Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test

Size: px
Start display at page:

Download "Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test"

Transcription

1 Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test la

2 Contents

3

4 The two sample t-test generalizes into Analysis of Variance. In analysis of variance ANOVA the population consists of two or more groups. Observations are assumed to follow normal distribution. ANOVA tests the equality of the expected values of the groups. For example, we could test the equality of the expected monthly salary of MScs (Tech.) in Helsinki, Tampere and Oulu.

5 MANOVA In multivariate analysis of variance, MANOVA, the tested expected values are vectors. We could test the equality of the expected monthly salary and weekly overtime of MScs (Tech.) in Helsinki, Tampere and Oulu.

6 Multifactor ANOVA The population could also be divided into groups based on multiple factors (Multifactor ANOVA), of which some can be continuous (analysis of covariance, ANCOVA). For example, we could divide MScs (Tech.) in to groups based on the city they live in and based on their gender.

7 Multifactor MANOVA In multifactor MANOVA, the tested expected values are vectors.

8 ANOVA On this lecture course, we only consider cases where the population is divided into groups with respect to just one factor and the expected value that is tested is univariate.

9 ANOVA Let x 1j, x 2j,..., x nj j be observed values of a random variable x j, j {1,..., k}. Assume that the observations x 1j, x 2j,..., x nj j are i.i.d. and follow normal distribution N(µ j, σ 2 ), j {1,..., k}. (We now have k random samples from univariate normal distribution. The variance of all the k normal distributions is the same.) Assume that the k samples are independent. The null hypothesis H 0 : µ 1 = µ 2 = = µ k. The alternative hypothesis H 1 : µ j µ i for some i, j.

10 ANOVA In analysis of variance, the total variance is divided into two parts. First part measures the variance between group means and the second part measures variance within groups. If these two variances differ a lot, there is evidence against the null hypothesis, and it can be rejected. The test of the equality of the expected values is based on comparison of between groups variance and within groups variances. This the name to the method analysis of variance.

11 ANOVA Calculate the group means x j = 1 n j n j i=1 x ij and combined sample mean x = 1 n n k j x ij, j=1 i=1 where n = k j=1 n j.

12 ANOVA Consider the total sum of squares n k j SST = (x ij x) 2, j=1 i=1 the variance between groups (group sum of squares) SSG = n k j ( x j x) 2 = j=1 i=1 k n j ( x j x) 2 j=1 and the variance within groups (error sum of squares) SSE = n k j (x ij x j ) 2 = j=1 i=1 k (n j 1)sj 2, j=1 where sj 2 = 1 nj n j 1 i=1 (x ij x j ) 2. Now the total sum of squares SST = SSG + SSE.

13 ANOVA F-test statistic F = n k SSG k 1 SSE. Under the null hypothesis, the test statistic follows F distribution with parameters (k 1) and (n k). The expected value of the test statistic, under H 0, is (E[F] = n k n k 2 ). Large values of the test statistic suggests that the null hypothesis H 0 is false. n k n k 2 The null hypothesis H 0 is rejected, if the p-value is small enough.

14 F -distribution For more about F-distribution, check Wolfram MathWorld and Wikipedia. Figure: F-distributions with different parameters.

15 Numerical example A research group was set to study whether the expected value of a specific L laboratory test differs between patients that are on different medications (A, B, C). 10 patients receiving medication A (group 1), 10 patients receiving medication B (group 2) and 10 receiving medication C (group 3) were picked randomly and lab test L was taken. Next table shows the accurately measured laboratory test results.

16 Group 1 (A) Group 2 (B) Group 3 (C) Table: L laboratory test results for patient groups 1, 2 and 3

17 Group means are x 1 = , x 2 = and x 3 = and combined mean x = Group variances are s 2 1 = , s 2 2 = and s 2 3 = Total sum of squares SST = n k j (x ij x) 2 = j=1 i= i=1 group sum of squares 10 i=1 (x 1i ) i=1 (x 3 i ) 2 = , (x 2i ) 2 SSG = k n j ( x j x) 2 = j=1 3 10( x j ) 2 = j=1 and error sum of squares SSE = k (n j 1)sj 2 = 9( ) j=1 =

18 The value of the test statistic is F = n k k 1 SSG SSE = = Under the null hypothesis, the test statistic follows F -distribution with parameters (2) and (27). One-tailed critical value on 5% significance level is < The null hypothesis can be rejected.

