Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea *

Size: px
Start display at page:

Download "Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea *"

Transcription

1 Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles Chu-Young Cho 1 and Seong-Ju Park 2,* 1 Applied Device and Material Department, Korea Advanced Nano fab Center, Suwon , South Korea 2 School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju , South Korea * sjpark@gist.ac.kr Abstract: We report the optical properties of localized surface plasmon (LSP)-enhanced green light-emitting diodes (LEDs) containing gold (Au) nanoparticles embedded in a p-gan layer. The photoluminescence (PL) and electroluminescence (EL) intensities of a green LED with Au nanoparticles were enhanced by the coupling between excitons and LSPs. Excitation power-dependent PL and injection current-dependent EL measurements revealed that the blue-shift of PL and EL peaks with increasing carrier density was smaller for the LSP-enhanced LED compared with that for a conventional LED. The increased optical output power and decrease in blue-shift of the LED with Au nanoparticles were attributed to the increased radiative recombination efficiency of carriers induced by the LSP-coupling process and the compensation of the polarization-induced electric fields with LSP-enhanced local fields, both of which suppressed the quantumconfined Stark effect Optical Society of America OCIS codes: ( ) Optical devices; ( ) Light-emitting diodes; ( ) Surface plasmons; ( ) Nanophotonics and photonic crystals. References and links 1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, High-Brightness InGaN Blue, Green and Yellow Light- Emitting Diodes with Quantum Well Structures, Jpn. J. Appl. Phys. 34(7), L797 L799 (1995). 2. H. K. Cho, J. Y. Lee, C. S. Kim, and G. M. Yang, Influence of strain relaxation on structural and optical characteristics of InGaN/GaN multiple quantum wells with high indium composition, J. Appl. Phys. 91(3), (2002). 3. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B 56(16), R10024 (1997). 4. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Determination of piezoelectric fields in strained GaInN quantum wells using the quantumconfined Stark effect, Appl. Phys. Lett. 73(12), (1998). 5. C. A. Tran, R. F. Karlicek, Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. G. Brown, J. Nering, I. Ferguson, and R. Stall, Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs, J. Cryst. Growth 195(1 4), (1998). 6. L. T. Romano, M. D. McCluskey, C. G. Van de Walle, J. E. Northrup, D. P. Bour, M. Kneissl, T. Suski, and J. Jun, Phase separation in InGaN multiple quantum wells annealed at high nitrogen pressures, Appl. Phys. Lett. 75(25), (1999). 7. T. Takeuchi, H. Amano, and I. Akasaki, Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells, Jpn. J. Appl. Phys. 39(2), (2000). 8. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes, Nature 406(6798), (2000). 9. A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, Visible light-emitting diodes using a-plane GaN InGaN multiple quantum wells over r-plane sapphire, Appl. Phys. Lett. 84(18), (2004) OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7488

2 10. R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode, Appl. Phys. Lett. 87(23), (2005). 11. Y. Zhao, S. H. Oh, F. Wu, Y. Kawaguchi, S. Tanaka, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, Green Semipolar (20-2-1) InGaN Light-Emitting Diodes with Small Wavelength Shift and Narrow Spectral Linewidth, Appl. Phys. Express 6(6), (2013). 12. C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth, Appl. Phys. Lett. 91(5), (2007). 13. Z. Lin, R. Hao, G. Li, and S. Zhang, Effect of Si doping in barriers of InGaN/GaN multiple quantum wells on the performance of green light-emitting diodes, Jpn. J. Appl. Phys. 54(2), (2015). 14. I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y.-S. Kim, Green lightemitting diodes with self-assembled In-rich InGaN quantum dots, Appl. Phys. Lett. 91(13), (2007). 15. H. Zhao, R. A. Arif, and N. Tansu, Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at nm, IEEE J. Sel. Top. Quantum Electron. 15(4), (2009). 16. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles, Appl. Phys. Lett. 98(5), (2011). 17. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nat. Mater. 3(9), (2004). 18. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, Localized surface plasmon-induced emission enhancement of a green light-emitting diode, Nanotechnology 19(34), (2008). 19. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-gan, Nanotechnology 21(20), (2010). 20. L. Sun, S. Zhang, F. Liu, and M. Han, Influence of localized surface plasmons on carrier dynamics in InGaN/GaN quantum wells covered with Ag nanoparticles for enhanced photoluminescence, Superlattices Microstruct. 86, (2015). 21. C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, Influence of the quantum-confined Stark effect in an quantum well on its coupling with surface plasmon for light emission enhancement, Appl. Phys. Lett. 90(18), (2007). 22. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, Surface-Plasmon- Enhanced Light-Emitting Diodes, Adv. Mater. 20(7), (2008). 23. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Radiative and Nonradiative Recombination Processes in GaN-Based Semiconductors, Phys. Status Solidi, A Appl. Res. 183(1), (2001). 24. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells, Appl. Phys. Lett. 73(24), (1998). 25. Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate, IEEE J. Sel. Top. Quantum Electron. 15(4), (2009). 26. Y. D. Qi, H. Liang, D. Wang, Z. D. Lu, W. Tang, and K. M. Lau, Comparison of blue and green InGaN/GaN multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy, Appl. Phys. Lett. 86(10), (2005). 1. Introduction Recently, tremendous developments of GaN-based light-emitting diodes (LEDs) have been achieved in terms of epitaxial growth, device fabrication, and optoelectronic device physics. However, the quantum efficiency and output power of green LEDs still need to be increased. The main challenge to fabricate highly efficient green LEDs is the fundamental difficulty associated with the growth of InGaN/GaN multiple quantum wells (MQWs) with high indium (In) composition. In practical use, the emission wavelength range of LEDs has been limited because of the severe drop of internal quantum efficiency (IQE) at green/yellow wavelengths, which is referred to as the green gap region [1]. The IQE degradation of green LEDs is mainly caused by the low crystal quality of InGaN layers with high In composition [2] and the strong polarization-induced electric fields in highly strained InGaN-based MQWs [3,4]. Crystal degradation of In-rich MQWs mainly originates from the considerable lattice mismatch and the thermal instability of the InGaN well layer [5,6]. Furthermore, the polarization-induced electric fields cause energy band bending and force the electrons and holes to opposite ends of the quantum well (QW). Consequently, the electron-hole wave function overlap is decreased, resulting in a red-shift of the radiative recombination wavelength and a reduction in the radiative recombination rate. This phenomenon is called the quantum-confined Stark effect (QCSE) [3,7]. The QCSE makes it difficult to stabilize the 2016 OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7489

