Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters --

Size: px
Start display at page:

Download "Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters --"

Transcription

1 Parallel Processing for Energy Efficiency October 3, 2013 NTNU, Trondheim, Norway Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters -- Hiroshi Okuda The University of Tokyo okuda@k.u-tokyo.ac.jp Olav Aanes Fagerlund, Serban Georgescu (Fujitsu Lab. Europe )

2 Outline Background CoDesign towards post-peta scale supercomputers from the viewpoint of CAE applications FEM, SpMV Overview of FrontISTR Nonlinear structural analysis Industrial applications Inter-node Parallelism Intra-node Parallelism Performance Estimation Summary

3 FEM, Iterative Solvers and SpMV (1/2) One of the most important CAE applications Continuous media (PDE) is discretized into a system of linear equations [ A (n) ] {x (n) } = {b (n) }, n : increment step Feature of matrix Large scale DOF O(10 10 ) Use of iterative solvers Non-zero density (%) O(10-2 ) Stored in compressed manner メッシュ分割 領域分割 領域分割 ( パーティショニングツール )

4 FEM, Iterative Solvers and SpMV (2/2) Matrices are sparse and stored in compressed manner. SpMV (sparse-matrix vector product) is a hotspot for iterative equation solvers. SpMV Enlargement of 1-100th rows model Number of nodes Number of non-zeros Density of non-zeros hinges1 84,056 19,043, % DOT AXPY & AYPX Breakdown of CPU in CG operations

5 Trends in Parallel Architecture and Parallel Programing Strategies (1/2) Parallelism Points of concern Inter-node via network Intra-node Number of cores Programability Memory distribution over network Size (GB) Memory Throughput (GB/s) CPU O(1) good O(100) O(10) GPU O(100) O(1) O(100) InfiniBand, Ethernet, Myrinet MSU: Large and slow L1~L3: Small and fast Between CPU-GPU : PCIe O(1)

6 Trends in Parallel Architecture and Parallel Programing Strategies (2/2) Points of concern Parallelism Parallel efficiency E1 x E2 Programing model Strategy Scalability Inter-node via network E1 MPI High work ratio (Localized mesh) Weak scale Intra-node E2 MPI, Thread, OpenMP, OpenCL, OpenACC Appropriate B/F & Long vector (Blocking, Padding, Reordering) Strong scale

7 Front ISTR メッシュサイズ =0.1mm

8 FrontISTR built on HEC-MW FrontISTR FRONT-STR Nonlinear analysis functions -Static Linear -Dynamic Linear -Eigen Mode -Material Nonlinear -Geometrical Nonlinear -Boundary Nonlinear (Assembly Structure) etc. Hyper-elasticity/Thermal-elasticplastic/Visco-elastic/Creep, Combined hardening rule Total/Updated Lagrangian Finite slip contact, Friction HEC-MWs FEM applications developed on PC I/F for I/F for I/F I/O Mat.Ass. I/F I/F for Solvers I/F I/O I/O Matrix Linear Coupler Assemble Solver I/O I/O Matrix Linear Assemble Solver Visualization Vis. Coupler HEC-MW カーネル for Linux for PC-Clusters Win PC-Cluster on GRID I/F for Vis. I/F Visualization Vis. HEC HEC-MW カーネル for Win PC-Cluster Advanced features of parallel FEM I/O I/O Matrix Linear Assemble Solver Visualization Vis. Coupler From MPP to PC HEC HEC-MW カーネル for Win Vector PC-Cluster SMP Hierarchical mesh refinement Assembly structure Up to O(10 5 ) nodes Portability CAE cloud Nonlinear structural analysis functions have been deployed on a parallel FEM basis: HEC-MW.

9 Large-grain Parallelism : Parallelization based on domain decomposition メッシュ分割 領域分割領域分割 領域分割 ( パーティショニングツール ) Local Data Local Data Local Data Local Data FEM Code FEM Code FEM Code FEM Code Solver Subsystem MPI Solver Subsystem MPI Solver Subsystem MPI Solver Subsystem

10 Strong Scale with Refiner - Static linear analysis of machine part - 2 nd order tetra element - PCG (eps=10^-6) FX10@UT SPARC64 Ixfx(1.848 GHz) 1CPU (16core)/node

11 Total FE comp. Acknowledgements: Research Organization for Information Science and Technology, RIKEN AICS

12 Acceleration of SpMV Computation Parallelization Rows are distributed among threads. Load balancing Reallocate rows to balance loads. Blocking Matrix format is crucial. CSR: Compressed Sparse Row B/F = 6.25~12.5 BCSR: Blocked CSR B/F = 4.76~5.56 value colindx rowptr Thread 1 Thread 2 Thread 3 Thread 1 Thread 2 Thread A 0 B 0 C 0 D 0 E Balanced A B C D E

