar parameters flux received at Earth f º = direct determination of Teff R = radius of the spherical star, D = distance to the star. Luminosity : L = 4π R 2 F º dº T eff 4 = 4π R 2 F =

More information

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee Determination of [α/fe] and its Application to SEGUE F/G Stars Young Sun Lee Research Group Meeting on June 16, 2010 Outline Introduction Why [α/fe]? Determination of [α/fe] Validation of estimate of [α/fe]

More information

The structure and evolution of stars

The structure and evolution of stars The structure and evolution of stars Lecture 9: Computation of stellar evolutionary models 1 Learning Outcomes The student will learn How to interpret the models of modern calculations - (in this case

More information

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance

How to Understand Stars Chapter 17 How do stars differ? Is the Sun typical? Location in space. Gaia. How parallax relates to distance How to Understand Stars Chapter 7 How do stars differ? Is the Sun typical? Image of Orion illustrates: The huge number of stars Colors Interstellar gas Location in space Two dimensions are easy measure

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1: Astr 323: Extragalactic Astronomy and Cosmology Spring Quarter 2014, University of Washington, Željko Ivezić Lecture 1: Review of Stellar Astrophysics 1 Understanding Galaxy Properties and Cosmology The

More information

H-R Diagram evol tracks CMD.notebook. October 28, H-R Diagrams & Stellar Evolution:

H-R Diagram evol tracks CMD.notebook. October 28, H-R Diagrams & Stellar Evolution: H-R Diagrams & Stellar Evolution: Modeling the Stars: How Do We Determine the Structure and Evolution of Stars? The "physics" of stars: the equations & numerical models of stellar structure represent the

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory

The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory Accepted for publicaton in The Astronomical Journal The Giant Branches of Open and Globular Clusters in the Infrared as Metallicity Indicators: A Comparison with Theory GlennP.Tiede,PaulMartini,&JayA.Frogel

More information

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 Goal: Determine n * (M *,t age,[fe/h],r) for a population of galaxies How many stars of what mass and metallicity formed

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

Using the HR Diagram to Measure the Star Formation Histories of Galaxies. Tammy Smecker-Hane University of California, Irvine

Using the HR Diagram to Measure the Star Formation Histories of Galaxies. Tammy Smecker-Hane University of California, Irvine Using the HR Diagram to Measure the Star Formation Histories of Galaxies Tammy Smecker-Hane University of California, Irvine tsmecker@uci.edu Irvine, California 1 Outline 1. Stellar Evolution Hertzsprung-Russell

More information

MSci Astrophysics 210PHY412

MSci Astrophysics 210PHY412 MSci Astrophysics 210PHY412 Stellar structure and evolution Dr. Stephen Smartt (Room S039) Department of Physics and Astronomy S.Smartt@qub.ac.uk Online resources - QoL and http://star.pst.qub.ac.uk/~sjs/teaching.html

More information

A stellar parameter calibration of IUE data for the determination of the present day mass function of high mass stars

A stellar parameter calibration of IUE data for the determination of the present day mass function of high mass stars Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2003 A stellar parameter calibration of IUE data for the determination of the present day mass function of high mass stars

More information

On the Red Edge of the δ Scuti Instability Strip

On the Red Edge of the δ Scuti Instability Strip Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 5, 441 448 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics On the Red Edge of the δ Scuti Instability Strip

More information

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME:

OPEN CLUSTERS LAB. I. Introduction: II. HR Diagram NAME: NAME: OPEN CLUSTERS LAB What will you learn in this Lab? An open cluster is a group of stars that were born at the same time and can be studied to determine both the distance and age of the member stars

More information

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley 7. Dust Grains & Interstellar Extinction James R. Graham University of California, Berkeley Visual Extinction Presence of interstellar gas or nebulae has a long history Existence of absorbing interstellar

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

arxiv: v1 [astro-ph.co] 2 Dec 2011

arxiv: v1 [astro-ph.co] 2 Dec 2011 The Spectral Energy Distribution of Galaxies Proceedings IAU Symposium No. 284, 2011 R.J. Tuffs & C.C.Popescu, eds. c 2011 International Astronomical Union DOI: 00.0000/X000000000000000X Spectral models

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution Chap.3 The nature of Galactic components Overview of (old) Galactic components bulge, thick disk, metal-weak halo Globular clusters metallicity & age distribution Satellite galaxies spatial and metallicity

