Parallel Numerical Algorithms

Size: px
Start display at page:

Download "Parallel Numerical Algorithms"

Transcription

1 Parallel Numerical Algorithms Chapter 6 Structured and Low Rank Matrices Section 6.3 Numerical Optimization Michael T. Heath and Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 21

2 Outline Alternating Least Squares 1 Alternating Least Squares Quadratic Optimization Parallel ALS 2 Cyclic 3 Stochastic Parallel SGD 4 Nonlinear Equations Optimization Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 21

3 Quadratic Optimization: Matrix Completion Given a subset of entries W R m k,h R n k (i,j) Ω Ω {1,..., m} {1,..., n} of the entries of matrix A R m n, seek rank-k approximation ( argmin a ij ) 2 w il h jl + λ( W F + H F ) l } {{ } (A W H T ) ij Problems of these type studied in sparse approximation Ω may be randomly selected sample subset Methods for this problem are typical of numerical optimization and machine learning Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 21

4 Alternating Least Squares Quadratic Optimization Parallel ALS Alternating least squares (ALS) fixes W and solves for H then vice versa until convergence Each step improves approximation, convergence to a minimum expected given satisfactory starting guess We have a quadratic optimization problem ( argmin a ij ) 2 w il h jl + λ W F W R m k l (i,j) Ω The optimization problem is independent for rows of W Letting w i = w i, h i = h i, Ω i = {j : (i, j) Ω}, seek ( ) 2 argmin a ij w i h T j + λ wi 2 w i R k j Ω i Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 21

5 ALS: Quadratic Optimization Quadratic Optimization Parallel ALS Seek minimizer w i for quadratic vector equation f(w i ) = j Ω i (a ij w i h T j ) 2 + λ wi Differentiating with respect to w i gives f(w i ) w i = 2 j Ω i h T j (w i h T j a ij ) + 2λw i = 0 Rotating w i h T j = h jw T i and defining G (i) = j Ω i h T j h j, (G (i) + λi)w T i = j Ω i h T j a ij which is a k k symmetric linear system of equations Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 21

6 ALS: Iteration Cost Alternating Least Squares Quadratic Optimization Parallel ALS For updating each w i, ALS is dominated in cost by two steps 1 G (i) = j Ω i h T j h j dense matrix-matrix product O( Ω i k 2 ) work logarithmic depth 2 Solve linear system with G (i) + λi dense symmetric k k linear solve O(k 3 ) work typically O(k) depth Can do these for all m rows of W independently Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 21

7 Parallel ALS Alternating Least Squares Quadratic Optimization Parallel ALS Let each task optimize a row w i of W Need to compute G (i) for each task Specific subset of rows of H needed for each G (i) Task execution is embarassingly parallel if all of H stored on each processor Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 21

8 Quadratic Optimization Parallel ALS Memory-Constrained Parallel ALS May not have enough memory to replicate H on all processors Communication required and pattern is data-dependent Could rotate rows of H along a ring of processors Each processor computes contributions to the G (i) it owns Requires Θ(p) latency cost for each iteration of ALS Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 21

9 Updating a Single Variable Cyclic Rather than whole rows w i solve for elements of W, recall ( argmin a ij ) 2 w il h jl + λ W F W R m k l (i,j) Ω Coordinate descent finds the best replacement µ for w it ( µ = argmin a ij µh jt ) 2 w il h jl + λµ 2 µ l t j Ω i The solution is given by µ = j Ω i h jt (a ij l t w ilh jl ) λ + j Ω i h 2 jt Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 21

10 Cyclic For (i, j) Ω compute elements r ij of R = A W H T so that we can optimize via j Ω i h jt (a ij ) l t w ilh jl µ = λ + j Ω i h 2 jt after which we can update R via = j Ω i h jt (r ij + w it h jt ) λ + j Ω i h 2 jt r ij r ij (µ w it )h jt j Ω i both using O( Ω i ) operations Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 21

11 Cyclic Cyclic (CCD) Updating w i costs O( Ω i k) operations with coordinate descent rather than O( Ω i k 2 + k 3 ) operations with ALS By solving for all of w i at once, ALS obtains a more accurate solution than coordinate descent Coordinate descent with different update orderings: Cyclic coordinate descent (CCD) updates all columns of W then all columns of H (ALS-like ordering) CCD++ alternates between columns of W and H All entries within a column can be updated concurrently Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 21