19

20 If the null hypothesis (equality of the expected values) is rejected based on the F -test, the next step is pairwise comparison. The goal in pairwise comparison is to identify the groups with statistically significant differences in expected values.

21 Bonferroni s method Consider pairwise comparison of the expected values. There are c = k(k 1) 2 pairs in total to compare. The first idea would be to analyse the pairs with t-test or to construct confidence intervals for the differences µ j µ s. Let β be the probability that H 0 is incorrectly rejected in a single test and let α be the probability that H 0 is incorrectly rejected in at least one test, when the test is repeated c times. Then α cβ. For this reason, if significance level α is chosen for the combined comparison, then individual comparisons must be done on level β = α c. (For pairwise tests, instead of p-value α, you look for p-values α c.)

22

23 In ANOVA, it is assumed that the group variances are equal. This assumption should be tested separately.

24 Let x 1j, x 2j,..., x nj j be observed values of a random variable x j, j {1,..., k}. Assume that the observations are i.i.d. and follow normal distribution N(µ j, σ 2 j ), j {1,..., k}. Assume that all the k samples are independent. The null hypothesis H 0 : σ 2 1 = σ2 2 = = σ2 k. The alternative hypothesis H 1 : σ 2 j σ 2 i for some i, j..

25 Let and Let s 2 = 1 n k s 2 j = 1 n j 1 n k j (x ij x j ) 2, j=1 i=1 n j (x ij x j ) 2. i=1 B = Q h, where and Q = (n k) ln s 2 h = ( ( 3(k 1) k j=1 k (n j 1) ln sj 2 j=1 1 n j 1 ) 1 ). n k

26 Bartlett s test statistic where and B = Q h, Q = (n k) ln s 2 h = ( ( 3(k 1) k j=1 k (n j 1) ln sj 2 j=1 1 n j 1 ) 1 ). n k If the sample size is large, then, under the null hypothesis, the test statistic approximately follows χ 2 distribution with (k 1) degrees of freedom. The expected value of the test statistic, under H 0, is k 1 (E[B] = k 1). Large values of the test statistic suggest that the null hypothesis H 0 is false. The null hypothesis H 0 is rejected if the p-value is small enough.

27

28 ANOVA tests the equality of the expected values of normally distributed samples. We next consider a non-parametric alternative to ANOVA.

29 is similar to one way analysis of variance, but it does not require normality assumption.

30 Let x 1j, x 2j,..., x nj j be observed values of a continuous random variable x j, j {1,..., k}. Assume that the observations x 1j, x 2j,..., x nj j are i.i.d. Assume also that the k samples are independent and that the variables x j, j {1,..., k} follow the same distribution up to location shifts (i.e. x j follow otherwise the same distribution, but possibly with different medians) and assume that the variables x j have population medias m j, j {1,..., k}. The null hypothesis H 0 : m 1 = m 2 = = m k. The alternative hypothesis H 1 : m j m i for some i, j.

31 is based on examining the ranks of the observations.

32 Combine the groups x 1j, x 2j,..., x nj j, j {1,..., k} into one big sample z 1, z 2,..., z n, where n = k j=1 n j. Order the observations z s from the smallest to the largest. Let R(z s ) be the rank of the observation z s in the combined sample z 1, z 2,..., z n. Calculate the group means of the ranks r j = 1 n j n j z s=x ij,i=1 and the mean of the combined sample r = 1 n R(z s ) n R(z s ). s=1

33 Consider the group sum of squares, which describes the variation of the ranks between the groups k n j ( r j r) 2 j=1 and the total sum of squares, which describes the variation of the ranks in the combined sample n (R(z s ) r) 2. s=1

34 statistic k j=1 K = (n 1) n j( r j r) 2 n s=1 (R(z s) r). 2 Under the null hypothesis H 0, if the sample size is large, the test statistic approximately follows χ 2 distribution with k 1 degrees of freedom. Under H 0, the (asymptotic) expected value of the test statistic is k 1. Large values of the test statistic suggests that the null hypothesis H 0 is false. The null hypothesis is rejected, if the p-value is small enough.