3 peak wavelength of LEDs under various operating conditions. Moreover, the QCSE increases with the In composition of InGaN, thus leading to relatively poor emission in the green spectral region compared with that in the blue. To overcome these problems, various approaches have been pursued, including the use of a nonpolar or semipolar substrate [8 11], prestrained MQWs [12], screening by doping [13], quantum dot structure [14], and design of QW structure by band gap engineering [15]. Recently, it was reported that the optical output power of green LEDs can be enhanced by localized surface plasmons (LSPs) of metal nanoparticles embedded in the p-gan layer of LEDs [16]. Surface plasmons (SPs) are the collective oscillations of free electrons in metals at the interfaces between metals and dielectrics. Specifically, the collective oscillations of electrons in noble metal nanoparticles embedded in a dielectric matrix are LSPs. A SPenhanced LED was designed to improve both radiative recombination and IQE, because effective energy-transfer from the light emitter to the SP generates a fast relaxation channel, thus increasing the spontaneous emission rate [17 19]. Recently, some groups reported the physical mechanisms for the relationship between SP-coupling and QCSE [20,21]. However, the direct experimental evidences, which can explain the reduction of QCSE by SP-coupling effect in the InGaN-based green LED, have not been reported yet, even though a detailed understanding of the relationship between SP-coupling and QCSE is highly desirable to further improve the performance of green LEDs. In this paper, we present the new results obtained from a comparative study of the optical and electrical properties of InGaN-based green LEDs with and without LSP-coupling effect. To observe the LSP-coupling effect, gold (Au) nanoparticles are embedded in the p-gan layer of green LEDs. Particularly, excitation power-dependent photoluminescence (PL) and injection current-dependent electroluminescence (EL) measurements are used to clearly examine the influence of LSP-coupling on the QCSE of green LEDs. The effect of LSPcoupling on the IQE and optical properties of MQWs are also studied by temperaturedependent PL measurement. 2. Experimental details Figure 1(a) shows a schematic diagram of the LSP-enhanced green LED with Au nanoparticles embedded in the p-gan layer. The LED exhibiting green emission at 540 nm was grown on a c-plane (0001) sapphire substrate by metal-organic chemical vapor deposition (MOCVD). After the growth of a 25 nm-thick GaN nucleation layer at 550 C, a 2 μm-thick undoped GaN layer and a 2 μm-thick n-gan layer were grown at 1030 C. Then, five periods MQWs consisting of undoped InGaN wells (3 nm) and GaN barriers (12 nm) were grown at 730 C, followed by a 20-nm-thick p-gan spacer layer at 980 C. To deposit the Au nanoparticles on the p-gan spacer layer, the samples were taken out of the MOCVD growth chamber and a 0.2 nm-thick Au layer was deposited on the p-gan spacer-layer by electronbeam evaporation. Figure 1(b) shows an atomic force microscopy (AFM) image of the Au nanoparticles deposited on the p-gan spacer-layer after thermal annealing. The as-deposited Au layer with a smooth surface is transformed into nanoparticles and their size is increased by thermal annealing via the Ostwald ripening process after thermal annealing [16,22]. Annealing was performed at 850 C for 3 min in the MOCVD chamber prior to the regrowth of a p-gan capping layer. The average diameter and height of the Au nanoparticles on the p- GaN spacer-layer were 65 ± 40 and 15 ± 5 nm, respectively. Even though the size distribution was different from the previous result [16], the PL enhancement spectra were very similar presumably due to the broadening of extinction spectra because of the large size distribution of Au nanoparticles on the p-gan surface. After thermal annealing of the Au layer in the MOCVD chamber, a 30 nm-thick p-gan capping layer was deposited on the Au nanoparticles at 850 C for 1.5 min and a 150 nm-thick p-gan layer was grown on the p-gan capping layer at 980 C. To fabricate the LEDs, the p-gan layer was etched by an inductively coupled plasma etching process using Cl2/CH4/H2/Ar gases until the n-gan layer was exposed for n- type ohmic contact formation. Next, LEDs with a dimensions of μm2 were fabricated using indium tin oxide with a thickness of 150 nm as a transparent current 2016 OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7490