13 Outer loop X : referred only Inner loop Directives for SECTOR CACHE: X : referred only indirect access cache does NOT work continuous access cache works Y : substituted only

14 Example hinge 252,168 DOFs Simple cyclic 2,115,968 non-zeros Density of non-zero : 0.03% Simple block cyclic Distribute non-zeros among threads Number of non-zero s per row Row number

15 Tuning parameters were selected empirically for a hinge example.

16 Hybrid Parallel Computation on K Number of CPUs Number of cores 8,192 65,536 Parallelizati on CPU Work ratio To-peak FlatMPI 13.7h 82.6% 4.2% Hybrid 21.7h 50.3% - FE mesh 2,476,141,184 elements 2,513,793,437 nodes z-displacement Mises stress

17 Hardware test-bed CPU : Nehalem Core2 Quad Core2 Duo GPU : GeForce 280GTX GeForce 295GTX GeForce 8800GTX GeForce 9800GTX+

18

19 Actual problems FEM 1 FEM 2 CFD V6 engine Motorcycle frame 3D Poisson

20 Performance (GFlop/s) Performance (GFlop/s) Test matrices, SpMV GPU performance in double and quasi-double precision Intel MKL 11 performance in double precision, 1-4 cores

21 GMRES Speedup for GPU (times) Speedup for GPU (times) CG Speedup for GPU (times) Speedup for GPU (times) Test matrices, solvers GPU vs Nehalem GPU vs Core2Quad

22 FEM test case 1 V6 engine Order: 204,000x204,000 Non-zeros: 15,621,894 Requires approx. 200MB to solve Condition number (after Jacobi): O(10 6 ) CPU=Nehalem GPU=280GTX + ILU + Jacobi FrontSTR on CPU 29.1s (732 itrs.) 34.9s (1,839 itrs.) FrontSTR + CUKr on GPU (double precision) - 4.3s (1,830 itrs.) FrontSTR + CUKr on GPU (iterative refinement) - 3.5s (8 : 2,884 itrs.) CUKr : CUDA Krylov ( S.Georgescu and H.Okuda, 2009 )

23 FEM test case 2 Motorcycle frame Order: 1,552,170x1,552,170 Non-zeros: 109,522,566 Requires approx. 1.3GB to solve Condition number (after Jacobi): O(10 7 ) 10x speedup on an iteration by iteration basis, but could not converge because of lack of good preconditioner

24 CFD test case 3D Poisson with N=250 / dim Order: 15,625,000 x 15,625,000 Non-zeros: 109,249,498 Requires approx. 2.2GB Condition number: O(10 5 ) CPU=Nehalem GPU=3x280GTX Time (s) Performance (GFlop/s) CUKr on CPU (1,139 it) CUKr on GPU (double precision) CUKr on GPU (iterative refinement) (1,139 it) (10 : 2021 it) CUKr : CUDA Krylov ( S.Georgescu and H.Okuda, 2009 )

25 precision. Performance (MFlop/s) Case: AYPX on NVIDIA GTX 560Ti (and AMD Radeon HD 7970) CLBLAS (SINGLE) CLBLAS (QDOUBLE) CLBLAS (DOUBLE) CCBLAS (SINGLE) CCBLAS (QDOUBLE) CCBLAS (DOUBLE) e+06 1e+07 1e+08 Vector size Performance of kernels written in both OpenCL (CL) an CUDA C (CC) is shown, all precisions Running the same kernels on the AMD Radeon HD 7970 gives a performance well below 1 GFLOP/s, for all vector sizes and with adapted Global and Local sizes.

26 Sustained Performance Model (1/2) The K-computer s roofline model. Sustained performance can be predicted w.r.t. applications Flop/Byte ratio. 8 / 128 estimated To-peak 6.25%

27 Performance Model (2/2) SpMV with CSR B/F = 6.25~12.5 SpMV with BCSR: B/F = 4.76~5.56 Machine Node performance BW (catalog) BW (STREAM) B/F K 128 Gflops 64 GB/s 46.6 GB/s 0.36 FX Gflops 85 GB/s 64 GB/s 0.27 B/F of FISTR Topeak Measured performance by profiler on FX % SpMV with CSR 2.9~5.8 % SpMV with BCSR: 4.9~7.6 % SpMV with CSR 2.2~4.3 % SpMV with BCSR: 3.7~5.7 %