12 Parallel CCD++ Alternating Least Squares Cyclic Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked layout of H and W They keep track of a corresponding m/p and n/p rows and columns of A and R on each processor (using twice the minimal amount of memory) Every column update in CCD++ is then fully parallelized, but an allgather of each column is required to update R The complexity of updating all of W and all of H is then T p (m, n, k) = Θ(kTp allgather (m + n) + γq 1 (m, n, k)/p) = O(αk log p + β(m + n)k + γ Ω k/p) Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 21

13 Gradient-Based Update Stochastic Parallel SGD ALS minimizes w i, gradient descent methods only improve it Recall that we seek to minimize f(w i ) = j Ω i (a ij w i h T j ) 2 + λ wi and use the partial derivative f(w i ) w i = 2 j Ω i h T j Gradient descent method updates ) ) (w i h T j a ij +2λw i = 2 (λw i j Ωi r ij h j w i = w i η f(w i) w i where parameter η is our step-size Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 21

14 Stochastic Parallel SGD Stochastic (SGD) Stochastic gradient descent (SGD) performs fine-grained updates based on a component of the gradient Again the full gradient is ) f(w i ) = 2 (λw i j Ωi r ij h j = 2 λw i / Ω i r ij h j w i j Ω i SGD selects random (i, j) Ω and updates w i using h j w i w i η(λw i / Ω i r ij h j ) SGD then updates r ij = a ij wi T h j Each update costs O(k) operations Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 21

15 Asynchronous SGD Stochastic Parallel SGD Parallelizing SGD is easy aside from ensuring concurrent updates do not conflict Asynchronous shared-memory implementations of SGD are popular and achieve high performance For sufficiently small step-size, inconsistencies among updates (e.g. duplication) are not problematic statistically Asynchronicity can slow down convergence Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 21

16 Blocked SGD Alternating Least Squares Stochastic Parallel SGD Distributed blocking SGD introduces further considerations Associate a task with updates on a block Can define p p grid of blocks of dimension m/p n/p Diagonal/superdiagonals/subdiagonals of blocks updated independently, so p tasks can execute concurrently Assuming Θ( Ω /p 2 ) updates are performed on each block, the execution time for Ω updates is T p (m, n, k) = Θ(αp log p + β min(m, n)k + γ Ω k/p) Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 21

17 Nonlinear Equations Nonlinear Equations Optimization Potential sources of parallelism in solving nonlinear equation f(x) = 0 include Evaluation of function f and its derivatives in parallel Parallel implementation of linear algebra computations (e.g., solving linear system in Newton-like methods) Simultaneous exploration of different regions via multiple starting points (e.g., if many solutions are sought or convergence is difficult to achieve) Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 21

18 Optimization Alternating Least Squares Nonlinear Equations Optimization Sources of parallelism in optimization problems include Evaluation of objective and constraint functions and their derivatives in parallel Parallel implementation of linear algebra computations (e.g., solving linear system in Newton-like methods) Simultaneous exploration of different regions via multiple starting points (e.g., if global optimum is sought or convergence is difficult to achieve) Multi-directional searches in direct search methods Decomposition methods for structured problems, such as linear, quadratic, or separable programming Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 21

19 References Alternating Least Squares Candés, Emmanuel J., and Benjamin Recht. "Exact matrix completion via convex optimization." Foundations of computational mathematics 9.6 (2009): 717. Jain, Prateek, Praneeth Netrapalli, and Sujay Sanghavi. "Low-rank matrix completion using alternating minimization." Proceedings of the forty-fifth annual ACM Symposium on Theory of Computing. ACM, Yu, H.F., Hsieh, C.J., Si, S. and Dhillon, I., 2012, December. Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In 2012 IEEE 12th International Conference on Data Mining (pp ). Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 21

20 References Alternating Least Squares Recht, Benjamin, Christopher Re, Stephen Wright, and Feng Niu. "Hogwild: A lock-free approach to parallelizing stochastic gradient descent." In Advances in neural information processing systems, pp Gemulla, Rainer, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. "Large-scale matrix factorization with distributed stochastic gradient descent." In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp ACM, Karlsson, Lars, Daniel Kressner, and André Uschmajew. "Parallel algorithms for tensor completion in the CP format." Parallel computing 57 (2016): Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 21