More information

Stellar Formation and Evolution

Stellar Formation and Evolution Stellar Formation and Evolution Wen Ping Chen http://www.astro.ncu.edu.tw/~wchen/courses/stars/default.htm What is a star? How hot is the surface of the Sun? How is this known? The Sun is gaseous, so how

More information

Astronomy 242: Review Questions #3 Distributed: April 29, 2016

Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Review the questions below, and be prepared to discuss them in class next week. Modified versions of some of these questions will be used

More information

Other stellar types. Open and globular clusters: chemical compositions

Other stellar types. Open and globular clusters: chemical compositions Other stellar types Some clusters have hotter stars than we find in the solar neighbourhood -- O, B, A stars -- as well as F stars, and cooler stars (G, K, M) Hence we can establish intrinsic values (M

More information

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do. Color is only a weak function of age after ~3Gyrs (for a given metallicity) (See MBW pg 473) But there is a strong change in M/L V and weak change in M/L K Age Dating A SSP Quick quiz: please write down

More information

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion

11 days exposure time. 10,000 galaxies. 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion 11 days exposure time 10,000 galaxies 3 arcminutes size (0.1 x diameter of moon) Estimated number of galaxies in observable universe: ~200 billion Galaxies with disks Clumpy spiral shapes Smooth elliptical

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

arxiv: v1 [astro-ph.sr] 1 Jul 2012

arxiv: v1 [astro-ph.sr] 1 Jul 2012 BD+36 3317: An Algol Type Eclipsing Binary in Delta Lyrae Cluster arxiv:1207.0194v1 [astro-ph.sr] 1 Jul 2012 O. Özdarcan, E. Sipahi, H. A. Dal Ege University, Science Faculty, Department of Astronomy and

More information

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

More information

Star clusters laboratories of stellar structure theory. Achim Weiss Max-Planck-Institute for Astrophysics (Garching, Germany)

Star clusters laboratories of stellar structure theory. Achim Weiss Max-Planck-Institute for Astrophysics (Garching, Germany) Star clusters laboratories of stellar structure theory Achim Weiss Max-Planck-Institute for Astrophysics (Garching, Germany) Motivation Stars are complex objects Stellar evolution theory tries to treat

More information

5.6 Spectrophotometry and Magnitudes

5.6 Spectrophotometry and Magnitudes 5.6. SPECTROPHOTOMETRY AND MAGNITUDES 87 a constant optical depth, τ = χ L, across the beam cross section (so that the absorption is independent of the point of origin of a beam element emitted from the

More information

Problem Score Worth

Problem Score Worth Exam #2 79205 Astronomy Fall 1997 NAME: Solution Key You have two hours to complete this exam. There are a total of five problems and you are to solve all of them. Not all the problems are worth the same

More information

Spatial distribution of stars in the Milky Way

Spatial distribution of stars in the Milky Way Spatial distribution of stars in the Milky Way What kinds of stars are present in the Solar neighborhood, and in what numbers? How are they distributed spatially? How do we know? How can we measure this?

More information

Determining the Properties of the Stars

Determining the Properties of the Stars Determining the Properties of the Stars This set of notes by Nick Strobel covers: The properties of stars--their distances, luminosities, compositions, velocities, masses, radii, and how we determine those

More information

Project for Observational Astronomy 2017/2018: Colour-magnitude diagram of an open cluster

Project for Observational Astronomy 2017/2018: Colour-magnitude diagram of an open cluster Project for Observational Astronomy 017/018: Colour-magnitude diagram of an open cluster Søren S. Larsen December 13, 017 1 1 Colour-magnitude diagram for an open cluster 1.1 Background The colour-magnitude

More information

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

The Hertzsprung-Russell Diagram

The Hertzsprung-Russell Diagram The Hertzsprung-Russell Diagram VIREO Virtual Educational Observatory Aims To use the observational + analysis tools of modern astronomy To use the setup that professional astronomers use at large telescopes

More information

of more complex systems like galaxies. A simple stellar population is dened as an assembly

of more complex systems like galaxies. A simple stellar population is dened as an assembly Chapter 4 SIMPLE STELLAR POPULATIONS 4.1 Introduction Simple stellar populations (SSP) are the basic tool to understand the spectro-photometric properties of more complex systems like galaxies. A simple