28 Summary (1/2) Hybrid parallel strategy of FrontISTR ( FE structural analysis code ) is presented. MPI for inter-node distributed mesh OpenMP for intra-node loop decomposition with blocking, padding and re-ordering Widely used by industries, ISVs and researchers Memory centric with consistent CPU and low power consumption design is crutial for CAE applications (memory wall) To attain 50% of peak performance, BPF of such machines should be ~2.5

29 Summary (2/2) How does Nvidia s optimized code perform on AMD hardware? An illustration of how OpenCL is portable, however the performance is not, necessarily. Memory-bound kernels are very sensitive to changes in memory-subsystems. i.e. unmodified code brought to a different platform can give very bad performance. Feature of FEM using iterative solvers Short vector Small loop body Indirect access

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers

Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers UT College of Engineering Tutorial Accelerating Linear Algebra on Heterogeneous Architectures of Multicore and GPUs using MAGMA and DPLASMA and StarPU Schedulers Stan Tomov 1, George Bosilca 1, and Cédric

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Universität Dortmund UCHPC. Performance. Computing for Finite Element Simulations

Universität Dortmund UCHPC. Performance. Computing for Finite Element Simulations technische universität dortmund Universität Dortmund fakultät für mathematik LS III (IAM) UCHPC UnConventional High Performance Computing for Finite Element Simulations S. Turek, Chr. Becker, S. Buijssen,

More information

ERLANGEN REGIONAL COMPUTING CENTER

ERLANGEN REGIONAL COMPUTING CENTER ERLANGEN REGIONAL COMPUTING CENTER Making Sense of Performance Numbers Georg Hager Erlangen Regional Computing Center (RRZE) Friedrich-Alexander-Universität Erlangen-Nürnberg OpenMPCon 2018 Barcelona,

More information

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems TR-0-07 A Comparison of the Performance of ::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems Ang Li, Omkar Deshmukh, Radu Serban, Dan Negrut May, 0 Abstract ::GPU is a

More information

Direct Self-Consistent Field Computations on GPU Clusters

Direct Self-Consistent Field Computations on GPU Clusters Direct Self-Consistent Field Computations on GPU Clusters Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at UrbanaChampaign Ivan Ufimtsev, Todd

More information

Scalable Non-blocking Preconditioned Conjugate Gradient Methods

Scalable Non-blocking Preconditioned Conjugate Gradient Methods Scalable Non-blocking Preconditioned Conjugate Gradient Methods Paul Eller and William Gropp University of Illinois at Urbana-Champaign Department of Computer Science Supercomputing 16 Paul Eller and William

More information

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 1 / 23 Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 Maison de la Simulation Lille 1 University CNRS March 18, 2013

More information

Case Study: Quantum Chromodynamics

Case Study: Quantum Chromodynamics Case Study: Quantum Chromodynamics Michael Clark Harvard University with R. Babich, K. Barros, R. Brower, J. Chen and C. Rebbi Outline Primer to QCD QCD on a GPU Mixed Precision Solvers Multigrid solver

More information

Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters

Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters HIM - Workshop on Sparse Grids and Applications Alexander Heinecke Chair of Scientific Computing May 18 th 2011 HIM

More information

Engine-Gasket HPC trial and Suspension NVH analysis using Linear_Perturbation ANSYS Japan Mechanical BU Toru Hiyake

Engine-Gasket HPC trial and Suspension NVH analysis using Linear_Perturbation ANSYS Japan Mechanical BU Toru Hiyake Engine-Gasket HPC trial and Suspension NVH analysis using Linear_Perturbation ANSYS Japan Mechanical BU Toru Hiyake Agenda Topic 1 : Engine-Gasket Nonlinear Analysis Legacy Data Import Gasket modeling

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

Parallel Preconditioning Methods for Ill-conditioned Problems

Parallel Preconditioning Methods for Ill-conditioned Problems Parallel Preconditioning Methods for Ill-conditioned Problems Kengo Nakajima Information Technology Center, The University of Tokyo 2014 Conference on Advanced Topics and Auto Tuning in High Performance

More information

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique Claude Tadonki MINES ParisTech PSL Research University Centre de Recherche Informatique claude.tadonki@mines-paristech.fr Monthly CRI Seminar MINES ParisTech - CRI June 06, 2016, Fontainebleau (France)

More information

Welcome to MCS 572. content and organization expectations of the course. definition and classification

Welcome to MCS 572. content and organization expectations of the course. definition and classification Welcome to MCS 572 1 About the Course content and organization expectations of the course 2 Supercomputing definition and classification 3 Measuring Performance speedup and efficiency Amdahl s Law Gustafson

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

MARCH 24-27, 2014 SAN JOSE, CA

MARCH 24-27, 2014 SAN JOSE, CA MARCH 24-27, 2014 SAN JOSE, CA Sparse HPC on modern architectures Important scientific applications rely on sparse linear algebra HPCG a new benchmark proposal to complement Top500 (HPL) To solve A x =