35 Statistical softwares often calculate exact p-values for the when the sample size is small. With large sample sizes, calculation of exact p-values requires intense computing and in these cases the asymptotic p-values (based on the χ 2 -distribution) are used.

36 Discrete distributions We assumed above that the observations follow some continuous distribution. However, can be used for discrete observations as well. Then it is possible that some of the observations have the same rank. In that case, all those observations are assigned to have the median of the corresponding ranks. For example, if two observations have the same rank corresponding to ranks 7 and 8, then both are assigned to have rank 7.5. If three observations have the same ranks corresponding to ranks 3, 4, and 5, then each is assigned to have rank 4.

37 ANOVA vs Kruskall-Wallis ANOVA is explicitly a test for the equality of the expected values. The can, technically, be seen as a comparison of the expected ranks. Hence, the Kruskal-Wallis test is in fact more general than a test for the equality of the medians. It tests whether the probability that a random observation from each group is equally likely to be above or below a random observation from another group. The test is sensitive to differences in medians and that is why it is usually considered as a test for the equality of the medians.

38 Example Consider three student groups (1, 2, 3) and their statistics exam scores. The table below displays the scores and the corresponding ranks (in parenthesis). group 1 group 2 group (14) 16.5 (11) 23 (22) 11.0 (4.5) 10.0 (3) 22 (20) 17.0 (12) 15.0 (8.5) 23 (22) 14.0 (7) 15.0 (8.5) 24 (24) 11.0 (4.5) 20.5 (17) 21 (18) 9.5 (2) 8.0 (1) 21.5 (19) 16.0 (10) 12.0 (6) 23 (22) 20.0 (16) 17.5 (13) 19.0 (15)

39 Example Calculate the rank means within groups r 1 = 1 54 ( ) = 7 7 = , r 2 = 1 7 ( ) = 55 7 = , r 3 = ( ) = = 19.1, and the mean rank of the combined sample r = ( ) = = 12.5.

40 Example Calculate the group sum of squares k n j ( r j r) 2 = 7 ( ) ( ) 2 j=1 +10 ( ) 2 = and the total sum of squares n (R(z s ) r) 2 s=1 = ( ) 2 + ( ) 2 + ( ) 2 + (7 12.5) 2 +( ) 2 + (2 12.5) 2 + ( ) 2 + ( ) 2 +(3 12.5) 2 + ( ) 2 + ( ) 2 +( ) 2 + (1 12.5) 2 + (6 12.5) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 +( ) 2 = 1147

41 Example Now k j=1 K = (n 1) n j( r j r) 2 n s=1 (R(z s) r) = (24 1) = p value of the test is clearly less than 0.05 value 5.79 has p value approximately The null hypothesis can be rejected. There is a statistically significant difference in the exam success between the three groups.

42 Bonferroni s method If the null hypothesis of the is rejected, the next step is pairwise comparison.

43 Bonferroni s method Compare pairwise equality/difference of the medians. There are c = k(k 1) 2 pairs to compare. First idea would be to use the Wilcoxon two sample rank test for pairwise comparison. It should be noted that if the comparison is done on significance level α, then the pairwise comparisons should be done on significance level β = α c. For example, if significance level 0.05 is used for the combined comparison, then the pairwise comparisons can be used to reject the null hypothesis if the p-value is smaller than or equal to 0.05 c.

44 J. S. Milton, J. C. Arnold: Introduction to Probability and Statistics, McGraw-Hill Inc R. V. Hogg, J. W. McKean, A. T. Craig: Introduction to Mathematical Statistics, Pearson Education P. Laininen: Todennäköisyys ja sen tilastollinen soveltaminen, Otatieto 1998, numero 586. I. Mellin: Tilastolliset menetelmät,

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals

Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence intervals Introduction to Statistical Inference Lecture 8: Linear regression, Tests and confidence la Non-ar Contents Non-ar Non-ar Non-ar Consider n observations (pairs) (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n

More information

Introduction to Statistical Inference Self-study

Introduction to Statistical Inference Self-study Introduction to Statistical Inference Self-study Contents Definition, sample space The fundamental object in probability is a nonempty sample space Ω. An event is a subset A Ω. Definition, σ-algebra A

