MA 138: Calculus II for the Life Sciences

Size: px
Start display at page:

Download "MA 138: Calculus II for the Life Sciences"

Transcription

1 MA 138: Calculus II for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky. Spring 2016 David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

2 Let s consider N(t) = prey density at time t. P(t) = predator density at time t. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

3 Let s consider N(t) = prey density at time t. P(t) = predator density at time t. and the following predator-prey model = rn(t) an(t)p(t) = abp(t)n(t) (t) where r, a, b, and d are positive constants. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

4 Assume that N(t) denotes the density of an insect species at time t and P(t) denotes the density of its predator at time t. The insect species is an agricultural pest, and its predator is use as a biological control agent. Their dynamics are given by the system of differential equations =5N 3PN =2PN P 1 Explain why = 5N describes the dynamics of the insect in the absence of the predator. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

5 Assume that N(t) denotes the density of an insect species at time t and P(t) denotes the density of its predator at time t. The insect species is an agricultural pest, and its predator is use as a biological control agent. Their dynamics are given by the system of differential equations =5N 3PN =2PN P 1 Explain why = 5N describes the dynamics of the insect in the absence of the predator. Solve = 5N and describe what happens to the insect population in the absence of the predator. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

6 Assume that N(t) denotes the density of an insect species at time t and P(t) denotes the density of its predator at time t. The insect species is an agricultural pest, and its predator is use as a biological control agent. Their dynamics are given by the system of differential equations =5N 3PN =2PN P 1 Explain why = 5N describes the dynamics of the insect in the absence of the predator. Solve = 5N and describe what happens to the insect population in the absence of the predator. 2 Explain why introducing the insect predator into the system can help to control the density of the insect. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

7 Solution 1 The solution is N(t) = N(0)e 5t. Thus in the absence of predator, the insect species grows exponentially fast. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

8 Solution 1 The solution is N(t) = N(0)e 5t. Thus in the absence of predator, the insect species grows exponentially fast. 2 If P(t) > 0, then N(t) stays bounded David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

9 Assume that N(t) denotes prey density at time t and P(t) denotes predator density at time t. Their dynamics are given by the system of differential equations =4N 2PN =PN 3P Assume that initially N(0) = 3 and P(0) = 2. 1 Identify all equilibria of the system. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

10 Assume that N(t) denotes prey density at time t and P(t) denotes predator density at time t. Their dynamics are given by the system of differential equations =4N 2PN =PN 3P Assume that initially N(0) = 3 and P(0) = 2. 1 Identify all equilibria of the system. 2 If you followed this predator-prey community over time, what would you observe? David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

11 Assume that N(t) denotes prey density at time t and P(t) denotes predator density at time t. Their dynamics are given by the system of differential equations =4N 2PN =PN 3P Assume that initially N(0) = 3 and P(0) = 2. 1 Identify all equilibria of the system. 2 If you followed this predator-prey community over time, what would you observe? 3 Suppose that bad weather kills 90% of the prey population and 67% of the predator population. If you continue to observe this predator-prey community, what would you expect to see? David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

12 Solution 1 The system is in equilibrium at (3, 2). David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

13 Solution The system is in equilibrium at (3, 2) The cycles will increase in magnitude. (3.0,2.0) David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

14 An unrealistic feature of the Lotka-Volterra model is that the prey exhibits unlimited growth in the absence of the predator. To remedy this shortcoming, consider the following model instead, ( 1 N 10 =3N =PN 4P ) 2PN 1 Investigate the long-term behavior in the absence of the predator. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

15 An unrealistic feature of the Lotka-Volterra model is that the prey exhibits unlimited growth in the absence of the predator. To remedy this shortcoming, consider the following model instead, ( 1 N 10 =3N =PN 4P ) 2PN 1 Investigate the long-term behavior in the absence of the predator. 2 Find all equilibria of the system and use the eigenvalue approach to determine their stability. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

16 Solution 2.0 (2.0,2.0) 1 The prey evolves according to logistic growth. 2 The equilibrium points are (0, 0) and (4, 9/10) (0.0,0.0) David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

17 Impact of the carrying capacity on the dynamics An unrealistic feature of the Lotka-Volterra model is that the prey exhibits unlimited growth in the absence of the predator. To remedy this shortcoming, consider the following model instead, ( =N 1 N ) 4PN K =PN 5P 1 Draw the zero isoclines of the system for K = 10 and K = 3. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

18 Impact of the carrying capacity on the dynamics An unrealistic feature of the Lotka-Volterra model is that the prey exhibits unlimited growth in the absence of the predator. To remedy this shortcoming, consider the following model instead, ( =N 1 N ) 4PN K =PN 5P 1 Draw the zero isoclines of the system for K = 10 and K = 3. 2 When K = 10, the zero isoclines intersect, indicating the existence of a nontrivial equilibrium. Analyze the stability of this nontrivial equilibrium. David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

19 Impact of the carrying capacity on the dynamics An unrealistic feature of the Lotka-Volterra model is that the prey exhibits unlimited growth in the absence of the predator. To remedy this shortcoming, consider the following model instead, ( =N 1 N ) 4PN K =PN 5P 1 Draw the zero isoclines of the system for K = 10 and K = 3. 2 When K = 10, the zero isoclines intersect, indicating the existence of a nontrivial equilibrium. Analyze the stability of this nontrivial equilibrium. 3 Is there a minimum carrying capacity required in order to have a nontrivial equilibrium? David Murrugarra (University of Kentucky) MA 138: Section Spring / 9