More information

Explore Computational Power of GPU in Electromagnetics and Micromagnetics

Explore Computational Power of GPU in Electromagnetics and Micromagnetics Explore Computational Power of GPU in Electromagnetics and Micromagnetics Presenter: Sidi Fu, PhD candidate, UC San Diego Advisor: Prof. Vitaliy Lomakin Center of Magnetic Recording Research, Department

More information

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners

Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners Leveraging Task-Parallelism in Energy-Efficient ILU Preconditioners José I. Aliaga Leveraging task-parallelism in energy-efficient ILU preconditioners Universidad Jaime I (Castellón, Spain) José I. Aliaga

More information

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) Schodinger equation: Hψ = Eψ Choose a basis set of wave functions Two cases: Orthonormal

More information

Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems

Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems Ichitaro Yamazaki University of Tennessee, Knoxville Xiaoye Sherry Li Lawrence Berkeley National Laboratory MS49: Sparse

More information

GPU Computing Activities in KISTI

GPU Computing Activities in KISTI International Advanced Research Workshop on High Performance Computing, Grids and Clouds 2010 June 21~June 25 2010, Cetraro, Italy HPC Infrastructure and GPU Computing Activities in KISTI Hongsuk Yi hsyi@kisti.re.kr

More information

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota

The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota The new challenges to Krylov subspace methods Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM Applied Linear Algebra Valencia, June 18-22, 2012 Introduction Krylov

More information

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Outline A few words on MD applications and the GROMACS package The main work in an MD simulation Parallelization Stream computing

More information

Scalable and Power-Efficient Data Mining Kernels

Scalable and Power-Efficient Data Mining Kernels Scalable and Power-Efficient Data Mining Kernels Alok Choudhary, John G. Searle Professor Dept. of Electrical Engineering and Computer Science and Professor, Kellogg School of Management Director of the

More information

Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver

Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver Sherry Li Lawrence Berkeley National Laboratory Piyush Sao Rich Vuduc Georgia Institute of Technology CUG 14, May 4-8, 14, Lugano,

More information

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr) Principal Researcher / Korea Institute of Science and Technology

More information

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline - Part 4 - Multicore and Manycore Technology: Chances and Challenges Vincent Heuveline 1 Numerical Simulation of Tropical Cyclones Goal oriented adaptivity for tropical cyclones ~10⁴km ~1500km ~100km 2

More information

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures José I. Aliaga Performance and Energy Analysis of the Iterative Solution of Sparse

More information

Performance Analysis of Lattice QCD Application with APGAS Programming Model

Performance Analysis of Lattice QCD Application with APGAS Programming Model Performance Analysis of Lattice QCD Application with APGAS Programming Model Koichi Shirahata 1, Jun Doi 2, Mikio Takeuchi 2 1: Tokyo Institute of Technology 2: IBM Research - Tokyo Programming Models

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota ICME, Stanford April 2th, 25 First: Partly joint work with

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures

A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures A Massively Parallel Eigenvalue Solver for Small Matrices on Multicore and Manycore Architectures Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences,

More information

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA

Jacobi-Based Eigenvalue Solver on GPU. Lung-Sheng Chien, NVIDIA Jacobi-Based Eigenvalue Solver on GPU Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline Symmetric eigenvalue solver Experiment Applications Conclusions Symmetric eigenvalue solver The standard form is

More information

Feeding of the Thousands. Leveraging the GPU's Computing Power for Sparse Linear Algebra

Feeding of the Thousands. Leveraging the GPU's Computing Power for Sparse Linear Algebra SPPEXA Annual Meeting 2016, January 25 th, 2016, Garching, Germany Feeding of the Thousands Leveraging the GPU's Computing Power for Sparse Linear Algebra Hartwig Anzt Sparse Linear Algebra on GPUs Inherently

More information

Nuclear Physics and Computing: Exascale Partnerships. Juan Meza Senior Scientist Lawrence Berkeley National Laboratory

Nuclear Physics and Computing: Exascale Partnerships. Juan Meza Senior Scientist Lawrence Berkeley National Laboratory Nuclear Physics and Computing: Exascale Partnerships Juan Meza Senior Scientist Lawrence Berkeley National Laboratory Nuclear Science and Exascale i Workshop held in DC to identify scientific challenges

More information

Cactus Tools for Petascale Computing

Cactus Tools for Petascale Computing Cactus Tools for Petascale Computing Erik Schnetter Reno, November 2007 Gamma Ray Bursts ~10 7 km He Protoneutron Star Accretion Collapse to a Black Hole Jet Formation and Sustainment Fe-group nuclei Si

More information

On the design of parallel linear solvers for large scale problems

On the design of parallel linear solvers for large scale problems On the design of parallel linear solvers for large scale problems ICIAM - August 2015 - Mini-Symposium on Recent advances in matrix computations for extreme-scale computers M. Faverge, X. Lacoste, G. Pichon,

More information

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters ANTONINO TUMEO, ORESTE VILLA Collaborators: Karol Kowalski, Sriram Krishnamoorthy, Wenjing Ma, Simone Secchi May 15, 2012 1 Outline!