More information

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics SEVERAL μs AND MEDIANS: MORE ISSUES Business Statistics CONTENTS Post-hoc analysis ANOVA for 2 groups The equal variances assumption The Kruskal-Wallis test Old exam question Further study POST-HOC ANALYSIS

More information

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1)

Summary of Chapter 7 (Sections ) and Chapter 8 (Section 8.1) Summary of Chapter 7 (Sections 7.2-7.5) and Chapter 8 (Section 8.1) Chapter 7. Tests of Statistical Hypotheses 7.2. Tests about One Mean (1) Test about One Mean Case 1: σ is known. Assume that X N(µ, σ

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Analysis of variance

Analysis of variance Analysis of variance Tron Anders Moger 3.0.007 Comparing more than two groups Up to now we have studied situations with One observation per subject One group Two groups Two or more observations per subject

More information

Lecture 5: Hypothesis tests for more than one sample

Lecture 5: Hypothesis tests for more than one sample 1/23 Lecture 5: Hypothesis tests for more than one sample Måns Thulin Department of Mathematics, Uppsala University thulin@math.uu.se Multivariate Methods 8/4 2011 2/23 Outline Paired comparisons Repeated

More information

Nonparametric Location Tests: k-sample

Nonparametric Location Tests: k-sample Nonparametric Location Tests: k-sample Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics Nonparametric or Distribution-free statistics: used when data are ordinal (i.e., rankings) used when ratio/interval data are not normally distributed (data are converted to ranks)

More information

Hypothesis Testing One Sample Tests

Hypothesis Testing One Sample Tests STATISTICS Lecture no. 13 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 12. 1. 2010 Tests on Mean of a Normal distribution Tests on Variance of a Normal

More information

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร Analysis of Variance ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร pawin@econ.tu.ac.th Outline Introduction One Factor Analysis of Variance Two Factor Analysis of Variance ANCOVA MANOVA Introduction

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

Week 14 Comparing k(> 2) Populations

Week 14 Comparing k(> 2) Populations Week 14 Comparing k(> 2) Populations Week 14 Objectives Methods associated with testing for the equality of k(> 2) means or proportions are presented. Post-testing concepts and analysis are introduced.

More information

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p.

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. Preface p. xi Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. 6 The Scientific Method and the Design of

More information

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science

Statistiek II. John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa. February 13, Dept of Information Science Statistiek II John Nerbonne using reworkings by Hartmut Fitz and Wilbert Heeringa Dept of Information Science j.nerbonne@rug.nl February 13, 2014 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated

More information

Non-parametric tests, part A:

Non-parametric tests, part A: Two types of statistical test: Non-parametric tests, part A: Parametric tests: Based on assumption that the data have certain characteristics or "parameters": Results are only valid if (a) the data are

More information

Chapter 10: Analysis of variance (ANOVA)

Chapter 10: Analysis of variance (ANOVA) Chapter 10: Analysis of variance (ANOVA) ANOVA (Analysis of variance) is a collection of techniques for dealing with more general experiments than the previous one-sample or two-sample tests. We first

More information

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data 1999 Prentice-Hall, Inc. Chap. 10-1 Chapter Topics The Completely Randomized Model: One-Factor

More information

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis

STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis STAT 135 Lab 9 Multiple Testing, One-Way ANOVA and Kruskal-Wallis Rebecca Barter April 6, 2015 Multiple Testing Multiple Testing Recall that when we were doing two sample t-tests, we were testing the equality

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Blood coagulation time T avg A 62 60 63 59 61 B 63 67 71 64 65 66 66 C 68 66 71 67 68 68 68 D 56 62 60 61 63 64 63 59 61 64 Blood coagulation time A B C D Combined 56 57 58 59 60 61

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Multiple comparisons - subsequent inferences for two-way ANOVA

Multiple comparisons - subsequent inferences for two-way ANOVA 1 Multiple comparisons - subsequent inferences for two-way ANOVA the kinds of inferences to be made after the F tests of a two-way ANOVA depend on the results if none of the F tests lead to rejection of

More information

Chapter 7, continued: MANOVA

Chapter 7, continued: MANOVA Chapter 7, continued: MANOVA The Multivariate Analysis of Variance (MANOVA) technique extends Hotelling T 2 test that compares two mean vectors to the setting in which there are m 2 groups. We wish to

