Parallel Sparse Tensor Decompositions using HiCOO Format

Size: px
Start display at page:

Download "Parallel Sparse Tensor Decompositions using HiCOO Format"

Transcription

1 Figure sources: A brief survey of tensors by Berton Earnshaw and NVIDIA Tensor Cores Parallel Sparse Tensor Decompositions using HiCOO Format Jiajia Li, Jee Choi, Richard Vuduc May 8, SIAM ALA 8

2 Outline Background HiCOO Format Multicore CP-ALS Distributed CPDs

3 Tensors Social Networks Quantum Chemistry NOT ENOUGH Deep Learning

4 Applications of Tensor Methods 4 Data analytics and compression Natural language processing, healthcare analytics, social network analytics, brain signal processing, and deep learning Scientific computing Quantum chemistry, computational physics, quantum mechanics Demographic Procedure Diagnosis Medication EHR Clinical+ notes Lab+Tests Phenotyping Medical+ Concepts+ (phenotypes)

5 Tensors & Decompositions 5 Tensors, multi-way arrays, provide a natural way to represent multidimensional data. Special cases: matrices - D tensors, vectors - D tensors. Tensor decomposition: an extension of matrix factorization to analyze tensor features. Singular)Value)Decomposition)(SVD) Tensor mode or order: tensor dimension. A SPARSE tensor, a tensor consisting mostly of zero entries, widely exists in real applications. CANDECOMP/PARAFAC CP#Decomposition i =,,I j =,,J k =,,K

6 CP-ALS and CP-APR 6 CP-ALS - alternating least squares For general data Describe input data as Gaussian distribution Fitting function: least squares. Core operation: MTTKRP CP-APR alternating Poisson regression For non-negative data, e.g. count data. Describe input data as Poisson distribution Fitting function:poisson likelihood fitting algorithm Core operation: element-wise division.

7 CP-ALS 7 Bottleneck: MTTKRP

8 MTTKRP Operation 8 Matriced Tensor Times Khatri-Rao Product (MTTKRP) Tensor Matricization Khatri-Rao Product Updated Factor Matrix Factor Matrix

9 MTTKRP Operation 9 Matriced Tensor Times Khatri-Rao Product (MTTKRP) Tensor Matricization Khatri-Rao Product Khatri-Rao Product D C. B Matrix Updated Factor Matrix Factor Matrix R R R I J IJ C B D

10 CP-APR Bottleneck: element-wise product

11 Bottleneck of CP-APR Consider CP-APR MU Stored in sparse format, size nnz * R

12 Outline Background HiCOO Format Multicore CP-ALS Distributed CPDs

13 Mode Orientation Tensor decomposition Kernel in Mode- Mode Oriented Mode- oriented (CSF) Neutral Mode Orientation Coordinate (COO) Efficient Inefficient Kernel in Mode-?? Kernel in Mode-??

14 Mode Oriented Formats 4 Three CSF/F-COO representations are required/preferred for the three MTTKRPs. CP Decomposition MTTKRP in Mode- i j CSF- k val More storage MTTKRP in Mode- j i k CSF- val MTTKRP in Mode- k i CSF- j val

15 Mode Oriented Formats 5 Three CSF/F-COO representations are required/preferred for the three MTTKRPs. CP Decomposition MTTKRP in Mode- i j CSF- k val MTTKRP in Mode- Performance payoff MTTKRP in Mode-

16 Current Sparse Tensor Formats 6 COO: coordinate formats [Bader et al., 6] CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 5] F-COO: Flagged COO format [Liu et al., 7] 4 i =,,I j =,,J 4 k =,,K

17 Current Sparse Tensor Formats 7 COO: coordinate formats [Bader et al., 6] CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 5] F-COO: Flagged COO format [Liu et al., 7] 4 i =,,I j =,,J 4 k =,,K i j k val i j k val sf[]= sf[]= bf j k val (a) COO (b) CSF (c) F-COO

18 Current Sparse Tensor Formats 8 COO: coordinate formats [Bader et al., 6] CSF: Compressed Sparse Fibers, extension of CSR. [Smith et al. 5] F-COO: Flagged COO format [Liu et al., 7] 4 i =,,I j =,,J 4 k =,,K i j k val i j k val sf[]= sf[]= bf j k val (a) COO (b) CSF (c) F-COO neutral mode orientation mode oriented, prefer different representations for different modes.