4 spreading layer and Cr/Au as the n- and p-pad electrodes by electron-beam evaporation. The fabrication of LSP-enhanced LEDs with metal nanoparticles was reported in detail elsewhere [16]. Fig. 1. (a) Schematic diagram of the structure of LSP-enhanced green LEDs with Au nanoparticles embedded in the p-gan layer. (b) AFM image of Au nanoparticles deposited on a p-gan spacer-layer after thermal annealing. 3. Results and discussion Figure 2 presents the room-temperature PL spectra of InGaN/GaN MQWs with and without Au nanoparticles in the p-gan layer. The PL intensity of the MQWs with Au nanoparticles is much stronger than that of the MQWs without Au nanoparticles. The integrated PL intensity of the MQWs with Au nanoparticles is about three times higher than that of the MQWs without Au nanoparticles. This remarkable enhancement of PL intensity is believed to be caused by the fast spontaneous recombination rate of the excitons in the MQWs induced by QW-LSP coupling [17 19]. Furthermore, the blue-shift of the PL peak of MQWs with Au nanoparticles in Fig. 2 also indicates the existence of a QW-LSP coupling process. The PL intensity of MQWs with Au nanoparticles is dominantly increased at 517 nm as shown in Fig. 2 because of the LSP mode in the Au nanoparticles at 517 nm [16]. Therefore, the enhanced intensity and observed blue-shift of the PL spectra are attributed to the QW-LSP coupling. To further confirm that the improvement in the IQE of the InGaN/GaN MQWs with Au nanoparticles in the p-gan layer is caused by an increase in the spontaneous recombination rate through a QW-LSP coupling process, temperature-dependent PL measurements were conducted over the temperature range from 10 to 300 K. The inset of Fig. 2 shows Arrhenius plots of the integrated PL intensities of MQWs with and without Au nanoparticles. The IQE of the MQWs can be estimated by comparing the integrated PL intensities measured at two different temperatures by assuming that the IQE is 100% at a low temperature of 10 K [23]. Here, the IQE was obtained by taking the ratio of the integrated PL intensity at 10 K and 300 K. The IQE of the MQWs with and without Au nanoparticles is 23.1% and 11.7%, respectively. These observed enhancements of PL intensity and IQE in the LEDs with Au nanoparticles are ascribed to resonant coupling between excitons in the MQWs and LSPs of the Au nanoparticles. Because of the Purcell effect resulting from the increased photon density of states near the SP frequency, the QW-LSP coupling rate is very fast, and the resulting new recombination path can increase the spontaneous emission rate [17] OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7491

5 Fig. 2. Room-temperature PL spectra of InGaN/GaN MQWs with and without Au nanoparticles. The inset shows the temperature-dependent integrated PL intensity of the MQWs with and without Au nanoparticles. To investigate the effect of coupling with LSP on the QCSE in MQWs, excitation powerdependent PL measurements were performed. Figure 3 shows the excitation power-dependent PL spectra of InGaN/GaN MQWs with and without Au nanoparticles in the p-gan layer measured at room-temperature. The MQWs were excited at 325 nm by a continuous He-Cd laser and the excitation power was varied from 2.5 to 25 mw using neutral density filters. The PL peak positions of both LEDs with and without Au nanoparticles are blue-shifted with increasing excitation power, as shown in Figs. 3(a) and 3(b). This observation can be attributed to the compensation of the polarization-induced electric field by the increased free carrier screening effect with increasing carrier density [24,25]. In particular, the PL peak energy of the MQWs without Au nanoparticles exhibits a large blue-shift of 43.4 mev with increasing excitation power. Conversely, the PL peak energy of the MQWs with Au nanoparticles exhibits a blue-shift of only 9.5 mev in the same range of excitation power, indicating that the QCSE in MQWs with Au nanoparticles is decreased by LSP-coupling. These results clearly indicate that MQWs with Au nanoparticles have a relatively weaker polarization-induced electric field in MQWs compared with that in conventional MQWs without Au nanoparticles because of the compensation of the polarization-induced electric field with LSP-enhanced local fields by Au nanoparticles and this led to the suppression of the QCSE in MQWs [20] OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7492