More information

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Oxygen in red giants from near-infrared OH lines: 3D effects and first results from Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto! Overview! 1. APOGEE: status and prospects! 2. A first look at

More information

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018

Stellar distances and velocities. ASTR320 Wednesday January 24, 2018 Stellar distances and velocities ASTR320 Wednesday January 24, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Why are stellar distances important? Distances

More information

Stellar Evolution & issues related to the post Turn-Off evolution

Stellar Evolution & issues related to the post Turn-Off evolution Stellar Evolution & issues related to the post Turn-Off evolution Santi Cassisi INAF - Astronomical Observatory of Teramo, Italy The point of view of Population Synthesis users What do they want? Magnitudes

More information

Deriving stellar masses from SDSS

Deriving stellar masses from SDSS Deriving stellar masses from SDSS Reference: Bruzual and Charlot 2003MNRAS.344.1000B Kauffmann et al. 2003MNRAS.341.33 Salim et al. 2007ApJS..173..267S Bell et al. 2003ApJS..149..289B Outline! Basic idea!

More information

The Distances and Ages of Star Clusters

The Distances and Ages of Star Clusters Name: Partner(s): Lab #7 The Distances and Ages of Star Clusters 0.1 Due July 14th Very few stars are born isolated. Instead, most stars form in small groups, known as clusters. The stars in a cluster

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

THE GALAXY. Spitzer Space Telescope Images & Spectra: 3µm - 170µm

THE GALAXY. Spitzer Space Telescope Images & Spectra: 3µm - 170µm THE GALAXY Composite infrared colour image of Galactic Centre region taken at 1.25, 2.2 and 3.5 microns with COBE/DIRBE instrument (NASA/GSFC). GALAXY: A conglomeration of stars, gas + dust Topics: Star

More information

M31 Color Mag Diagram Brown et al 592:L17-L20!

M31 Color Mag Diagram Brown et al 592:L17-L20! The physical origin of the form of the IMF is not well understood Use the stellar mass-luminosity relation and present day stellar luminosity function together with a model of how the star formation rate

More information

ASTRONOMY AND ASTROPHYSICS. Synthetic photometry from ATLAS9 models in the UBV Johnson system. Fiorella Castelli

ASTRONOMY AND ASTROPHYSICS. Synthetic photometry from ATLAS9 models in the UBV Johnson system. Fiorella Castelli Astron. Astrophys. 346, 564 585 (1999) ASTRONOMY AND ASTROPHYSICS Synthetic photometry from ATLAS9 models in the UBV Johnson system Fiorella Castelli CNR-Gruppo Nazionale Astronomia and Osservatorio Astronomico,

More information

arxiv:astro-ph/ v1 5 May 2004

arxiv:astro-ph/ v1 5 May 2004 Modelling of Stellar Atmospheres IAU Symposium, Vol. xxx, xxxx N. E. Piskunov, W. W. Weiss, D. F. Gray, eds. New Grids of ATLAS9 Model Atmospheres arxiv:astro-ph/0405087v1 5 May 2004 Fiorella Castelli

More information

1. Basic Properties of Stars

1. Basic Properties of Stars 1. Basic Properties of Stars This is the Sun during a total eclipse. The Sun, our closest star, is very much representative of the objects that we will study during this module, namely stars. Much of the

More information

Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin?

Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin? Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin? B.E. Tucker 1,2 Department of Physics University of Notre Dame btucker2@nd.edu Advised by: K.Olsen and B.Blum Astronomers,

More information

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Discovering Galaxies. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: Discovering Galaxies Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 05, 2016 Read: Chap 19 04/05/16 slide 1 Exam #2 Returned by next class meeting

More information

Measurement of the stellar irradiance

Measurement of the stellar irradiance Measurement of the stellar irradiance Definitions Specific Intensity : (monochromatic) per unit area normal to the direction of radiation per unit solid angle per unit wavelength unit (or frequency) per

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

Remember from Stefan-Boltzmann that 4 2 4

Remember from Stefan-Boltzmann that 4 2 4 Lecture 17 Review Most stars lie on the Main sequence of an H&R diagram including the Sun, Sirius, Procyon, Spica, and Proxima Centauri. This figure is a plot of logl versus logt. The main sequence is