19 HiCOO Format 9 Store a sparse tensor in units of small sparse blocks, saving storage Shorten the bit-length of element indices Compress the number of block indices an improvement of the Compressed Sparse Blocks (CSB) format -bit -bit 8-bit i j k val bptr bi bj bk ei ej ek val 4 B B 4 For the tensor: Reduce its storage and memory footprints 5 6 B For matrices: Better data locality 7 8 B (a) COO (b) HiCOO i = bi * B + ei

20 Construct HiCOO Representation Morton-order sorting for the input COO tensor. Partition to blocks and determine each block location. Construct HiCOO representation by compressing index length. bits int i j k val COO 7 8 Z-Order Sorting int long int long int byte i j k val Partition bptr 4 6 i j k val Compress i = bi*b+ei; j = bj*b+ej; k= bk*b+ek 6 8 B B B B bptr 4 6 bi bj bk ei ej HiCOO ek val

21 Outline Background HiCOO Format Multicore CP-ALS Distributed CPDs

22 Two-level Blocking for Efficient Thread Parallelism Use two-level blocking strategy Large bulks (logical) + small blocks (physical) To avoid using locks, we add a bit extra storage for scheduling information. y No Write Conflicts iter iter iter Bulk Bulk 4 Bulk 8 Bulk Bulk 5 Bulk 9 Bulk Bulk 6 Bulk Bulk 7 Write Conflicts x bulk bptr bi bj bk ei ej ek val B i =,,I B B j =,,J k =,,K B 6 HiCOO 6 8

23 Platform and Dataset Platform: Intel Xeon CPU E7-485 platform consisting 56 physical cores with gcc 5.4. and parallelized by OpenMP. Dataset: FROSTT [Smith et al. 7] and HaTen [Jeon et al. 5] J. Li, J. Sun, R. Vuduc. HiCOO: Hierarchical Storage of Sparse Tensors. 8

24 Multicore MTTKRP 4 ParTI! library: Speedups of HiCOO over COO Speedup mode nell choa darpa fb-m fb-s deli nell crime nips enron flickr deli4d -D Tensors 4-D Tensors.8x SPLATT library: Speedups of HiCOO over CSF Storage size: Speedup mode nell choa darpa fb-m fb-s deli nell crime nips enron flickr deli4d -D Tensors 4-D Tensors.x comparable

25 Multicore CP-ALS 5 HiCOO outperforms COO by up to 9.4 and CSF up to.4. Normalized Time HiCOO CSF COO. nell choa darpa fb-m fb-s deli nell crime nips enron flickr -D Tensors 4-D Tensors deli4d

26 Outline 6 Background HiCOO Format Multicore CP-ALS Distributed CPDs

27 Data Distribution 7 Tensor: Two-level blocking Bulk level: node partitioning to ensure nonzero balance Block level: ensure fast local computation Factor matrices Each processor owns the portion of factor matrices its local tensor needs. Some duplication exists. i =,,I j =,,J bulk k =,,K B B B B bptr 4 6 bi bj bk ei HiCOO ej ek val

28 Data Distribution Cont. 8 X: 4*4*4 sparse tensor Processors are split to ** grids. Use sub-communicator to update factor matrices. A(:) B(:) C(:) A(:) B(:) C(:) P(,,) P(,,) A(:) B(:) C(:) A(:) B(:) C(:) P(,,) P(,,)

29 Platform and Dataset 9 Platform: Cori supercomputer in NERSC, which is Cray XC4. Each node is Intel Xeon CPU E5-698 v ( Haswell ) consisting physical cores. We use Intel MPI 8 version. We test to 4 processors with processors per node. Dataset: Synthetic tensors from Poisson distribution.

30 Distributed MTTKRP Performance COO HiCOO Time (s). syn syn.5 syn #Procs 5 4 Time (s).6 syn.5 syn syn #Procs MTTKRP time using 4 procs Time (s) HiCOO COO.. syn syn Tensors syn

31 Distributed CP-ALS Performance Time (s).5..5 COO.5 syn syn. syn #Procs 5 4 Time (s) HiCOO. syn syn. syn #Procs 5 4 CP-ALS time using 4 procs Time (s).8 HiCOO.7 COO syn syn syn Tensors

32 Distributed CompPhi Performance COO HiCOO Time (s) syn syn 8 syn #Procs 5 4 Time (s) #Procs 5 syn syn syn 4 CompPhi time using 4 procs Time (s) HiCOO COO. syn syn Tensors syn

33 Distributed CP-APR Performance COO HiCOO Time (s) 5 syn syn syn #Procs 5 4 Time (s) #Procs 5 syn syn syn 4 CP-APR time using 4 procs Time (s).8 HiCOO.7 COO syn syn syn Tensors

34 Conclusion and Future Work 4 Conclusion HiCOO WORKS! Future work Combine multicore and distributed parallelism together to build hybrid MPI+OpenMP HiCOO CPDs. Also include our GPU implementations. Consider CP-APR algorithms to Newton-based optimization methods.

35 ParTI! Project 5 Hardware Multicore8 CPUs GPUs Distributed8 Memory Emu ParTI!'Library Sparse Baseline8Tensor8 Routines Tensor8 Decomposition Algorithms Code: jiajiali@gatech.edu

36 Contributors 6 Jiajia Li PhD, GaTech & PNNL* * From Aug 8 Yuchen Ma Undergrad, HDU Nick Liu Undergrad, GaTech Srinivas Eswar PhD, GaTech Junghyun Kim Undergrad, GaTech Richard Vuduc Professor, GaTech