21 References Parallel Optimization J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J. Optimization 1: , 1991 J. E. Dennis and Z. Wu, Parallel continuous optimization, J. Dongarra et al., eds., Sourcebook of Parallel Computing, pp , Morgan Kauffman, 2003 F. A. Lootsma and K. M. Ragsdell, State-of-the-art in parallel nonlinear optimization, Parallel Computing 6: , 1988 R. Schnabel, Sequential and parallel methods for unconstrained optimization, M. Iri and K. Tanabe, eds., Mathematical Programming: Recent Developments and Applications, pp , Kluwer, 1989 S. A. Zenios, Parallel numerical optimization: current trends and an annotated bibliography, ORSA J. Comput. 1:20-43, 1989 Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 21

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent

Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent KDD 2011 Rainer Gemulla, Peter J. Haas, Erik Nijkamp and Yannis Sismanis Presenter: Jiawen Yao Dept. CSE, UT Arlington 1 1

More information

Large-scale Matrix Factorization. Kijung Shin Ph.D. Student, CSD

Large-scale Matrix Factorization. Kijung Shin Ph.D. Student, CSD Large-scale Matrix Factorization Kijung Shin Ph.D. Student, CSD Roadmap Matrix Factorization (review) Algorithms Distributed SGD: DSGD Alternating Least Square: ALS Cyclic Coordinate Descent: CCD++ Experiments

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems

Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon Department of Computer Science University of Texas

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 13 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Michael T. Heath Parallel Numerical Algorithms

More information

Parallel Matrix Factorization for Recommender Systems

Parallel Matrix Factorization for Recommender Systems Under consideration for publication in Knowledge and Information Systems Parallel Matrix Factorization for Recommender Systems Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon Department of

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 6 Matrix Models Section 6.2 Low Rank Approximation Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Edgar

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 27, 2015 Outline Linear regression Ridge regression and Lasso Time complexity (closed form solution) Iterative Solvers Regression Input: training

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and Wu-Jun Li National Key Laboratory for Novel Software Technology Department of Computer

More information

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Bo Liu Department of Computer Science, Rutgers Univeristy Xiao-Tong Yuan BDAT Lab, Nanjing University of Information Science and Technology

More information

A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization

A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin Department of Computer Science National Taiwan University, Taipei,

More information

Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning

Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning Improving L-BFGS Initialization for Trust-Region Methods in Deep Learning Jacob Rafati http://rafati.net jrafatiheravi@ucmerced.edu Ph.D. Candidate, Electrical Engineering and Computer Science University

More information

Non-convex Robust PCA: Provable Bounds

Non-convex Robust PCA: Provable Bounds Non-convex Robust PCA: Provable Bounds Anima Anandkumar U.C. Irvine Joint work with Praneeth Netrapalli, U.N. Niranjan, Prateek Jain and Sujay Sanghavi. Learning with Big Data High Dimensional Regime Missing

More information

Linear Regression. S. Sumitra

Linear Regression. S. Sumitra Linear Regression S Sumitra Notations: x i : ith data point; x T : transpose of x; x ij : ith data point s jth attribute Let {(x 1, y 1 ), (x, y )(x N, y N )} be the given data, x i D and y i Y Here D

More information

Lock-Free Approaches to Parallelizing Stochastic Gradient Descent

Lock-Free Approaches to Parallelizing Stochastic Gradient Descent Lock-Free Approaches to Parallelizing Stochastic Gradient Descent Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison with Feng iu Christopher Ré Stephen Wright minimize x f(x)

More information

Improved Bounded Matrix Completion for Large-Scale Recommender Systems

Improved Bounded Matrix Completion for Large-Scale Recommender Systems Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-7) Improved Bounded Matrix Completion for Large-Scale Recommender Systems Huang Fang, Zhen Zhang, Yiqun

More information

Distributed Stochastic ADMM for Matrix Factorization

Distributed Stochastic ADMM for Matrix Factorization Distributed Stochastic ADMM for Matrix Factorization Zhi-Qin Yu Shanghai Key Laboratory of Scalable Computing and Systems Department of Computer Science and Engineering Shanghai Jiao Tong University, China

More information

A Quick Tour of Linear Algebra and Optimization for Machine Learning

A Quick Tour of Linear Algebra and Optimization for Machine Learning A Quick Tour of Linear Algebra and Optimization for Machine Learning Masoud Farivar January 8, 2015 1 / 28 Outline of Part I: Review of Basic Linear Algebra Matrices and Vectors Matrix Multiplication Operators