More information

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING Daniel Thuerck 1,2 (advisors Michael Goesele 1,2 and Marc Pfetsch 1 ) Maxim Naumov 3 1 Graduate School of Computational Engineering, TU Darmstadt

More information

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX 26 Septembre 2018 - JCAD 2018 - Lyon Grégoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman Outline 1. Context 2.

More information

Block AIR Methods. For Multicore and GPU. Per Christian Hansen Hans Henrik B. Sørensen. Technical University of Denmark

Block AIR Methods. For Multicore and GPU. Per Christian Hansen Hans Henrik B. Sørensen. Technical University of Denmark Block AIR Methods For Multicore and GPU Per Christian Hansen Hans Henrik B. Sørensen Technical University of Denmark Model Problem and Notation Parallel-beam 3D tomography exact solution exact data noise

More information

A CPU-GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method

A CPU-GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method A CPU-GPU Hybrid Implementation and Model-Driven Scheduling of the Fast Multipole Method Jee Choi 1, Aparna Chandramowlishwaran 3, Kamesh Madduri 4, and Richard Vuduc 2 1 ECE, Georgia Tech 2 CSE, Georgia

More information

An Implementation of SPELT(31, 4, 96, 96, (32, 16, 8))

An Implementation of SPELT(31, 4, 96, 96, (32, 16, 8)) An Implementation of SPELT(31, 4, 96, 96, (32, 16, 8)) Tung Chou January 5, 2012 QUAD Stream cipher. Security relies on MQ (Multivariate Quadratics). QUAD The Provably-secure QUAD(q, n, r) Stream Cipher

More information

Tuning And Understanding MILC Performance In Cray XK6 GPU Clusters. Mike Showerman, Guochun Shi Steven Gottlieb

Tuning And Understanding MILC Performance In Cray XK6 GPU Clusters. Mike Showerman, Guochun Shi Steven Gottlieb Tuning And Understanding MILC Performance In Cray XK6 GPU Clusters Mike Showerman, Guochun Shi Steven Gottlieb Outline Background Lattice QCD and MILC GPU and Cray XK6 node architecture Implementation

More information

Petascale Quantum Simulations of Nano Systems and Biomolecules

Petascale Quantum Simulations of Nano Systems and Biomolecules Petascale Quantum Simulations of Nano Systems and Biomolecules Emil Briggs North Carolina State University 1. Outline of real-space Multigrid (RMG) 2. Scalability and hybrid/threaded models 3. GPU acceleration

More information

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

Targeting Extreme Scale Computational Challenges with Heterogeneous Systems

Targeting Extreme Scale Computational Challenges with Heterogeneous Systems Targeting Extreme Scale Computational Challenges with Heterogeneous Systems Oreste Villa, Antonino Tumeo Pacific Northwest Na/onal Laboratory (PNNL) 1 Introduction! PNNL Laboratory Directed Research &

More information

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling 2019 Intel extreme Performance Users Group (IXPUG) meeting Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr)

More information

Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs

Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs Simon McIntosh-Smith simonm@cs.bris.ac.uk Head of Microelectronics Research University of Bristol, UK 1 ! Collaborators

More information

A Numerical Study of Some Parallel Algebraic Preconditioners

A Numerical Study of Some Parallel Algebraic Preconditioners A Numerical Study of Some Parallel Algebraic Preconditioners Xing Cai Simula Research Laboratory & University of Oslo PO Box 1080, Blindern, 0316 Oslo, Norway xingca@simulano Masha Sosonkina University

More information

ACCELERATING SPARSE CHOLESKY FACTORIZATION ON THE GPU

ACCELERATING SPARSE CHOLESKY FACTORIZATION ON THE GPU ACCELERATING SPARSE CHOLESKY FACTORIZATION ON THE GPU STEVE RENNICH, SR. ENGINEER, NVIDIA DEVELOPER TECHNOLOGY DARKO STOSIC, PHD CANDIDATE, UNIV. FEDERAL DE PERNAMBUCO TIM DAVIS, PROFESSOR, CSE, TEXAS