37 Acknowledgement 7

38 Related Work 8 S. Smith et al. A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization, IPDPS 6 O. Kaya et al. Scalable Sparse Tensor Decompositions in Distributed Memory Systems, SC 5 E. Solomonik et al. Sparse Tensor Algebra as a Parallel Programming Model, TR, 5 S. Rajbhandari et al. A communication-optimal framework for contracting distributed tensors, SC'4 W. Austin et al. Parallel Tensor Compression for Large-Scale Scientific Data, IPDPS 6 J. Choi et al. DFacTo: Distributed Factorization of Tensors, NIPS 4

A Unified Optimization Approach for Sparse Tensor Operations on GPUs

A Unified Optimization Approach for Sparse Tensor Operations on GPUs A Unified Optimization Approach for Sparse Tensor Operations on GPUs Bangtian Liu, Chengyao Wen, Anand D. Sarwate, Maryam Mehri Dehnavi Rutgers, The State University of New Jersey {bangtian.liu, chengyao.wen,

More information

Memory-efficient Parallel Tensor Decompositions

Memory-efficient Parallel Tensor Decompositions Patent Pending Memory-efficient Parallel Tensor Decompositions Muthu Baskaran, Tom Henretty, Benoit Pradelle, M. Harper Langston, David Bruns-Smith, James Ezick, Richard Lethin Reservoir Labs Inc. New

More information

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems

TR A Comparison of the Performance of SaP::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems TR-0-07 A Comparison of the Performance of ::GPU and Intel s Math Kernel Library (MKL) for Solving Dense Banded Linear Systems Ang Li, Omkar Deshmukh, Radu Serban, Dan Negrut May, 0 Abstract ::GPU is a

More information

Model-Driven Sparse CP Decomposition for Higher-Order Tensors

Model-Driven Sparse CP Decomposition for Higher-Order Tensors 7 IEEE International Parallel and Distributed Processing Symposium Model-Driven Sparse CP Decomposition for Higher-Order Tensors Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, Richard Vuduc Computational

More information

Tensor-Matrix Products with a Compressed Sparse Tensor

Tensor-Matrix Products with a Compressed Sparse Tensor Tensor-Matrix Products with a Compressed Sparse Tensor Shaden Smith shaden@cs.umn.edu Department of Computer Science and Engineering University of Minnesota, USA George Karypis karypis@cs.umn.edu ABSTRACT

More information

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic

GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic GPU acceleration of Newton s method for large systems of polynomial equations in double double and quad double arithmetic Jan Verschelde joint work with Xiangcheng Yu University of Illinois at Chicago

More information

Parallel Transposition of Sparse Data Structures

Parallel Transposition of Sparse Data Structures Parallel Transposition of Sparse Data Structures Hao Wang, Weifeng Liu, Kaixi Hou, Wu-chun Feng Department of Computer Science, Virginia Tech Niels Bohr Institute, University of Copenhagen Scientific Computing

More information

Cyclops Tensor Framework

Cyclops Tensor Framework Cyclops Tensor Framework Edgar Solomonik Department of EECS, Computer Science Division, UC Berkeley March 17, 2014 1 / 29 Edgar Solomonik Cyclops Tensor Framework 1/ 29 Definition of a tensor A rank r

More information

Sparse Tensor Factorization on Many-Core Processors with High-Bandwidth Memory

Sparse Tensor Factorization on Many-Core Processors with High-Bandwidth Memory 2017 IEEE International Parallel and Distributed Processing Symposium Sparse Tensor Factorization on Many-Core Processors with High-Bandwidth Memory Shaden Smith, Jongsoo Park, George Karypis Department

More information

An Investigation of Sparse Tensor Formats for Tensor Libraries. Parker Allen Tew

An Investigation of Sparse Tensor Formats for Tensor Libraries. Parker Allen Tew An Investigation of Sparse Tensor Formats for Tensor Libraries by Parker Allen Tew S.B., Massachusetts Institute of Technology (2015) Submitted to the Department of Electrical Engineering and Computer

More information

Introduction to numerical computations on the GPU

Introduction to numerical computations on the GPU Introduction to numerical computations on the GPU Lucian Covaci http://lucian.covaci.org/cuda.pdf Tuesday 1 November 11 1 2 Outline: NVIDIA Tesla and Geforce video cards: architecture CUDA - C: programming

More information

Performance Analysis of Lattice QCD Application with APGAS Programming Model

Performance Analysis of Lattice QCD Application with APGAS Programming Model Performance Analysis of Lattice QCD Application with APGAS Programming Model Koichi Shirahata 1, Jun Doi 2, Mikio Takeuchi 2 1: Tokyo Institute of Technology 2: IBM Research - Tokyo Programming Models

More information

Sparse solver 64 bit and out-of-core addition

Sparse solver 64 bit and out-of-core addition Sparse solver 64 bit and out-of-core addition Prepared By: Richard Link Brian Yuen Martec Limited 1888 Brunswick Street, Suite 400 Halifax, Nova Scotia B3J 3J8 PWGSC Contract Number: W7707-145679 Contract