6 Fig. 3. Excitation power-dependent PL spectra of MQWs (a) without and (b) with Au nanoparticles. To better understand the effect of LSP-coupling on the QCSE, the EL from two green LEDs was measured. Figure 4 displays EL spectra of green LEDs with and without Au nanoparticles at injection currents from 10 to 150 ma. As shown in Fig. 4(a), the EL intensities of the green LED with Au nanoparticles are much higher than those of the LED without Au nanoparticles. Moreover, the EL emission peaks of both green LEDs are blueshifted with increasing injection current because of a screening effect of the polarizationinduced electric field by carriers and the band-filling effect of the localized energy states of potential fluctuation in MQWs [26]. In particular, the current-induced blue-shift of the green LED with Au nanoparticles is much smaller than that of the conventional green LED without Au nanoparticles. As illustrated in Fig. 4(b), the EL emission peak of the conventional green LED without Au nanoparticles is blue-shifted by 109 mev from ev at 10 ma to OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7493

7 ev at 150 ma. The EL emission peak of the LSP-enhanced green LED with Au nanoparticles exhibits a blue-shift of 70 mev in the same range of injection current. These results are similar to those obtained for nonpolar and semipolar LEDs [9,10], indicating that the decrease in the blue-shift of EL emission energy in the LED with Au nanoparticles can be attributed to the compensation of the polarization-induced electric fields in MQWs with the LSP-enhanced local fields of metal nanoparticles [20]. Fig. 4. (a) EL spectra of LSP-enhanced green LEDs with and without Au nanoparticles measured with increasing injection current at room-temperature. (b) EL emission wavelength of LSP-enhanced green LEDs with and without Au nanoparticles as a function of injection current. 4. Conclusion In conclusion, we analyzed the contribution of LSP-coupling to the QCSE in LEDs by excitation power-dependent PL and current-dependent EL measurements. The blue-shifts of PL and EL of the green LED with Au nanoparticles were much smaller than those of the conventional green LED without Au nanoparticles due to the compensation of the polarization-induced electric field with the LSP-enhanced local fields of Au nanoparticles. These results indicate that such an LSP-coupling effect contributes substantially to the enhancement of optical output power and decreases the blue-shift of EL peaks because of the reduced QCSE in MQWs. This study shows that Au nanoparticles can significantly improve the optical properties of InGaN-based LEDs with green gap emission wavelength. Acknowledgments This work was supported by the Gwangju Institute of Science and Technology (GIST) Project through a grant provided by GIST in 2016 and by the Industrial Strategic technology development program (Project No ) funded by the Ministry of Trade, Industry, and Energy (MOTIE and KEIT) OSA 4 Apr 2016 Vol. 24, No. 7 DOI: /OE OPTICS EXPRESS 7494

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells R. J. Choi, H. W. Shim 2, E. K. Suh 2, H. J. Lee 2, and Y. B. Hahn,2, *. School of Chemical Engineering

More information

Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons

Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons Dongsheng Li, * Feng Wang, Changrui Ren, and Deren Yang State Key Laboratory of Silicon Materials

More information

Correspondence should be addressed to C. K. Wang;

Correspondence should be addressed to C. K. Wang; International Photoenergy Volume 2015, Article ID 135321, 6 pages http://dx.doi.org/10.1155/2015/135321 Research Article Investigating the Effect of Piezoelectric Polarization on GaN-Based LEDs with Different

More information

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b) PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, 1-501 Shiogamaguchi,

More information

Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes

Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes Yuji Zhao, 1,* Qimin Yan, 2 Daniel Feezell, 2 Kenji Fujito, 3 Chris G. Van de Walle, 2 James S. Speck,

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Simulation of GaN-based Light-Emitting Devices

Simulation of GaN-based Light-Emitting Devices Simulation of GaN-based Light-Emitting Devices Joachim Piprek Solid-State Lighting and Display Center Materials Department, College of Engineering University of California, Santa Barbara, CA 93106 piprek@ieee.org

More information

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 6, JUNE 2001 1065 Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang Abstract

More information

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Mater. Res. Soc. Symp. Proc. Vol. 831 005 Materials Research Society E3.38.1 Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Y. Xia 1,, E. Williams

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

Effects of Si doping on optical properties of GaN epitaxial layers

Effects of Si doping on optical properties of GaN epitaxial layers (123) 31 Effects of Si doping on optical properties of GaN epitaxial layers Chiharu SASAKI (Department of Electrical and Electronic Engineering) Tatsuya YAMASHITA (Department of Electrical and Electronic

More information

Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer pubs.acs.org/journal/apchd5 Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer Zhen Gang Ju, Wei Liu, Zi-Hui Zhang, Swee Tiam