More information

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Katharina Kormann 1 Klaus Reuter 2 Markus Rampp 2 Eric Sonnendrücker 1 1 Max Planck Institut für Plasmaphysik 2 Max Planck Computing

More information

Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method

Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method NUCLEAR SCIENCE AND TECHNIQUES 25, 0501 (14) Research on GPU-accelerated algorithm in 3D finite difference neutron diffusion calculation method XU Qi ( 徐琪 ), 1, YU Gang-Lin ( 余纲林 ), 1 WANG Kan ( 王侃 ),

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

WRF performance tuning for the Intel Woodcrest Processor

WRF performance tuning for the Intel Woodcrest Processor WRF performance tuning for the Intel Woodcrest Processor A. Semenov, T. Kashevarova, P. Mankevich, D. Shkurko, K. Arturov, N. Panov Intel Corp., pr. ak. Lavrentieva 6/1, Novosibirsk, Russia, 630090 {alexander.l.semenov,tamara.p.kashevarova,pavel.v.mankevich,

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Using AmgX to accelerate a PETSc-based immersed-boundary method code

Using AmgX to accelerate a PETSc-based immersed-boundary method code 29th International Conference on Parallel Computational Fluid Dynamics May 15-17, 2017; Glasgow, Scotland Using AmgX to accelerate a PETSc-based immersed-boundary method code Olivier Mesnard, Pi-Yueh Chuang,

More information

Parallel Polynomial Evaluation

Parallel Polynomial Evaluation Parallel Polynomial Evaluation Jan Verschelde joint work with Genady Yoffe University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment Emmanuel AGULLO (INRIA / LaBRI) Camille COTI (Iowa State University) Jack DONGARRA (University of Tennessee) Thomas HÉRAULT

More information

The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems

The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems The Green Index (TGI): A Metric for Evalua:ng Energy Efficiency in HPC Systems Wu Feng and Balaji Subramaniam Metrics for Energy Efficiency Energy- Delay Product (EDP) Used primarily in circuit design

More information

Parallel Sparse Tensor Decompositions using HiCOO Format

Parallel Sparse Tensor Decompositions using HiCOO Format Figure sources: A brief survey of tensors by Berton Earnshaw and NVIDIA Tensor Cores Parallel Sparse Tensor Decompositions using HiCOO Format Jiajia Li, Jee Choi, Richard Vuduc May 8, 8 @ SIAM ALA 8 Outline

More information

Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster

Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster Performance evaluation of scalable optoelectronics application on large-scale Knights Landing cluster Yuta Hirokawa Graduate School of Systems and Information Engineering, University of Tsukuba hirokawa@hpcs.cs.tsukuba.ac.jp

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Efficient multigrid solvers for mixed finite element discretisations in NWP models

Efficient multigrid solvers for mixed finite element discretisations in NWP models 1/20 Efficient multigrid solvers for mixed finite element discretisations in NWP models Colin Cotter, David Ham, Lawrence Mitchell, Eike Hermann Müller *, Robert Scheichl * * University of Bath, Imperial

More information

Efficient Molecular Dynamics on Heterogeneous Architectures in GROMACS

Efficient Molecular Dynamics on Heterogeneous Architectures in GROMACS Efficient Molecular Dynamics on Heterogeneous Architectures in GROMACS Berk Hess, Szilárd Páll KTH Royal Institute of Technology GTC 2012 GROMACS: fast, scalable, free Classical molecular dynamics package

More information

OpenCL: Programming Heterogeneous Architectures

OpenCL: Programming Heterogeneous Architectures OpenCL: Programming Heterogeneous Architectures Porting BigDFT to OpenCL Brice Videau (LIG - NANOSIM) April 24, 2012 1 / 45 Introduction 2 / 45 Needs in computing resources are innite Benets for physicists

More information

A Stochastic-based Optimized Schwarz Method for the Gravimetry Equations on GPU Clusters

A Stochastic-based Optimized Schwarz Method for the Gravimetry Equations on GPU Clusters A Stochastic-based Optimized Schwarz Method for the Gravimetry Equations on GPU Clusters Abal-Kassim Cheik Ahamed and Frédéric Magoulès Introduction By giving another way to see beneath the Earth, gravimetry

More information

Domain Decomposition-based contour integration eigenvalue solvers

Domain Decomposition-based contour integration eigenvalue solvers Domain Decomposition-based contour integration eigenvalue solvers Vassilis Kalantzis joint work with Yousef Saad Computer Science and Engineering Department University of Minnesota - Twin Cities, USA SIAM