More information

High Performance Parallel Tucker Decomposition of Sparse Tensors

High Performance Parallel Tucker Decomposition of Sparse Tensors High Performance Parallel Tucker Decomposition of Sparse Tensors Oguz Kaya INRIA and LIP, ENS Lyon, France SIAM PP 16, April 14, 2016, Paris, France Joint work with: Bora Uçar, CNRS and LIP, ENS Lyon,

More information

CSTF: Large-Scale Sparse Tensor Factorizations on Distributed Platforms

CSTF: Large-Scale Sparse Tensor Factorizations on Distributed Platforms CSTF: Large-Scale Sparse Tensor Factorizations on Distributed Platforms Zachary Blanco Rutgers University zac.blanco@rutgers.edu Bangtian Liu Rutgers University bangtian.liu@rutgers.edu Maryam Mehri Dehnavi

More information

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota

Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota Multilevel low-rank approximation preconditioners Yousef Saad Department of Computer Science and Engineering University of Minnesota SIAM CSE Boston - March 1, 2013 First: Joint work with Ruipeng Li Work

More information

ERLANGEN REGIONAL COMPUTING CENTER

ERLANGEN REGIONAL COMPUTING CENTER ERLANGEN REGIONAL COMPUTING CENTER Making Sense of Performance Numbers Georg Hager Erlangen Regional Computing Center (RRZE) Friedrich-Alexander-Universität Erlangen-Nürnberg OpenMPCon 2018 Barcelona,

More information

A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization

A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization Shaden Smith, George Karypis Department of Computer Science and Engineering, University of Minnesota {shaden, karypis}@cs.umn.edu

More information

Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI

Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI Solution to Laplace Equation using Preconditioned Conjugate Gradient Method with Compressed Row Storage using MPI Sagar Bhatt Person Number: 50170651 Department of Mechanical and Aerospace Engineering,

More information

Efficient algorithms for symmetric tensor contractions

Efficient algorithms for symmetric tensor contractions Efficient algorithms for symmetric tensor contractions Edgar Solomonik 1 Department of EECS, UC Berkeley Oct 22, 2013 1 / 42 Edgar Solomonik Symmetric tensor contractions 1/ 42 Motivation The goal is to

More information

A Computation- and Communication-Optimal Parallel Direct 3-body Algorithm

A Computation- and Communication-Optimal Parallel Direct 3-body Algorithm A Computation- and Communication-Optimal Parallel Direct 3-body Algorithm Penporn Koanantakool and Katherine Yelick {penpornk, yelick}@cs.berkeley.edu Computer Science Division, University of California,

More information

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors

Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Large-scale Electronic Structure Simulations with MVAPICH2 on Intel Knights Landing Manycore Processors Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr) Principal Researcher / Korea Institute of Science and Technology

More information

Cyclops Tensor Framework: reducing communication and eliminating load imbalance in massively parallel contractions

Cyclops Tensor Framework: reducing communication and eliminating load imbalance in massively parallel contractions Cyclops Tensor Framework: reducing communication and eliminating load imbalance in massively parallel contractions Edgar Solomonik 1, Devin Matthews 3, Jeff Hammond 4, James Demmel 1,2 1 Department of

More information

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2

Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption. Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 1 / 23 Parallel Asynchronous Hybrid Krylov Methods for Minimization of Energy Consumption Langshi CHEN 1,2,3 Supervised by Serge PETITON 2 Maison de la Simulation Lille 1 University CNRS March 18, 2013

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 27, 2015 Outline Linear regression Ridge regression and Lasso Time complexity (closed form solution) Iterative Solvers Regression Input: training

More information

Scalable and Power-Efficient Data Mining Kernels

Scalable and Power-Efficient Data Mining Kernels Scalable and Power-Efficient Data Mining Kernels Alok Choudhary, John G. Searle Professor Dept. of Electrical Engineering and Computer Science and Professor, Kellogg School of Management Director of the

More information

Strassen s Algorithm for Tensor Contraction

Strassen s Algorithm for Tensor Contraction Strassen s Algorithm for Tensor Contraction Jianyu Huang, Devin A. Matthews, Robert A. van de Geijn The University of Texas at Austin September 14-15, 2017 Tensor Computation Workshop Flatiron Institute,

More information

Sparse LU Factorization on GPUs for Accelerating SPICE Simulation

Sparse LU Factorization on GPUs for Accelerating SPICE Simulation Nano-scale Integrated Circuit and System (NICS) Laboratory Sparse LU Factorization on GPUs for Accelerating SPICE Simulation Xiaoming Chen PhD Candidate Department of Electronic Engineering Tsinghua University,

More information

Accelerating linear algebra computations with hybrid GPU-multicore systems.