More information

ASTR Look over Chapter 15. Good things to Know. Triangulation

ASTR Look over Chapter 15. Good things to Know. Triangulation ASTR 1020 Look over Chapter 15 Good things to Know Triangulation Parallax Parsecs Absolute Visual Magnitude Distance Modulus Luminosity Balmer Lines Spectral Classes Hertzsprung-Russell (HR) diagram Main

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Diameters and Temperatures of Main Sequence Stars

Diameters and Temperatures of Main Sequence Stars Diameters and Temperatures of Main Sequence Stars Tabetha Boyajian (GSU / Hubble Fellow) and a whole lot of y all Interest and motivation Fundamental properties of stars Radius: f (θ, π) Temperature: f

More information

Out with magnitudes, in with monochromatic luminosities!

Out with magnitudes, in with monochromatic luminosities! When teaching: Out with magnitudes, in with monochromatic luminosities! arxiv:0807.1393v1 [astro-ph] 9 Jul 2008 Frank Verbunt Astronomical Institute University Utrecht, the Netherlands Abstract email:

More information

Extinction & Red Clump Stars

Extinction & Red Clump Stars Extinction & Red Clump Stars A NEW WAY TO ACQUIRE DISTANCES TO X-RAY SOURCES PATRICIA WROBLEWSKI UNDER THE GUIDANCE OF: DR. FERYAL ÖZEL Undergraduate Research Symposium May 8, 2008 What will be Covered

More information

Ast 241 Stellar Atmospheres and Interiors

Ast 241 Stellar Atmospheres and Interiors Ast 241 Stellar Atmospheres and Interiors Goal: basic understanding of the nature of stars Very important for astronomers Most of (known) mass and luminosity from stars Normal galaxies To understand galaxies

More information

Astro Fall 2012 Lecture 8. T. Howard

Astro Fall 2012 Lecture 8. T. Howard Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

More information

Supernova 2005cs and the Origin of Type IIP Supernovae

Supernova 2005cs and the Origin of Type IIP Supernovae Supernova 2005cs and the Origin of Type IIP Supernovae Victor Utrobin ITEP, Moscow with Nikolai Chugai (INASAN, Moscow) Conference on Physics of Neutron Stars - 2008 St. Petersburg, Russia June 24 27,

More information

Outline: Cosmological Origins. The true basics of life The age of Earth and the Universe The origin of the heavy elements Molecules in space

Outline: Cosmological Origins. The true basics of life The age of Earth and the Universe The origin of the heavy elements Molecules in space Outline: Cosmological Origins The true basics of life The age of Earth and the Universe The origin of the heavy elements Molecules in space Reminder: HW #1 due in one week Homework is on class webpage

More information

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review 16-1 Fusion in the Sun The solar corona has temperatures roughly the same as temperatures in the Sun's core, where nuclear fusion takes place.

More information

Review of stellar evolution and color-magnitude diagrams

Review of stellar evolution and color-magnitude diagrams Review of stellar evolution and color-magnitude diagrams The evolution of stars can be used to study the properties of galaxies Very characteristic features pinpoint at the age (chemistry) of the stars

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate)

optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate) optical / IR: photon counting flux density or magnitude corresponds to number of electrons per second (mean rate) N electrons/sec = ɛ F λ λa hc/λ 0 efficiency factor flux density x bandpass x collecting

More information

Astronomy II (ASTR-1020) Homework 2

Astronomy II (ASTR-1020) Homework 2 Astronomy II (ASTR-1020) Homework 2 Due: 10 February 2009 The answers of this multiple choice homework are to be indicated on a Scantron sheet (either Form # 822 N-E or Ref # ABF-882) which you are to

More information

Erciyes University, Kayseri, Turkey

Erciyes University, Kayseri, Turkey This article was downloaded by:[bochkarev, N.] On: 7 December 27 Access Details: [subscription number 746126554] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number:

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars

Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars Interferometric Observations of Supergiants: Direct Measures of the Very Largest Stars Gerard T. van Belle PRIMA Instrument Scientist Observatory April 7, 2008 Interferometric Observations of Supergiants:

More information

summary of last lecture

summary of last lecture radiation specific intensity flux density bolometric flux summary of last lecture Js 1 m 2 Hz 1 sr 1 Js 1 m 2 Hz 1 Js 1 m 2 blackbody radiation Planck function(s) Wien s Law λ max T = 2898 µm K Js 1 m

More information