More information

ab initio Electronic Structure Calculations

ab initio Electronic Structure Calculations ab initio Electronic Structure Calculations New scalability frontiers using the BG/L Supercomputer C. Bekas, A. Curioni and W. Andreoni IBM, Zurich Research Laboratory Rueschlikon 8803, Switzerland ab

More information

A CUDA Solver for Helmholtz Equation

A CUDA Solver for Helmholtz Equation Journal of Computational Information Systems 11: 24 (2015) 7805 7812 Available at http://www.jofcis.com A CUDA Solver for Helmholtz Equation Mingming REN 1,2,, Xiaoguang LIU 1,2, Gang WANG 1,2 1 College

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 68 (2014) 1151 1160 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A GPU

More information

Background. Another interests. Sieve method. Parallel Sieve Processing on Vector Processor and GPU. RSA Cryptography

Background. Another interests. Sieve method. Parallel Sieve Processing on Vector Processor and GPU. RSA Cryptography Background Parallel Sieve Processing on Vector Processor and GPU Yasunori Ushiro (Earth Simulator Center) Yoshinari Fukui (Earth Simulator Center) Hidehiko Hasegawa (Univ. of Tsukuba) () RSA Cryptography

More information

CAEFEM v9.5 Information

CAEFEM v9.5 Information CAEFEM v9.5 Information Concurrent Analysis Corporation, 50 Via Ricardo, Thousand Oaks, CA 91320 USA Tel. (805) 375 1060, Fax (805) 375 1061 email: info@caefem.com or support@caefem.com Web: http://www.caefem.com

More information

Sparse LU Factorization on GPUs for Accelerating SPICE Simulation

Sparse LU Factorization on GPUs for Accelerating SPICE Simulation Nano-scale Integrated Circuit and System (NICS) Laboratory Sparse LU Factorization on GPUs for Accelerating SPICE Simulation Xiaoming Chen PhD Candidate Department of Electronic Engineering Tsinghua University,

More information

R. Glenn Brook, Bilel Hadri*, Vincent C. Betro, Ryan C. Hulguin, and Ryan Braby Cray Users Group 2012 Stuttgart, Germany April 29 May 3, 2012

R. Glenn Brook, Bilel Hadri*, Vincent C. Betro, Ryan C. Hulguin, and Ryan Braby Cray Users Group 2012 Stuttgart, Germany April 29 May 3, 2012 R. Glenn Brook, Bilel Hadri*, Vincent C. Betro, Ryan C. Hulguin, and Ryan Braby Cray Users Group 2012 Stuttgart, Germany April 29 May 3, 2012 * presenting author Contents Overview on AACE Overview on MIC

More information

arxiv: v1 [hep-lat] 10 Jul 2012

arxiv: v1 [hep-lat] 10 Jul 2012 Hybrid Monte Carlo with Wilson Dirac operator on the Fermi GPU Abhijit Chakrabarty Electra Design Automation, SDF Building, SaltLake Sec-V, Kolkata - 700091. Pushan Majumdar Dept. of Theoretical Physics,

More information

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code

On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code On Portability, Performance and Scalability of a MPI OpenCL Lattice Boltzmann Code E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy 7 th Workshop on UnConventional High Performance

More information

上海超级计算中心 Shanghai Supercomputer Center. Lei Xu Shanghai Supercomputer Center San Jose

上海超级计算中心 Shanghai Supercomputer Center. Lei Xu Shanghai Supercomputer Center San Jose 上海超级计算中心 Shanghai Supercomputer Center Lei Xu Shanghai Supercomputer Center 03/26/2014 @GTC, San Jose Overview Introduction Fundamentals of the FDTD method Implementation of 3D UPML-FDTD algorithm on GPU

More information

Sparse solver 64 bit and out-of-core addition

Sparse solver 64 bit and out-of-core addition Sparse solver 64 bit and out-of-core addition Prepared By: Richard Link Brian Yuen Martec Limited 1888 Brunswick Street, Suite 400 Halifax, Nova Scotia B3J 3J8 PWGSC Contract Number: W7707-145679 Contract

More information

The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows

The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows The Lattice Boltzmann Method for Laminar and Turbulent Channel Flows Vanja Zecevic, Michael Kirkpatrick and Steven Armfield Department of Aerospace Mechanical & Mechatronic Engineering The University of

More information

S3D Direct Numerical Simulation: Preparation for the PF Era

S3D Direct Numerical Simulation: Preparation for the PF Era S3D Direct Numerical Simulation: Preparation for the 10 100 PF Era Ray W. Grout, Scientific Computing SC 12 Ramanan Sankaran ORNL John Levesque Cray Cliff Woolley, Stan Posey nvidia J.H. Chen SNL NREL