Accelerating linear algebra computations with hybrid GPU-multicore systems. Accelerating linear algebra computations with hybrid GPU-multicore systems. Marc Baboulin INRIA/Université Paris-Sud joint work with Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

More information

Technical Report TR SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication

Technical Report TR SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 Keller Hall 200 Union Street SE Minneapolis, MN 55455-0159 USA TR 15-008 SPLATT: Efficient and Parallel Sparse

More information

Computers and Mathematics with Applications

Computers and Mathematics with Applications Computers and Mathematics with Applications 68 (2014) 1151 1160 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa A GPU

More information

Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver

Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver Scalable Hybrid Programming and Performance for SuperLU Sparse Direct Solver Sherry Li Lawrence Berkeley National Laboratory Piyush Sao Rich Vuduc Georgia Institute of Technology CUG 14, May 4-8, 14, Lugano,

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems

Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems Static-scheduling and hybrid-programming in SuperLU DIST on multicore cluster systems Ichitaro Yamazaki University of Tennessee, Knoxville Xiaoye Sherry Li Lawrence Berkeley National Laboratory MS49: Sparse

More information

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique

Claude Tadonki. MINES ParisTech PSL Research University Centre de Recherche Informatique Claude Tadonki MINES ParisTech PSL Research University Centre de Recherche Informatique claude.tadonki@mines-paristech.fr Monthly CRI Seminar MINES ParisTech - CRI June 06, 2016, Fontainebleau (France)

More information

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters

A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters A Quantum Chemistry Domain-Specific Language for Heterogeneous Clusters ANTONINO TUMEO, ORESTE VILLA Collaborators: Karol Kowalski, Sriram Krishnamoorthy, Wenjing Ma, Simone Secchi May 15, 2012 1 Outline!

More information

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System Yang You 1, James Demmel 1, Kent Czechowski 2, Le Song 2, Richard Vuduc 2 UC Berkeley 1, Georgia Tech 2 Yang You (Speaker) James

More information

Dense Arithmetic over Finite Fields with CUMODP

Dense Arithmetic over Finite Fields with CUMODP Dense Arithmetic over Finite Fields with CUMODP Sardar Anisul Haque 1 Xin Li 2 Farnam Mansouri 1 Marc Moreno Maza 1 Wei Pan 3 Ning Xie 1 1 University of Western Ontario, Canada 2 Universidad Carlos III,

More information

Constrained Tensor Factorization with Accelerated AO-ADMM

Constrained Tensor Factorization with Accelerated AO-ADMM Constrained Tensor actorization with Accelerated AO-ADMM Shaden Smith, Alec Beri, George Karypis Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA Department of

More information

Optimization of Symmetric Tensor Computations

Optimization of Symmetric Tensor Computations Optimization of Symmetric Tensor Computations Jonathon Cai Department of Computer Science, Yale University New Haven, CT 0650 Email: jonathon.cai@yale.edu Muthu Baskaran, Benoît Meister, Richard Lethin

More information

Parallel Polynomial Evaluation

Parallel Polynomial Evaluation Parallel Polynomial Evaluation Jan Verschelde joint work with Genady Yoffe University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu

More information

Multicore Parallelization of Determinant Quantum Monte Carlo Simulations

Multicore Parallelization of Determinant Quantum Monte Carlo Simulations Multicore Parallelization of Determinant Quantum Monte Carlo Simulations Andrés Tomás, Che-Rung Lee, Zhaojun Bai, Richard Scalettar UC Davis SIAM Conference on Computation Science & Engineering Reno, March

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Katharina Kormann 1 Klaus Reuter 2 Markus Rampp 2 Eric Sonnendrücker 1 1 Max Planck Institut für Plasmaphysik 2 Max Planck Computing

More information

DFacTo: Distributed Factorization of Tensors

DFacTo: Distributed Factorization of Tensors DFacTo: Distributed Factorization of Tensors Joon Hee Choi Electrical and Computer Engineering Purdue University West Lafayette IN 47907 choi240@purdue.edu S. V. N. Vishwanathan Statistics and Computer

More information

Efficient CP-ALS and Reconstruction From CP

Efficient CP-ALS and Reconstruction From CP Efficient CP-ALS and Reconstruction From CP Jed A. Duersch & Tamara G. Kolda Sandia National Laboratories Livermore, CA Sandia National Laboratories is a multimission laboratory managed and operated by

More information

Solving PDEs with CUDA Jonathan Cohen

Solving PDEs with CUDA Jonathan Cohen Solving PDEs with CUDA Jonathan Cohen jocohen@nvidia.com NVIDIA Research PDEs (Partial Differential Equations) Big topic Some common strategies Focus on one type of PDE in this talk Poisson Equation Linear

More information

Implementing QR Factorization Updating Algorithms on GPUs. Andrew, Robert and Dingle, Nicholas J. MIMS EPrint:

Implementing QR Factorization Updating Algorithms on GPUs. Andrew, Robert and Dingle, Nicholas J. MIMS EPrint: Implementing QR Factorization Updating Algorithms on GPUs Andrew, Robert and Dingle, Nicholas J. 214 MIMS EPrint: 212.114 Manchester Institute for Mathematical Sciences School of Mathematics The University

More information

Review for the Midterm Exam

Review for the Midterm Exam Review for the Midterm Exam 1 Three Questions of the Computational Science Prelim scaled speedup network topologies work stealing 2 The in-class Spring 2012 Midterm Exam pleasingly parallel computations