More information

InGaN/GaN multi-quantum dot light-emitting diodes

InGaN/GaN multi-quantum dot light-emitting diodes InGaN/GaN multi-quantum dot light-emitting diodes * L. W. Ji 1 ( ), C. C. 1 ( ), Diao and Y. 2 ( ) K. Su 1 Department of Electronic Engineering, Kao Yuan Institute of Technology, Lu-Chu 821, Taiwan 2 Institute

More information

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at 46-5 nm ongping Zhao, Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu ±, Department of Electrical

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research M R S Internet Journal of Nitride Semiconductor Research Volume 2, Article 25 Properties of the Biexciton and the Electron-Hole-Plasma in Highly Excited GaN J.-Chr. Holst, L. Eckey, A. Hoffmann, I. Broser

More information

Progress Report to AOARD

Progress Report to AOARD Progress Report to AOARD C. C. (Chih-Chung) Yang The Graduate Institute of Electro-Optical Engineering National Taiwan University No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (phone) 886-2-23657624

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Investigation of strain effect in InGaN/GaN multi-quantum wells

Investigation of strain effect in InGaN/GaN multi-quantum wells Indian Journal of Pure & Applied Physics Vol. 51, January 2013, pp. 39-43 Investigation of strain effect in In/ multi-quantum wells Ya-Fen Wu Department of Electronic Engineering, Ming Chi University of

More information

Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer

Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer Bing-Cheng Lin, Kuo-Ju Chen, Chao-Hsun Wang, Ching-Hsueh Chiu, 2 Yu-Pin Lan,

More information

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani Typeset using jjaptex.sty Piezoelectric Polarization in GaInN/GaN Heterostructures and Some Consequences for Device Design Christian WETZEL, Hiroshi AMANO 1 and Isamu AKASAKI 1 High Tech Research

More information

Confocal microphotoluminescence of InGaN-based light-emitting diodes

Confocal microphotoluminescence of InGaN-based light-emitting diodes JOURNAL OF APPLIED PHYSICS 98, 064503 2005 Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto, a Akio Kaneta, Yoichi Kawakami, and Shigeo Fujita Department of Electronic

More information

Electron leakage effects on GaN-based light-emitting diodes

Electron leakage effects on GaN-based light-emitting diodes Opt Quant Electron (2010) 42:89 95 DOI 10.1007/s11082-011-9437-z Electron leakage effects on GaN-based light-emitting diodes Joachim Piprek Simon Li Received: 22 September 2010 / Accepted: 9 January 2011

More information

A PN-type quantum barrier for InGaN/GaN light emitting diodes

A PN-type quantum barrier for InGaN/GaN light emitting diodes A PN-type quantum barrier for InGaN/GaN light emitting diodes Zi-Hui Zhang, 1 Swee Tiam Tan, 1 Yun Ji, 1 Wei Liu, 1 Zhengang Ju, 1 Zabu Kyaw, 1 Xiao Wei Sun 1,2,5 and Hilmi Volkan Demir 1,3,4,* 1 LUMINOUS!

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Author(s) Citation Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum

More information

Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping Zhao *

Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping Zhao * Analysis of TM mode light extraction efficiency enhancement for deep ultraviolet AlGaN quantum wells light-emitting diodes with III-nitride micro-domes Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping

More information

Electrically driven green, olivine, and amber color nanopyramid light emitting diodes

Electrically driven green, olivine, and amber color nanopyramid light emitting diodes Electrically driven green, olivine, and amber color nanopyramid light emitting diodes Shih-Pang Chang, Jet-Rung Chang, 3 Kuok-Pan Sou, Mei-Chun Liu, Yuh-Jen Cheng,,,* Hao-Chung Kuo,, and Chun-Yen Chang

More information

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki PIEZOELECTRIC LEVEL SPLITTING IN GaInN/GaN QUANTUM WELLS C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University,

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting diodes S.-H. Park 1, S.-W. Ryu 1, J.-J. Kim 1, W.-P. Hong 1, H.-M Kim 1, J. Park 2, and Y.-T. Lee 3 1 Department

More information

Development of Dual MQW Region LEDs for General Illumination

Development of Dual MQW Region LEDs for General Illumination Mater. Res. Soc. Symp. Proc. Vol. 831 2005 Materials Research Society E10.3.1 Development of Dual MQW Region LEDs for General Illumination David Brackin Nicol 1, Ali Asghar 1, Martin Strassburg 1,3, My

More information

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Mater. Res. Soc. Symp. Proc. Vol. 955 2007 Materials Research Society 0955-I15-12 Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Yufeng Li 1,2, Wei Zhao 1,2, Yong Xia

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11314 TITLE: Luminescence of the InGaN/GaN Blue Light-Emitting Diodes DISTRIBUTION: Approved for public release, distribution

More information

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting T. Detchprohm and C. Wetzel Abstract In metal organic vapor phase