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) II Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 1 Compare Means from More Than Two

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Understand Difference between Parametric and Nonparametric Statistical Procedures Parametric statistical procedures inferential procedures that rely

More information

Analysis of Variance (ANOVA) Cancer Research UK 10 th of May 2018 D.-L. Couturier / R. Nicholls / M. Fernandes

Analysis of Variance (ANOVA) Cancer Research UK 10 th of May 2018 D.-L. Couturier / R. Nicholls / M. Fernandes Analysis of Variance (ANOVA) Cancer Research UK 10 th of May 2018 D.-L. Couturier / R. Nicholls / M. Fernandes 2 Quick review: Normal distribution Y N(µ, σ 2 ), f Y (y) = 1 2πσ 2 (y µ)2 e 2σ 2 E[Y ] =

More information

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics DETAILED CONTENTS About the Author Preface to the Instructor To the Student How to Use SPSS With This Book PART I INTRODUCTION AND DESCRIPTIVE STATISTICS 1. Introduction to Statistics 1.1 Descriptive and

More information

Lecture 14: ANOVA and the F-test

Lecture 14: ANOVA and the F-test Lecture 14: ANOVA and the F-test S. Massa, Department of Statistics, University of Oxford 3 February 2016 Example Consider a study of 983 individuals and examine the relationship between duration of breastfeeding

More information

(Foundation of Medical Statistics)

(Foundation of Medical Statistics) (Foundation of Medical Statistics) ( ) 4. ANOVA and the multiple comparisons 26/10/2018 Math and Stat in Medical Sciences Basic Statistics 26/10/2018 1 / 27 Analysis of variance (ANOVA) Consider more than

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018

2 Hand-out 2. Dr. M. P. M. M. M c Loughlin Revised 2018 Math 403 - P. & S. III - Dr. McLoughlin - 1 2018 2 Hand-out 2 Dr. M. P. M. M. M c Loughlin Revised 2018 3. Fundamentals 3.1. Preliminaries. Suppose we can produce a random sample of weights of 10 year-olds

More information

NONPARAMETRICS. Statistical Methods Based on Ranks E. L. LEHMANN HOLDEN-DAY, INC. McGRAW-HILL INTERNATIONAL BOOK COMPANY

NONPARAMETRICS. Statistical Methods Based on Ranks E. L. LEHMANN HOLDEN-DAY, INC. McGRAW-HILL INTERNATIONAL BOOK COMPANY NONPARAMETRICS Statistical Methods Based on Ranks E. L. LEHMANN University of California, Berkeley With the special assistance of H. J. M. D'ABRERA University of California, Berkeley HOLDEN-DAY, INC. San

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

Analysis of variance, multivariate (MANOVA)

Analysis of variance, multivariate (MANOVA) Analysis of variance, multivariate (MANOVA) Abstract: A designed experiment is set up in which the system studied is under the control of an investigator. The individuals, the treatments, the variables

More information

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures Non-parametric Test Stephen Opiyo Overview Distinguish Parametric and Nonparametric Test Procedures Explain commonly used Nonparametric Test Procedures Perform Hypothesis Tests Using Nonparametric Procedures

More information

STAT 501 EXAM I NAME Spring 1999

STAT 501 EXAM I NAME Spring 1999 STAT 501 EXAM I NAME Spring 1999 Instructions: You may use only your calculator and the attached tables and formula sheet. You can detach the tables and formula sheet from the rest of this exam. Show your

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

We need to define some concepts that are used in experiments.

We need to define some concepts that are used in experiments. Chapter 0 Analysis of Variance (a.k.a. Designing and Analysing Experiments) Section 0. Introduction In Chapter we mentioned some different ways in which we could get data: Surveys, Observational Studies,

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

3. Nonparametric methods

3. Nonparametric methods 3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

More information

ANOVA CIVL 7012/8012

ANOVA CIVL 7012/8012 ANOVA CIVL 7012/8012 ANOVA ANOVA = Analysis of Variance A statistical method used to compare means among various datasets (2 or more samples) Can provide summary of any regression analysis in a table called

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Much of statistical inference centers around the ability to distinguish between two or more groups in terms of some underlying response variable y. Sometimes, there are but

More information

Chapter 18 Resampling and Nonparametric Approaches To Data

Chapter 18 Resampling and Nonparametric Approaches To Data Chapter 18 Resampling and Nonparametric Approaches To Data 18.1 Inferences in children s story summaries (McConaughy, 1980): a. Analysis using Wilcoxon s rank-sum test: Younger Children Older Children

More information

ANOVA - analysis of variance - used to compare the means of several populations.