More information

Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters --

Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer and GPU-Clusters -- Parallel Processing for Energy Efficiency October 3, 2013 NTNU, Trondheim, Norway Open-Source Parallel FE Software : FrontISTR -- Performance Considerations about B/F (Byte per Flop) of SpMV on K-Supercomputer

More information

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling

Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling 2019 Intel extreme Performance Users Group (IXPUG) meeting Massively scalable computing method to tackle large eigenvalue problems for nanoelectronics modeling Hoon Ryu, Ph.D. (E: elec1020@kisti.re.kr)

More information

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry

Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry Heterogeneous programming for hybrid CPU-GPU systems: Lessons learned from computational chemistry and Eugene DePrince Argonne National Laboratory (LCF and CNM) (Eugene moved to Georgia Tech last week)

More information

TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS. Cris Cecka Senior Research Scientist, NVIDIA GTC 2018

TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS. Cris Cecka Senior Research Scientist, NVIDIA GTC 2018 TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS Cris Cecka Senior Research Scientist, NVIDIA GTC 2018 Tensors Computations and the GPU AGENDA Tensor Networks and Decompositions Tensor Layers in

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

GPU Computing Activities in KISTI

GPU Computing Activities in KISTI International Advanced Research Workshop on High Performance Computing, Grids and Clouds 2010 June 21~June 25 2010, Cetraro, Italy HPC Infrastructure and GPU Computing Activities in KISTI Hongsuk Yi hsyi@kisti.re.kr

More information

Parallel Matrix Factorization for Recommender Systems

Parallel Matrix Factorization for Recommender Systems Under consideration for publication in Knowledge and Information Systems Parallel Matrix Factorization for Recommender Systems Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon Department of

More information

1 Overview. 2 Adapting to computing system evolution. 11 th European LS-DYNA Conference 2017, Salzburg, Austria

1 Overview. 2 Adapting to computing system evolution. 11 th European LS-DYNA Conference 2017, Salzburg, Austria 1 Overview Improving LSTC s Multifrontal Linear Solver Roger Grimes 3, Robert Lucas 3, Nick Meng 2, Francois-Henry Rouet 3, Clement Weisbecker 3, and Ting-Ting Zhu 1 1 Cray Incorporated 2 Intel Corporation

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Convergence Models and Surprising Results for the Asynchronous Jacobi Method

Convergence Models and Surprising Results for the Asynchronous Jacobi Method Convergence Models and Surprising Results for the Asynchronous Jacobi Method Jordi Wolfson-Pou School of Computational Science and Engineering Georgia Institute of Technology Atlanta, Georgia, United States

More information

QR Decomposition in a Multicore Environment

QR Decomposition in a Multicore Environment QR Decomposition in a Multicore Environment Omar Ahsan University of Maryland-College Park Advised by Professor Howard Elman College Park, MD oha@cs.umd.edu ABSTRACT In this study we examine performance

More information

Computational Numerical Integration for Spherical Quadratures. Verified by the Boltzmann Equation

Computational Numerical Integration for Spherical Quadratures. Verified by the Boltzmann Equation Computational Numerical Integration for Spherical Quadratures Verified by the Boltzmann Equation Huston Rogers. 1 Glenn Brook, Mentor 2 Greg Peterson, Mentor 2 1 The University of Alabama 2 Joint Institute

More information

Efficient implementation of the overlap operator on multi-gpus

Efficient implementation of the overlap operator on multi-gpus Efficient implementation of the overlap operator on multi-gpus Andrei Alexandru Mike Lujan, Craig Pelissier, Ben Gamari, Frank Lee SAAHPC 2011 - University of Tennessee Outline Motivation Overlap operator

More information

MARCH 24-27, 2014 SAN JOSE, CA

MARCH 24-27, 2014 SAN JOSE, CA MARCH 24-27, 2014 SAN JOSE, CA Sparse HPC on modern architectures Important scientific applications rely on sparse linear algebra HPCG a new benchmark proposal to complement Top500 (HPL) To solve A x =

More information

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures

Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures Performance and Energy Analysis of the Iterative Solution of Sparse Linear Systems on Multicore and Manycore Architectures José I. Aliaga Performance and Energy Analysis of the Iterative Solution of Sparse

More information

ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems

ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, M YYYY 1 ExaGeoStat: A High Performance Unified Software for Geostatistics on Manycore Systems Sameh Abdulah, Hatem Ltaief, Ying Sun,

More information

c 2015 Society for Industrial and Applied Mathematics

c 2015 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. C169 C193 c 2015 Society for Industrial and Applied Mathematics FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper

More information

Direct Self-Consistent Field Computations on GPU Clusters

Direct Self-Consistent Field Computations on GPU Clusters Direct Self-Consistent Field Computations on GPU Clusters Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at UrbanaChampaign Ivan Ufimtsev, Todd

More information

Consider the following example of a linear system:

Consider the following example of a linear system: LINEAR SYSTEMS Consider the following example of a linear system: Its unique solution is x + 2x 2 + 3x 3 = 5 x + x 3 = 3 3x + x 2 + 3x 3 = 3 x =, x 2 = 0, x 3 = 2 In general we want to solve n equations