More information

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Christian Wetzel 1,2,* and Theeradetch Detchprohm 1,2 1 Future Chips Constellation, Rensselaer Polytechnic Institute,

More information

Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells

Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells Oliver Marquardt, Tilmann Hickel, Jörg Neugebauer, and Chris G. Van de Walle Citation: Applied Physics Letters 103,

More information

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Mater. Res. Soc. Symp. Proc. Vol. 955 27 Materials Research Society 955-I15-45 Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Yong Xia 1,2, Theeradetch Detchprohm

More information

Abnormal PL spectrum in InGaN MQW surface emitting cavity

Abnormal PL spectrum in InGaN MQW surface emitting cavity Abnormal PL spectrum in InGaN MQW surface emitting cavity J. T. Chu a, Y.-J. Cheng b, H. C. Kuo a, T. C. Lu a, and S. C. Wang a a Department of Photonics & Institute of Electro-Optical Engineering, National

More information

Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode

Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode Sidra Jabeen 1, Shahzad Hussain 2, and Sana Zainab 1 1 CEME, National University of Sciences and Technology (NUST),

More information

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES Christian Wetzel, Tetsuya Takeuchi, Hiroshi Amano, and Isamu Akasaki High Tech Research Center and Department of Electrical

More information

Nonradiative recombination critical in choosing quantum well number for InGaN/GaN light-emitting diodes

Nonradiative recombination critical in choosing quantum well number for InGaN/GaN light-emitting diodes Nonradiative recombination critical in choosing quantum well number for InGaN/GaN light-emitting diodes Yi Ping Zhang, 1 Zi-Hui Zhang, 1 Wei Liu, 1 Swee Tiam Tan, 1 Zhen Gang Ju, 1 Xue Liang Zhang, 1 Yun

More information

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and Mat. Res. Soc. Symp. Proc. Vol. 680E 2001 Materials Research Society Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes B. Mishori, Martin Muñoz, L. Mourokh,

More information

Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet Light-Emitting Diodes at Different Temperatures

Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet Light-Emitting Diodes at Different Temperatures Tan et al. Nanoscale Research Letters (2018) 13:334 https://doi.org/10.1186/s11671-018-2756-2 NANO EXPRESS Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet

More information

Potential and Carrier Distribution in AlGaN Superlattice

Potential and Carrier Distribution in AlGaN Superlattice Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Potential and Carrier Distribution in AlGaN Superlattice K.P. Korona,

More information

Effects of V/III ratio on the growth of a-plane GaN films

Effects of V/III ratio on the growth of a-plane GaN films Effects of V/III ratio on the growth of a-plane GaN films Xie Zi-Li( ), Li Yi( ), Liu Bin( ), Zhang Rong( ), Xiu Xiang-Qian( ), Chen Peng( ), and Zheng You-Liao( ) Key Laboratory of Advanced Photonic and

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Effects of Giant Optical Anisotropy in R-plane GaN/AlGaN Quantum Wells by Valence Band Mixing

Effects of Giant Optical Anisotropy in R-plane GaN/AlGaN Quantum Wells by Valence Band Mixing PIERS NLINE, VL. 2, N. 6, 26 562 Effects of Giant ptical Anisotropy in Rplane GaN/AlGaN Quantum Wells by Valence Band Mixing ChunNan Chen, KaoFeng Yarn, and WinJet Luo Department of Electronic Engineering,

More information

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY Naoya Miyashita 1, Nazmul Ahsan 1, and Yoshitaka Okada 1,2 1. Research Center

More information

Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1

Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1 Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, T. Detchprohm, T. Takeuchi, ;2 H. Amano, ;2 and I. Akasaki ;2 High Tech Research Center, Meijo University,

More information

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Shih-Pang Chang 1, Kuok-Pan Sou 1, Jet-Rung Chang 2, Yuh-Jen Cheng 1,3, Yuh-Jing Li 2, Yi-Chen Chen 1, Hao-Chung Kuo 1, Ken-Yuh

More information

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates solidi status physica pss c current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates M. Zervos1, C. Xenogianni1,2, G. Deligeorgis1, M. Androulidaki1,

More information

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Department of Electrical and Electric Engineering, Meijo University, 1-501

More information

June Key Lee. Department of Materials Science and Engineering, Chonnam National University, Gwangju (Received 26 August 2008)

June Key Lee. Department of Materials Science and Engineering, Chonnam National University, Gwangju (Received 26 August 2008) Journal of the Korean Physical Society, Vol. 55, No. 3, September 2009, pp. 1140 1144 Surface and Electrical Properties of Inductively-coupled Plasma-etched N-face n-gan and a Method of Reducing the Ohmic

More information

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs PUBLICATION V Journal of Crystal Growth 248 (2003) 339 342 Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs T. Hakkarainen*, J. Toivonen, M. Sopanen, H. Lipsanen Optoelectronics

More information

T he group III-nitrides, as representative materials for light-emitting diodes (LEDs), has attracted a wide range

T he group III-nitrides, as representative materials for light-emitting diodes (LEDs), has attracted a wide range OPEN SUBJECT AREAS: INORGANIC LEDS STRUCTURAL PROPERTIES Received 16 April 2014 Accepted 11 June 2014 Published 1 July 2014 Correspondence and requests for materials should be addressed to Y.H.C. (yhc@kaist.ac.