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning

Motivation Subgradient Method Stochastic Subgradient Method. Convex Optimization. Lecture 15 - Gradient Descent in Machine Learning Convex Optimization Lecture 15 - Gradient Descent in Machine Learning Instructor: Yuanzhang Xiao University of Hawaii at Manoa Fall 2017 1 / 21 Today s Lecture 1 Motivation 2 Subgradient Method 3 Stochastic

More information

A DELAYED PROXIMAL GRADIENT METHOD WITH LINEAR CONVERGENCE RATE. Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson

A DELAYED PROXIMAL GRADIENT METHOD WITH LINEAR CONVERGENCE RATE. Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson 204 IEEE INTERNATIONAL WORKSHOP ON ACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 2 24, 204, REIS, FRANCE A DELAYED PROXIAL GRADIENT ETHOD WITH LINEAR CONVERGENCE RATE Hamid Reza Feyzmahdavian, Arda Aytekin,

More information

Fast Coordinate Descent methods for Non-Negative Matrix Factorization

Fast Coordinate Descent methods for Non-Negative Matrix Factorization Fast Coordinate Descent methods for Non-Negative Matrix Factorization Inderjit S. Dhillon University of Texas at Austin SIAM Conference on Applied Linear Algebra Valencia, Spain June 19, 2012 Joint work

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms Chapter 5 Eigenvalue Problems Section 5.1 Michael T. Heath and Edgar Solomonik Department of Computer Science University of Illinois at Urbana-Champaign CS 554 / CSE 512 Michael

More information

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J

r=1 r=1 argmin Q Jt (20) After computing the descent direction d Jt 2 dt H t d + P (x + d) d i = 0, i / J 7 Appendix 7. Proof of Theorem Proof. There are two main difficulties in proving the convergence of our algorithm, and none of them is addressed in previous works. First, the Hessian matrix H is a block-structured

More information

Coordinate Descent and Ascent Methods

Coordinate Descent and Ascent Methods Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, 2015 1 / 22 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem:

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Machine Learning CS 4900/5900. Lecture 03. Razvan C. Bunescu School of Electrical Engineering and Computer Science Machine Learning CS 4900/5900 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Machine Learning is Optimization Parametric ML involves minimizing an objective function

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material

Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material Guaranteed Rank Minimization via Singular Value Projection: Supplementary Material Prateek Jain Microsoft Research Bangalore Bangalore, India prajain@microsoft.com Raghu Meka UT Austin Dept. of Computer

More information

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation Zhouchen Lin Peking University April 22, 2018 Too Many Opt. Problems! Too Many Opt. Algorithms! Zero-th order algorithms:

More information

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016

CME323 Distributed Algorithms and Optimization. GloVe on Spark. Alex Adamson SUNet ID: aadamson. June 6, 2016 GloVe on Spark Alex Adamson SUNet ID: aadamson June 6, 2016 Introduction Pennington et al. proposes a novel word representation algorithm called GloVe (Global Vectors for Word Representation) that synthesizes

More information

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization

Quasi-Newton Methods. Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization Quasi-Newton Methods Zico Kolter (notes by Ryan Tibshirani, Javier Peña, Zico Kolter) Convex Optimization 10-725 Last time: primal-dual interior-point methods Given the problem min x f(x) subject to h(x)

More information

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models

Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Scalable Asynchronous Gradient Descent Optimization for Out-of-Core Models Chengjie Qin 1, Martin Torres 2, and Florin Rusu 2 1 GraphSQL, Inc. 2 University of California Merced August 31, 2017 Machine

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks

Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks Implicitly and Explicitly Constrained Optimization Problems for Training of Recurrent Neural Networks Carl-Johan Thore Linköping University - Division of Mechanics 581 83 Linköping - Sweden Abstract. Training

More information

Symmetric Factorization for Nonconvex Optimization

Symmetric Factorization for Nonconvex Optimization Symmetric Factorization for Nonconvex Optimization Qinqing Zheng February 24, 2017 1 Overview A growing body of recent research is shedding new light on the role of nonconvex optimization for tackling

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725

Quasi-Newton Methods. Javier Peña Convex Optimization /36-725 Quasi-Newton Methods Javier Peña Convex Optimization 10-725/36-725 Last time: primal-dual interior-point methods Consider the problem min x subject to f(x) Ax = b h(x) 0 Assume f, h 1,..., h m are convex