ANOVA - analysis of variance - used to compare the means of several populations. 12.1 One-Way Analysis of Variance ANOVA - analysis of variance - used to compare the means of several populations. Assumptions for One-Way ANOVA: 1. Independent samples are taken using a randomized design.

More information

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA)

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) BSTT523 Pagano & Gauvreau Chapter 13 1 Nonparametric Statistics Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) In particular, data

More information

In ANOVA the response variable is numerical and the explanatory variables are categorical.

In ANOVA the response variable is numerical and the explanatory variables are categorical. 1 ANOVA ANOVA means ANalysis Of VAriance. The ANOVA is a tool for studying the influence of one or more qualitative variables on the mean of a numerical variable in a population. In ANOVA the response

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Chapter Seven: Multi-Sample Methods 1/52

Chapter Seven: Multi-Sample Methods 1/52 Chapter Seven: Multi-Sample Methods 1/52 7.1 Introduction 2/52 Introduction The independent samples t test and the independent samples Z test for a difference between proportions are designed to analyze

More information

TA: Sheng Zhgang (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan (W 1:20) / 346 (Th 12:05) FINAL EXAM

TA: Sheng Zhgang (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan (W 1:20) / 346 (Th 12:05) FINAL EXAM STAT 301, Fall 2011 Name Lec 4: Ismor Fischer Discussion Section: Please circle one! TA: Sheng Zhgang... 341 (Th 1:20) / 342 (W 1:20) / 343 (W 2:25) / 344 (W 12:05) Haoyang Fan... 345 (W 1:20) / 346 (Th

More information

Empirical Power of Four Statistical Tests in One Way Layout

Empirical Power of Four Statistical Tests in One Way Layout International Mathematical Forum, Vol. 9, 2014, no. 28, 1347-1356 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.47128 Empirical Power of Four Statistical Tests in One Way Layout Lorenzo

More information

Non-parametric methods

Non-parametric methods Eastern Mediterranean University Faculty of Medicine Biostatistics course Non-parametric methods March 4&7, 2016 Instructor: Dr. Nimet İlke Akçay (ilke.cetin@emu.edu.tr) Learning Objectives 1. Distinguish

More information

Analysis of Variance

Analysis of Variance Analysis of Variance Math 36b May 7, 2009 Contents 2 ANOVA: Analysis of Variance 16 2.1 Basic ANOVA........................... 16 2.1.1 the model......................... 17 2.1.2 treatment sum of squares.................

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric Assumptions The observations must be independent. Dependent variable should be continuous

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 1 1-1 Basic Business Statistics 11 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Basic Business Statistics, 11e 009 Prentice-Hall, Inc. Chap 1-1 Learning Objectives In this chapter,

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

Chapter 12. Analysis of variance

Chapter 12. Analysis of variance Serik Sagitov, Chalmers and GU, January 9, 016 Chapter 1. Analysis of variance Chapter 11: I = samples independent samples paired samples Chapter 1: I 3 samples of equal size J one-way layout two-way layout

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

Small n, σ known or unknown, underlying nongaussian

Small n, σ known or unknown, underlying nongaussian READY GUIDE Summary Tables SUMMARY-1: Methods to compute some confidence intervals Parameter of Interest Conditions 95% CI Proportion (π) Large n, p 0 and p 1 Equation 12.11 Small n, any p Figure 12-4

More information

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown Nonparametric Statistics Leah Wright, Tyler Ross, Taylor Brown Before we get to nonparametric statistics, what are parametric statistics? These statistics estimate and test population means, while holding

More information

Formulas and Tables by Mario F. Triola

Formulas and Tables by Mario F. Triola Copyright 010 Pearson Education, Inc. Ch. 3: Descriptive Statistics x f # x x f Mean 1x - x s - 1 n 1 x - 1 x s 1n - 1 s B variance s Ch. 4: Probability Mean (frequency table) Standard deviation P1A or