More information

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures C. Wetzel 1, T. Takeuchi 2, H. Amano 2, and I. Akasaki 2 1 High Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku,

More information

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy

Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy Room-temperature continuous-wave operation of GaInNAs/GaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy Z. Z. Sun 1, S. F. Yoon 1,2, K. C. Yew 1, and B. X. Bo 1 1 School

More information

Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes

Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes JOURNAL OF DISPLAY TECHNOLOGY, VOL. 9, NO. 4, APRIL 2013 199 Analysis of Interdiffused InGaN Quantum Wells for Visible Light-Emitting Diodes Hongping Zhao, Xuechen Jiao, and Nelson Tansu Abstract Interdiffused

More information

Effects of current crowding on light extraction efficiency of conventional GaN-based lightemitting

Effects of current crowding on light extraction efficiency of conventional GaN-based lightemitting Effects of current crowding on light extraction efficiency of conventional GaN-based lightemitting diodes Bin Cao, 1 Shuiming Li, 1 Run Hu, 2 Shengjun Zhou, 3 Yi Sun, 1 Zhiying Gan, 4 and Sheng Liu 4*

More information

Ultrafast carrier dynamics in InGaN MQW laser diode

Ultrafast carrier dynamics in InGaN MQW laser diode Invited Paper Ultrafast carrier dynamics in InGaN MQW laser diode Kian-Giap Gan* a, Chi-Kuang Sun b, John E. Bowers a, and Steven P. DenBaars a a Department of Electrical and Computer Engineering, University

More information

Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays

Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays John Henson, Emmanouil Dimakis, Jeff DiMaria, Rui Li, Salvatore Minissale,

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Effects of Pressure and NH 3 Flow on the Two-Dimensional Electron Mobility in AlGaN/GaN Heterostructures

Effects of Pressure and NH 3 Flow on the Two-Dimensional Electron Mobility in AlGaN/GaN Heterostructures Journal of the Korean Physical Society, Vol. 42, No. 5, May 2003, pp. 691 695 Effects of Pressure and NH 3 Flow on the Two-Dimensional Electron Mobility in AlGaN/GaN Heterostructures Dong-Joon Kim Optical

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

Ag-mesh-combined graphene for an indium-free current spreading layer in near-ultraviolet light-emitting diodes

Ag-mesh-combined graphene for an indium-free current spreading layer in near-ultraviolet light-emitting diodes Ag-mesh-combined graphene for an indium-free current spreading layer in near-ultraviolet light-emitting diodes Journal: RSC Advances Manuscript ID: RA-ART-06-2015-012642.R1 Article Type: Paper Date Submitted

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

SOLID-STATE lighting thrives on the efficient energy conversion

SOLID-STATE lighting thrives on the efficient energy conversion IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, OCTOBER 2010 2639 Boosting Green GaInN/GaN Light-Emitting Diode Performance by a GaInN Underlying Layer Yong Xia, Wenting Hou, Liang Zhao, Mingwei

More information

Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy

Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy Journal of Crystal Growth 272 (24) 333 34 www.elsevier.com/locate/jcrysgro Dual wavelength InGaN/GaN multi-quantum well LEDs grown by metalorganic vapor phase epitaxy Y.D. Qi, H. Liang, W. Tang, Z.D. Lu,

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD

Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD MRS Advances 2017 Materials Research Society DOI: 10.1557/adv.2017. 27 Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD V. X. Ho, 1 S. P. Dail, 1 T. V. Dao, 1 H. X.

More information

TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS. I. Antohi, S. Rusu, and V. Z. Tronciu

TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS. I. Antohi, S. Rusu, and V. Z. Tronciu TANDEM BLUE-VIOLET QUANTUM WELL InGaN LASERS WITH HIGH-FREQUENCY SELF-PULSATIONS I. Antohi, S. Rusu, and V. Z. Tronciu Department of Physics, Technical University of Moldova, Chisinau, MD2004 Republic

More information

Performance of High-Power AlInGaN Light Emitting Diodes

Performance of High-Power AlInGaN Light Emitting Diodes phys. stat. sol. (a) 188, No. 1, 15 21 (2001) Performance of High-Power AlInGaN Light Emitting Diodes A.Y. Kim, W. Götz 1 ), D.A. Steigerwald, J.J. Wierer, N.F. Gardner, J. Sun, S.A. Stockman, P.S. Martin,

More information

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance

Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance Efficient light emission from LEDs, OLEDs, and nanolasers via surface-plasmon resonance Seok Ho Song, Hanyang University, http://optics.anyang.ac.kr/~shsong silver grating Key notes 1. How does the surface