More information

A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats

A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats Peter Ahrens, Helen Xu, and Nicholas Schiefer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and

More information

Antti-Pekka Hynninen, 5/10/2017, GTC2017, San Jose CA

Antti-Pekka Hynninen, 5/10/2017, GTC2017, San Jose CA S7255: CUTT: A HIGH- PERFORMANCE TENSOR TRANSPOSE LIBRARY FOR GPUS Antti-Pekka Hynninen, 5/10/2017, GTC2017, San Jose CA MOTIVATION Tensor contractions are the most computationally intensive part of quantum

More information

HYCOM and Navy ESPC Future High Performance Computing Needs. Alan J. Wallcraft. COAPS Short Seminar November 6, 2017

HYCOM and Navy ESPC Future High Performance Computing Needs. Alan J. Wallcraft. COAPS Short Seminar November 6, 2017 HYCOM and Navy ESPC Future High Performance Computing Needs Alan J. Wallcraft COAPS Short Seminar November 6, 2017 Forecasting Architectural Trends 3 NAVY OPERATIONAL GLOBAL OCEAN PREDICTION Trend is higher

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 6 Structured and Low Rank Matrices Section 6.3 Numerical Optimization Michael T. Heath and Edgar Solomonik Department of Computer Science University of Illinois at

More information

A hybrid Hermitian general eigenvalue solver

A hybrid Hermitian general eigenvalue solver Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe A hybrid Hermitian general eigenvalue solver Raffaele Solcà *, Thomas C. Schulthess Institute fortheoretical Physics ETHZ,

More information

Parallel programming using MPI. Analysis and optimization. Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco

Parallel programming using MPI. Analysis and optimization. Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco Parallel programming using MPI Analysis and optimization Bhupender Thakur, Jim Lupo, Le Yan, Alex Pacheco Outline l Parallel programming: Basic definitions l Choosing right algorithms: Optimal serial and

More information

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA

Jacobi-Davidson Eigensolver in Cusolver Library. Lung-Sheng Chien, NVIDIA Jacobi-Davidson Eigensolver in Cusolver Library Lung-Sheng Chien, NVIDIA lchien@nvidia.com Outline CuSolver library - cusolverdn: dense LAPACK - cusolversp: sparse LAPACK - cusolverrf: refactorization

More information

Performance Evaluation of MPI on Weather and Hydrological Models

Performance Evaluation of MPI on Weather and Hydrological Models NCAR/RAL Performance Evaluation of MPI on Weather and Hydrological Models Alessandro Fanfarillo elfanfa@ucar.edu August 8th 2018 Cheyenne - NCAR Supercomputer Cheyenne is a 5.34-petaflops, high-performance

More information

RWTH Aachen University

RWTH Aachen University IPCC @ RWTH Aachen University Optimization of multibody and long-range solvers in LAMMPS Rodrigo Canales William McDoniel Markus Höhnerbach Ahmed E. Ismail Paolo Bientinesi IPCC Showcase November 2016

More information

Transposition Mechanism for Sparse Matrices on Vector Processors

Transposition Mechanism for Sparse Matrices on Vector Processors Transposition Mechanism for Sparse Matrices on Vector Processors Pyrrhos Stathis Stamatis Vassiliadis Sorin Cotofana Electrical Engineering Department, Delft University of Technology, Delft, The Netherlands

More information

Everyday Multithreading

Everyday Multithreading Everyday Multithreading Parallel computing for genomic evaluations in R C. Heuer, D. Hinrichs, G. Thaller Institute of Animal Breeding and Husbandry, Kiel University August 27, 2014 C. Heuer, D. Hinrichs,

More information

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING

FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING FINDING PARALLELISM IN GENERAL-PURPOSE LINEAR PROGRAMMING Daniel Thuerck 1,2 (advisors Michael Goesele 1,2 and Marc Pfetsch 1 ) Maxim Naumov 3 1 Graduate School of Computational Engineering, TU Darmstadt

More information

Acceleration of WRF on the GPU

Acceleration of WRF on the GPU Acceleration of WRF on the GPU Daniel Abdi, Sam Elliott, Iman Gohari Don Berchoff, Gene Pache, John Manobianco TempoQuest 1434 Spruce Street Boulder, CO 80302 720 726 9032 TempoQuest.com THE WORLD S FASTEST

More information

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX

Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX Utilisation de la compression low-rank pour réduire la complexité du solveur PaStiX 26 Septembre 2018 - JCAD 2018 - Lyon Grégoire Pichon, Mathieu Faverge, Pierre Ramet, Jean Roman Outline 1. Context 2.