More information

Solutions to Final STAT 421, Fall 2008

Solutions to Final STAT 421, Fall 2008 Solutions to Final STAT 421, Fall 2008 Fritz Scholz 1. (8) Two treatments A and B were randomly assigned to 8 subjects (4 subjects to each treatment) with the following responses: 0, 1, 3, 6 and 5, 7,

More information

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA)

Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Lecture 6: Single-classification multivariate ANOVA (k-group( MANOVA) Rationale and MANOVA test statistics underlying principles MANOVA assumptions Univariate ANOVA Planned and unplanned Multivariate ANOVA

More information

Statistics - Lecture 05

Statistics - Lecture 05 Statistics - Lecture 05 Nicodème Paul Faculté de médecine, Université de Strasbourg http://statnipa.appspot.com/cours/05/index.html#47 1/47 Descriptive statistics and probability Data description and graphical

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

Introduction to Nonparametric Statistics

Introduction to Nonparametric Statistics Introduction to Nonparametric Statistics by James Bernhard Spring 2012 Parameters Parametric method Nonparametric method µ[x 2 X 1 ] paired t-test Wilcoxon signed rank test µ[x 1 ], µ[x 2 ] 2-sample t-test

More information

2. RELATIONSHIP BETWEEN A QUALITATIVE AND A QUANTITATIVE VARIABLE

2. RELATIONSHIP BETWEEN A QUALITATIVE AND A QUANTITATIVE VARIABLE 7/09/06. RELATIONHIP BETWEEN A QUALITATIVE AND A QUANTITATIVE VARIABLE Design and Data Analysis in Psychology II usana anduvete Chaves alvadorchacón Moscoso. INTRODUCTION You may examine gender differences

More information

Chapter 11 - Lecture 1 Single Factor ANOVA

Chapter 11 - Lecture 1 Single Factor ANOVA Chapter 11 - Lecture 1 Single Factor ANOVA April 7th, 2010 Means Variance Sum of Squares Review In Chapter 9 we have seen how to make hypothesis testing for one population mean. In Chapter 10 we have seen

More information

A3. Statistical Inference Hypothesis Testing for General Population Parameters

A3. Statistical Inference Hypothesis Testing for General Population Parameters Appendix / A3. Statistical Inference / General Parameters- A3. Statistical Inference Hypothesis Testing for General Population Parameters POPULATION H 0 : θ = θ 0 θ is a generic parameter of interest (e.g.,

More information

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest.

Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest. Experimental Design: Much of the material we will be covering for a while has to do with designing an experimental study that concerns some phenomenon of interest We wish to use our subjects in the best

More information

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is

3. (a) (8 points) There is more than one way to correctly express the null hypothesis in matrix form. One way to state the null hypothesis is Stat 501 Solutions and Comments on Exam 1 Spring 005-4 0-4 1. (a) (5 points) Y ~ N, -1-4 34 (b) (5 points) X (X,X ) = (5,8) ~ N ( 11.5, 0.9375 ) 3 1 (c) (10 points, for each part) (i), (ii), and (v) are

More information

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F.

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F. Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

Formulas and Tables. for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. ˆp E p ˆp E Proportion

Formulas and Tables. for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. ˆp E p ˆp E Proportion Formulas and Tables for Elementary Statistics, Tenth Edition, by Mario F. Triola Copyright 2006 Pearson Education, Inc. Ch. 3: Descriptive Statistics x Sf. x x Sf Mean S(x 2 x) 2 s Å n 2 1 n(sx 2 ) 2 (Sx)

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Pooled Variance t Test

Pooled Variance t Test Pooled Variance t Test Tests means of independent populations having equal variances Parametric test procedure Assumptions Both populations are normally distributed If not normal, can be approximated by

More information

BIO 682 Nonparametric Statistics Spring 2010

BIO 682 Nonparametric Statistics Spring 2010 BIO 682 Nonparametric Statistics Spring 2010 Steve Shuster http://www4.nau.edu/shustercourses/bio682/index.htm Lecture 8 Example: Sign Test 1. The number of warning cries delivered against intruders by

More information

MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 8: Canonical Correlation Analysis