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Polynomial optimization methods for matrix factorization

Polynomial optimization methods for matrix factorization Polynomial optimization methods for matrix factorization Po-Wei Wang Machine Learning Department Carnegie Mellon University Pittsburgh, PA 53 poweiw@cs.cmu.edu Chun-Liang Li Machine Learning Department

More information

Matrix Factorization and Factorization Machines for Recommender Systems

Matrix Factorization and Factorization Machines for Recommender Systems Talk at SDM workshop on Machine Learning Methods on Recommender Systems, May 2, 215 Chih-Jen Lin (National Taiwan Univ.) 1 / 54 Matrix Factorization and Factorization Machines for Recommender Systems Chih-Jen

More information

Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization

Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization INSTRUCTOR: CHANDRAJIT BAJAJ ( bajaj@cs.utexas.edu ) http://www.cs.utexas.edu/~bajaj Problems A. Sparse

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Parallel Coordinate Optimization

Parallel Coordinate Optimization 1 / 38 Parallel Coordinate Optimization Julie Nutini MLRG - Spring Term March 6 th, 2018 2 / 38 Contours of a function F : IR 2 IR. Goal: Find the minimizer of F. Coordinate Descent in 2D Contours of a

More information

A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors

A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors A randomized block sampling approach to the canonical polyadic decomposition of large-scale tensors Nico Vervliet Joint work with Lieven De Lathauwer SIAM AN17, July 13, 2017 2 Classification of hazardous

More information

Quasi-Newton Methods

Quasi-Newton Methods Newton s Method Pros and Cons Quasi-Newton Methods MA 348 Kurt Bryan Newton s method has some very nice properties: It s extremely fast, at least once it gets near the minimum, and with the simple modifications

More information

Strassen-like algorithms for symmetric tensor contractions

Strassen-like algorithms for symmetric tensor contractions Strassen-like algorithms for symmetric tensor contractions Edgar Solomonik Theory Seminar University of Illinois at Urbana-Champaign September 18, 2017 1 / 28 Fast symmetric tensor contractions Outline

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Nesterov-based Alternating Optimization for Nonnegative Tensor Completion: Algorithm and Parallel Implementation

Nesterov-based Alternating Optimization for Nonnegative Tensor Completion: Algorithm and Parallel Implementation Nesterov-based Alternating Optimization for Nonnegative Tensor Completion: Algorithm and Parallel Implementation Georgios Lourakis and Athanasios P. Liavas School of Electrical and Computer Engineering,

More information

l 1 and l 2 Regularization

l 1 and l 2 Regularization David Rosenberg New York University February 5, 2015 David Rosenberg (New York University) DS-GA 1003 February 5, 2015 1 / 32 Tikhonov and Ivanov Regularization Hypothesis Spaces We ve spoken vaguely about

More information

Machine Learning Linear Models

Machine Learning Linear Models Machine Learning Linear Models Outline II - Linear Models 1. Linear Regression (a) Linear regression: History (b) Linear regression with Least Squares (c) Matrix representation and Normal Equation Method

More information

Collaborative Filtering Matrix Completion Alternating Least Squares

Collaborative Filtering Matrix Completion Alternating Least Squares Case Study 4: Collaborative Filtering Collaborative Filtering Matrix Completion Alternating Least Squares Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade May 19, 2016

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

1 Non-negative Matrix Factorization (NMF)

1 Non-negative Matrix Factorization (NMF) 2018-06-21 1 Non-negative Matrix Factorization NMF) In the last lecture, we considered low rank approximations to data matrices. We started with the optimal rank k approximation to A R m n via the SVD,

More information

Optimized first-order minimization methods

Optimized first-order minimization methods Optimized first-order minimization methods Donghwan Kim & Jeffrey A. Fessler EECS Dept., BME Dept., Dept. of Radiology University of Michigan web.eecs.umich.edu/~fessler UM AIM Seminar 2014-10-03 1 Disclosure

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria

Distributed Machine Learning: A Brief Overview. Dan Alistarh IST Austria Distributed Machine Learning: A Brief Overview Dan Alistarh IST Austria Background The Machine Learning Cambrian Explosion Key Factors: 1. Large s: Millions of labelled images, thousands of hours of speech