More information

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title:

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title: Final Report for Army Research Office (ARO) and Dr. John Zavada Report title: GaN light-emitting triodes (LETs) for high-efficiency hole injection and for assessment of the physical origin of the efficiency

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Electrically tunable electroluminescence from SiN x -based light-emitting devices

Electrically tunable electroluminescence from SiN x -based light-emitting devices Electrically tunable electroluminescence from SiN x -based light-emitting devices Dongsheng Li, * Feng Wang, Deren Yang, and Duanlin Que State Key Laboratory of Silicon Materials and Department of Materials

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles Meg Mahat and Arup Neogi Department of Physics, University of North Texas, Denton, Tx, 76203 ABSTRACT

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 4, JULY/AUGUST

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 4, JULY/AUGUST IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 4, JULY/AUGUST 2009 1073 Novel Epitaxial Nanostructures for the Improvement of InGaN LEDs Efficiency Taeil Jung, Student Member, IEEE,

More information

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films A. Dixit 1,, J. S. Thakur 2, V. M. Naik 3, R. Naik 2 1 Center of Excellence in Energy & ICT, Indian Institute of Technology

More information

Optimisation of 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates

Optimisation of 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates Journal of Physics: Conference Series PAPER OPEN ACCESS Optimisation of 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates To cite this article: Mingchu Tang et al 215 J. Phys.:

More information

Use of a patterned current blocking layer to enhance the light output power of InGaNbased light-emitting diodes

Use of a patterned current blocking layer to enhance the light output power of InGaNbased light-emitting diodes Vol. 25, No. 15 24 Jul 2017 OPTICS EXPRESS 17556 Use of a patterned current blocking layer to enhance the light output power of InGaNbased light-emitting diodes JAE-SEONG PARK,1 YOUNG HOON SUNG,1 JIN-YOUNG

More information

D eep-ultraviolet light-emitting diodes (deep-uv LEDs) with emission wavelength ranging from 200 nm to

D eep-ultraviolet light-emitting diodes (deep-uv LEDs) with emission wavelength ranging from 200 nm to SUBJECT AREAS: APPLIED PHYSICS OPTICAL MATERIALS OPTICS AND PHOTONICS OPTICAL PHYSICS Received 17 August 2012 Accepted 10 October 2012 Published 12 November 2012 Correspondence and requests for materials

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes

High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Bull. Mater. Sci., Vol. 11, No. 4, December 1988, pp. 291 295. Printed in India. High characteristic temperature of 1.3 #m crescent buried heterostructure laser diodes Y K SU and T L CHEN Institute of

More information

GaN light-emitting triodes for high-efficiency hole injection and light emission

GaN light-emitting triodes for high-efficiency hole injection and light emission GaN light-emitting triodes for high-efficiency hole injection and light emission Jong Kyu Kim a,*, J.-Q. Xi a, Hong Luo a, Jaehee Cho b, Cheolsoo Sone b, Yongjo Park b, Thomas Gessmann a, J. M. Zavada

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Transparent conduction for nitride LEDs

Transparent conduction for nitride LEDs 116Technology focus: Nitride LEDs Transparent conduction for nitride LEDs Mike Cooke reports recent developments in transparent conducting materials. Transparent materials that conduct electricity are

More information

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance

A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Best Student Paper Award A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance Wei Wu a, Alireza Bonakdar, Ryan Gelfand, and Hooman Mohseni Bio-inspired Sensors and

More information

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Physics of low Dimensions, FFF042 Josefin Voigt & Stefano Scaramuzza 10.12.2013, Lund University 1 Introduction In this project truncated

More information

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures JOURNAL OF APPLIED PHYSICS 97, 024511 (2005) Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures S. L. Lu, L. Schrottke, R. Hey, H. Kostial,

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Photoluminescence characterization of quantum dot laser epitaxy

Photoluminescence characterization of quantum dot laser epitaxy Photoluminescence characterization of quantum dot laser epitaxy Y. Li *, Y. C. Xin, H. Su and L. F. Lester Center for High Technology Materials, University of New Mexico 1313 Goddard SE, Albuquerque, NM

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

Nanocrystalline Si formation inside SiN x nanostructures usingionized N 2 gas bombardment

Nanocrystalline Si formation inside SiN x nanostructures usingionized N 2 gas bombardment 연구논문 한국진공학회지제 16 권 6 호, 2007 년 11 월, pp.474~478 Nanocrystalline Si formation inside SiN x nanostructures usingionized N 2 gas bombardment Min-Cherl Jung 1, Young Ju Park 2, Hyun-Joon Shin 1, Jun Seok Byun

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES

POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES Vol. 98 (2000) ACTA PHYSICA POLONICA A No. 3 Proceedings of the XXIX International School of Semiconducting Compounds, Jaszowiec 2000 POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES O. AMBACHER

More information