MS-E2112 Multivariate Statistical Analysis (5cr) Lecture 8: Canonical Correlation Analysis MS-E2112 Multivariate Statistical (5cr) Lecture 8: Contents Canonical correlation analysis involves partition of variables into two vectors x and y. The aim is to find linear combinations α T x and β

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT):

Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT): Lecture Three Normal theory null distributions Normal (Gaussian) distribution The normal distribution is often relevant because of the Central Limit Theorem (CLT): A random variable which is a sum of many

More information

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z). For example P(X.04) =.8508. For z < 0 subtract the value from,

More information

5 Inferences about a Mean Vector

5 Inferences about a Mean Vector 5 Inferences about a Mean Vector In this chapter we use the results from Chapter 2 through Chapter 4 to develop techniques for analyzing data. A large part of any analysis is concerned with inference that

More information

Non-parametric (Distribution-free) approaches p188 CN

Non-parametric (Distribution-free) approaches p188 CN Week 1: Introduction to some nonparametric and computer intensive (re-sampling) approaches: the sign test, Wilcoxon tests and multi-sample extensions, Spearman s rank correlation; the Bootstrap. (ch14

More information

Data analysis and Geostatistics - lecture VII

Data analysis and Geostatistics - lecture VII Data analysis and Geostatistics - lecture VII t-tests, ANOVA and goodness-of-fit Statistical testing - significance of r Testing the significance of the correlation coefficient: t = r n - 2 1 - r 2 with

More information

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines)

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines) Dr. Maddah ENMG 617 EM Statistics 10/12/12 Nonparametric Statistics (Chapter 16, Hines) Introduction Most of the hypothesis testing presented so far assumes normally distributed data. These approaches

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

10 One-way analysis of variance (ANOVA)

10 One-way analysis of variance (ANOVA) 10 One-way analysis of variance (ANOVA) A factor is in an experiment; its values are. A one-way analysis of variance (ANOVA) tests H 0 : µ 1 = = µ I, where I is the for one factor, against H A : at least

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter 7 Exam A Name 1) How do you determine whether to use the z or t distribution in computing the margin of error, E = z α/2 σn or E = t α/2 s n? 1) Use the given degree of confidence and sample data

More information

Statistics for EES Factorial analysis of variance

Statistics for EES Factorial analysis of variance Statistics for EES Factorial analysis of variance Dirk Metzler June 12, 2015 Contents 1 ANOVA and F -Test 1 2 Pairwise comparisons and multiple testing 6 3 Non-parametric: The Kruskal-Wallis Test 9 1 ANOVA

More information

Nonparametric statistic methods. Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health

Nonparametric statistic methods. Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health Nonparametric statistic methods Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health Measurement What are the 4 levels of measurement discussed? 1. Nominal or Classificatory Scale Gender,

More information

Applied Multivariate and Longitudinal Data Analysis

Applied Multivariate and Longitudinal Data Analysis Applied Multivariate and Longitudinal Data Analysis Chapter 2: Inference about the mean vector(s) Ana-Maria Staicu SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu 1 In this chapter we will discuss inference

More information

Tentative solutions TMA4255 Applied Statistics 16 May, 2015

Tentative solutions TMA4255 Applied Statistics 16 May, 2015 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Tentative solutions TMA455 Applied Statistics 6 May, 05 Problem Manufacturer of fertilizers a) Are these independent

More information

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis

TAMS39 Lecture 10 Principal Component Analysis Factor Analysis TAMS39 Lecture 10 Principal Component Analysis Factor Analysis Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content - Lecture Principal component analysis

More information

Types of Statistical Tests DR. MIKE MARRAPODI

Types of Statistical Tests DR. MIKE MARRAPODI Types of Statistical Tests DR. MIKE MARRAPODI Tests t tests ANOVA Correlation Regression Multivariate Techniques Non-parametric t tests One sample t test Independent t test Paired sample t test One sample

More information

Biostatistics for physicists fall Correlation Linear regression Analysis of variance

Biostatistics for physicists fall Correlation Linear regression Analysis of variance Biostatistics for physicists fall 2015 Correlation Linear regression Analysis of variance Correlation Example: Antibody level on 38 newborns and their mothers There is a positive correlation in antibody

More information