More information

A CUDA Solver for Helmholtz Equation

A CUDA Solver for Helmholtz Equation Journal of Computational Information Systems 11: 24 (2015) 7805 7812 Available at http://www.jofcis.com A CUDA Solver for Helmholtz Equation Mingming REN 1,2,, Xiaoguang LIU 1,2, Gang WANG 1,2 1 College

More information

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria Distributed Machine Learning: A Brief Overview Dan Alistarh IST Austria Background The Machine Learning Cambrian Explosion Key Factors: 1. Large s: Millions of labelled images, thousands of hours of speech

More information

Scalable Non-blocking Preconditioned Conjugate Gradient Methods

Scalable Non-blocking Preconditioned Conjugate Gradient Methods Scalable Non-blocking Preconditioned Conjugate Gradient Methods Paul Eller and William Gropp University of Illinois at Urbana-Champaign Department of Computer Science Supercomputing 16 Paul Eller and William

More information

Faster Machine Learning via Low-Precision Communication & Computation. Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich)

Faster Machine Learning via Low-Precision Communication & Computation. Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich) Faster Machine Learning via Low-Precision Communication & Computation Dan Alistarh (IST Austria & ETH Zurich), Hantian Zhang (ETH Zurich) 2 How many bits do you need to represent a single number in machine

More information

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization)

A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) A model leading to self-consistent iteration computation with need for HP LA (e.g, diagonalization and orthogonalization) Schodinger equation: Hψ = Eψ Choose a basis set of wave functions Two cases: Orthonormal

More information

Parallel Tensor Compression for Large-Scale Scientific Data

Parallel Tensor Compression for Large-Scale Scientific Data Parallel Tensor Compression for Large-Scale Scientific Data Woody Austin, Grey Ballard, Tamara G. Kolda April 14, 2016 SIAM Conference on Parallel Processing for Scientific Computing MS 44/52: Parallel

More information

Parallel Sparse Matrix - Vector Product

Parallel Sparse Matrix - Vector Product IMM Technical Report 2012-10 Parallel Sparse Matrix - Vector Product - Pure MPI and hybrid MPI-OpenMP implementation - Authors: Joe Alexandersen Boyan Lazarov Bernd Dammann Abstract: This technical report

More information

Parallel Multivariate SpatioTemporal Clustering of. Large Ecological Datasets on Hybrid Supercomputers

Parallel Multivariate SpatioTemporal Clustering of. Large Ecological Datasets on Hybrid Supercomputers Parallel Multivariate SpatioTemporal Clustering of Large Ecological Datasets on Hybrid Supercomputers Sarat Sreepathi1, Jitendra Kumar1, Richard T. Mills2, Forrest M. Hoffman1, Vamsi Sripathi3, William

More information

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline - Part 4 - Multicore and Manycore Technology: Chances and Challenges Vincent Heuveline 1 Numerical Simulation of Tropical Cyclones Goal oriented adaptivity for tropical cyclones ~10⁴km ~1500km ~100km 2

More information

Piz Daint & Piz Kesch : from general purpose supercomputing to an appliance for weather forecasting. Thomas C. Schulthess

Piz Daint & Piz Kesch : from general purpose supercomputing to an appliance for weather forecasting. Thomas C. Schulthess Piz Daint & Piz Kesch : from general purpose supercomputing to an appliance for weather forecasting Thomas C. Schulthess 1 Cray XC30 with 5272 hybrid, GPU accelerated compute nodes Piz Daint Compute node:

More information

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Accelerating Model Reduction of Large Linear Systems with Graphics Processors Accelerating Model Reduction of Large Linear Systems with Graphics Processors P. Benner 1, P. Ezzatti 2, D. Kressner 3, E.S. Quintana-Ortí 4, Alfredo Remón 4 1 Max-Plank-Institute for Dynamics of Complex

More information

arxiv: v1 [hep-lat] 7 Oct 2010

arxiv: v1 [hep-lat] 7 Oct 2010 arxiv:.486v [hep-lat] 7 Oct 2 Nuno Cardoso CFTP, Instituto Superior Técnico E-mail: nunocardoso@cftp.ist.utl.pt Pedro Bicudo CFTP, Instituto Superior Técnico E-mail: bicudo@ist.utl.pt We discuss the CUDA

More information

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu

Minisymposia 9 and 34: Avoiding Communication in Linear Algebra. Jim Demmel UC Berkeley bebop.cs.berkeley.edu Minisymposia 9 and 34: Avoiding Communication in Linear Algebra Jim Demmel UC Berkeley bebop.cs.berkeley.edu Motivation (1) Increasing parallelism to exploit From Top500 to multicores in your laptop Exponentially

More information

A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors

A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors Nico Vervliet Joint work with Lieven De Lathauwer SIAM AN17, July 13, 2017 2 Classification of hazardous

More information

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay SP-CNN: A Scalable and Programmable CNN-based Accelerator Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay Motivation Power is a first-order design constraint, especially for embedded devices. Certain

More information

Introduction to Benchmark Test for Multi-scale Computational Materials Software

Introduction to Benchmark Test for Multi-scale Computational Materials Software Introduction to Benchmark Test for Multi-scale Computational Materials Software Shun Xu*, Jian Zhang, Zhong Jin xushun@sccas.cn Computer Network Information Center Chinese Academy of Sciences (IPCC member)

More information

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Yushan Wang 1, Marc Baboulin 1,2, Karl Rupp 3,4, Yann Fraigneau 1,5, Olivier Le Maître 1,5 1 Université Paris-Sud, France 2

More information