More information

Matrix Derivatives and Descent Optimization Methods

Matrix Derivatives and Descent Optimization Methods Matrix Derivatives and Descent Optimization Methods 1 Qiang Ning Department of Electrical and Computer Engineering Beckman Institute for Advanced Science and Techonology University of Illinois at Urbana-Champaign

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

arxiv: v4 [math.oc] 5 Jan 2016

arxiv: v4 [math.oc] 5 Jan 2016 Restarted SGD: Beating SGD without Smoothness and/or Strong Convexity arxiv:151.03107v4 [math.oc] 5 Jan 016 Tianbao Yang, Qihang Lin Department of Computer Science Department of Management Sciences The

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

The Randomized Newton Method for Convex Optimization

The Randomized Newton Method for Convex Optimization The Randomized Newton Method for Convex Optimization Vaden Masrani UBC MLRG April 3rd, 2018 Introduction We have some unconstrained, twice-differentiable convex function f : R d R that we want to minimize:

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Tighter Low-rank Approximation via Sampling the Leveraged Element

Tighter Low-rank Approximation via Sampling the Leveraged Element Tighter Low-rank Approximation via Sampling the Leveraged Element Srinadh Bhojanapalli The University of Texas at Austin bsrinadh@utexas.edu Prateek Jain Microsoft Research, India prajain@microsoft.com

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Optimization Tutorial 1. Basic Gradient Descent

Optimization Tutorial 1. Basic Gradient Descent E0 270 Machine Learning Jan 16, 2015 Optimization Tutorial 1 Basic Gradient Descent Lecture by Harikrishna Narasimhan Note: This tutorial shall assume background in elementary calculus and linear algebra.

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Machine learning is important and interesting The general concept: Fitting models to data So far Machine

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Linear Discrimination Functions

Linear Discrimination Functions Laurea Magistrale in Informatica Nicola Fanizzi Dipartimento di Informatica Università degli Studi di Bari November 4, 2009 Outline Linear models Gradient descent Perceptron Minimum square error approach

More information

Solution of Linear Systems

Solution of Linear Systems Solution of Linear Systems Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico May 12, 2016 CPD (DEI / IST) Parallel and Distributed Computing

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, Emily Fox 2014

Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, Emily Fox 2014 Case Study 3: fmri Prediction Fused LASSO LARS Parallel LASSO Solvers Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 4 th, 2014 Emily Fox 2014 1 LASSO Regression

More information

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform Edgar Solomonik University of Illinois at Urbana-Champaign September 21, 2016 Fast

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 1 Zhong-Yuan Zhang, 2 Chris Ding, 3 Jie Tang *1, Corresponding Author School of Statistics,

More information

Discriminative Models

Discriminative Models No.5 Discriminative Models Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering York University, Toronto, Canada Outline Generative vs. Discriminative models

More information

Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent

Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent Journal of Computational Information Systems 9: 15 (2013) 6251 6258 Available at http://www.jofcis.com Large Scale Semi-supervised Linear SVM with Stochastic Gradient Descent Xin ZHOU, Conghui ZHU, Sheng

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review

OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review OPER 627: Nonlinear Optimization Lecture 14: Mid-term Review Department of Statistical Sciences and Operations Research Virginia Commonwealth University Oct 16, 2013 (Lecture 14) Nonlinear Optimization

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

Convergence of a distributed asynchronous learning vector quantization algorithm.

Convergence of a distributed asynchronous learning vector quantization algorithm. Convergence of a distributed asynchronous learning vector quantization algorithm. ENS ULM, NOVEMBER 2010 Benoît Patra (UPMC-Paris VI/Lokad) 1 / 59 Outline. 1 Introduction. 2 Vector quantization, convergence

More information

PU Learning for Matrix Completion

PU Learning for Matrix Completion Cho-Jui Hsieh Dept of Computer Science UT Austin ICML 2015 Joint work with N. Natarajan and I. S. Dhillon Matrix Completion Example: movie recommendation Given a set Ω and the values M Ω, how to predict

More information

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017 Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

More information

Least Mean Squares Regression. Machine Learning Fall 2018

Least Mean Squares Regression. Machine Learning Fall 2018 Least Mean Squares Regression Machine Learning Fall 2018 1 Where are we? Least Squares Method for regression Examples The LMS objective Gradient descent Incremental/stochastic gradient descent Exercises

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers)

Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Support vector machines In a nutshell Linear classifiers selecting hyperplane maximizing separation margin between classes (large margin classifiers) Solution only depends on a small subset of training

More information