More information

MPI at MPI. Jens Saak. Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

MPI at MPI. Jens Saak. Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory MAX PLANCK INSTITUTE November 5, 2010 MPI at MPI Jens Saak Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory FOR DYNAMICS OF COMPLEX TECHNICAL

More information

Recent advances in HPC with FreeFem++

Recent advances in HPC with FreeFem++ Recent advances in HPC with FreeFem++ Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann Fourth workshop on FreeFem++ December 6, 2012 With F. Hecht, F. Nataf, C. Prud homme. Outline

More information

Information Sciences Institute 22 June 2012 Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes and

Information Sciences Institute 22 June 2012 Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes and Accelerating the Multifrontal Method Information Sciences Institute 22 June 2012 Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes {rflucas,genew,ddavis}@isi.edu and grimes@lstc.com 3D Finite Element

More information

c 2015 Society for Industrial and Applied Mathematics

c 2015 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. C169 C193 c 2015 Society for Industrial and Applied Mathematics FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper

More information

Solving PDEs: the Poisson problem TMA4280 Introduction to Supercomputing

Solving PDEs: the Poisson problem TMA4280 Introduction to Supercomputing Solving PDEs: the Poisson problem TMA4280 Introduction to Supercomputing Based on 2016v slides by Eivind Fonn NTNU, IMF February 27. 2017 1 The Poisson problem The Poisson equation is an elliptic partial

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

Hideyuki Usui 1,3, M. Nunami 2,3, Y. Yagi 1,3, T. Moritaka 1,3, and JST/CREST multi-scale PIC simulation team

Hideyuki Usui 1,3, M. Nunami 2,3, Y. Yagi 1,3, T. Moritaka 1,3, and JST/CREST multi-scale PIC simulation team Hideyuki Usui 1,3, M. Nunami 2,3, Y. Yagi 1,3, T. Moritaka 1,3, and JST/CREST multi-scale PIC simulation team 1 Kobe Univ., Japan, 2 NIFS,Japan, 3 JST/CREST, Outline Multi-scale interaction between weak

More information

Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools

Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools Xiangjun Wu (1),Lilun Zhang (2),Junqiang Song (2) and Dehui Chen (1) (1) Center for Numerical Weather Prediction, CMA (2) School

More information

Using a CUDA-Accelerated PGAS Model on a GPU Cluster for Bioinformatics

Using a CUDA-Accelerated PGAS Model on a GPU Cluster for Bioinformatics Using a CUDA-Accelerated PGAS Model on a GPU Cluster for Bioinformatics Jorge González-Domínguez Parallel and Distributed Architectures Group Johannes Gutenberg University of Mainz, Germany j.gonzalez@uni-mainz.de

More information

Julian Merten. GPU Computing and Alternative Architecture

Julian Merten. GPU Computing and Alternative Architecture Future Directions of Cosmological Simulations / Edinburgh 1 / 16 Julian Merten GPU Computing and Alternative Architecture Institut für Theoretische Astrophysik Zentrum für Astronomie Universität Heidelberg

More information

First, a look at using OpenACC on WRF subroutine advance_w dynamics routine

First, a look at using OpenACC on WRF subroutine advance_w dynamics routine First, a look at using OpenACC on WRF subroutine advance_w dynamics routine Second, an estimate of WRF multi-node performance on Cray XK6 with GPU accelerators Based on performance of WRF kernels, what

More information

Tips Geared Towards R. Adam J. Suarez. Arpil 10, 2015

Tips Geared Towards R. Adam J. Suarez. Arpil 10, 2015 Tips Geared Towards R Departments of Statistics North Carolina State University Arpil 10, 2015 1 / 30 Advantages of R As an interpretive and interactive language, developing an algorithm in R can be done

More information

arxiv: v1 [astro-ph.im] 7 Apr 2013

arxiv: v1 [astro-ph.im] 7 Apr 2013 A Performance Comparison of Different Graphics Processing Units Running Direct N-Body Simulations R. Capuzzo Dolcetta a, M. Spera a a Dep. of Physics, Sapienza, University of Roma, P.le A. Moro 5, Roma,

More information

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling 2019 Intel extreme Performance Users Group (IXPUG) meeting Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr)

More information

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry and Eugene DePrince Argonne National Laboratory (LCF and CNM) (Eugene moved to Georgia Tech last week)

More information

Introduction to Benchmark Test for Multi-scale Computational Materials Software

Introduction to Benchmark Test for Multi-scale Computational Materials Software Introduction to Benchmark Test for Multi-scale Computational Materials Software Shun Xu*, Jian Zhang, Zhong Jin xushun@sccas.cn Computer Network Information Center Chinese Academy of Sciences (IPCC member)

More information