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, 2016 Exam Scores Question Score Total 1 10 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

dv dt Predator-Prey Models

dv dt Predator-Prey Models Predator-Prey Models This is a diverse area that includes general models of consumption: Granivores eating seeds Parasitoids Parasite-host interactions Lotka-Voterra model prey and predator: V = victim

More information

Spring /30/2013

Spring /30/2013 MA 138 - Calculus 2 for the Life Sciences FINAL EXAM Spring 2013 4/30/2013 Name: Sect. #: Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes

More information

Predator-Prey Population Models

Predator-Prey Population Models 21 Predator-Prey Population Models Tools Used in Lab 21 Hudson Bay Data (Hare- Lynx) Lotka-Volterra Lotka-Volterra with Harvest How can we model the interaction between a species of predators and their

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Predation. Vine snake eating a young iguana, Panama. Vertebrate predators: lions and jaguars

Predation. Vine snake eating a young iguana, Panama. Vertebrate predators: lions and jaguars Predation Vine snake eating a young iguana, Panama Vertebrate predators: lions and jaguars 1 Most predators are insects Parasitoids lay eggs in their hosts, and the larvae consume the host from the inside,

More information

A&S 320: Mathematical Modeling in Biology

A&S 320: Mathematical Modeling in Biology A&S 320: Mathematical Modeling in Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.ms.uky.edu/~dmu228/as320/ Spring 2016 David Murrugarra (University of Kentucky) A&S

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1

x 2 F 1 = 0 K 2 v 2 E 1 E 2 F 2 = 0 v 1 K 1 x 1 ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 20, Number 4, Fall 1990 ON THE STABILITY OF ONE-PREDATOR TWO-PREY SYSTEMS M. FARKAS 1. Introduction. The MacArthur-Rosenzweig graphical criterion" of stability

More information

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM

ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 6, Number 1, Winter 1997 ROLE OF TIME-DELAY IN AN ECOTOXICOLOGICAL PROBLEM J. CHATTOPADHYAY, E. BERETTA AND F. SOLIMANO ABSTRACT. The present paper deals with

More information

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool Modeling the Immune System W9 Ordinary Differential Equations as Macroscopic Modeling Tool 1 Lecture Notes for ODE Models We use the lecture notes Theoretical Fysiology 2006 by Rob de Boer, U. Utrecht

More information

Continuous time population models

Continuous time population models Continuous time population models Jaap van der Meer jaap.van.der.meer@nioz.nl Abstract Many simple theoretical population models in continuous time relate the rate of change of the size of two populations

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale BIOS 3010: ECOLOGY Dr Stephen Malcolm Laboratory 6: Lotka-Volterra, the logistic equation & Isle Royale This is a computer-based activity using Populus software (P), followed by EcoBeaker analyses of moose

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

BIO S380T Page 1 Summer 2005: Exam 2

BIO S380T Page 1 Summer 2005: Exam 2 BIO S380T Page 1 Part I: Definitions. [5 points for each term] For each term, provide a brief definition that also indicates why the term is important in ecology or evolutionary biology. Where I ve provided

More information

First Order Systems of Linear Equations. or ODEs of Arbitrary Order

First Order Systems of Linear Equations. or ODEs of Arbitrary Order First Order Systems of Linear Equations or ODEs of Arbitrary Order Systems of Equations Relate Quantities Examples Predator-Prey Relationships r 0 = r (100 f) f 0 = f (r 50) (Lokta-Volterra Model) Systems

More information

Applications of eigenvalues/eigenvectors

Applications of eigenvalues/eigenvectors Example 1. Applications of eigenvalues/eigenvectors Predator-Prey models. Foxes and Rabbits share a large forest, with the foxes eating rabbits and rabbits eating the abundant vegetation. The sizes of

More information

3.5 Competition Models: Principle of Competitive Exclusion

3.5 Competition Models: Principle of Competitive Exclusion 94 3. Models for Interacting Populations different dimensional parameter changes. For example, doubling the carrying capacity K is exactly equivalent to halving the predator response parameter D. The dimensionless

More information

EECS 700: Exam # 1 Tuesday, October 21, 2014

EECS 700: Exam # 1 Tuesday, October 21, 2014 EECS 700: Exam # 1 Tuesday, October 21, 2014 Print Name and Signature The rules for this exam are as follows: Write your name on the front page of the exam booklet. Initial each of the remaining pages

More information

4 Insect outbreak model

4 Insect outbreak model 4 Insect outbreak model In this lecture I will put to a good use all the mathematical machinery we discussed so far. Consider an insect population, which is subject to predation by birds. It is a very

More information

MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2)

MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2) MA 137 Calculus 1 with Life Science Application A First Look at Differential Equations (Section 4.1.2) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky October 12, 2015

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor

The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor , pp. 35-46 http://dx.doi.org/10.14257/ijbsbt.2017.9.3.04 The Dynamic Behaviour of the Competing Species with Linear and Holling Type II Functional Responses by the Second Competitor Alemu Geleta Wedajo

More information

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54 Population Dynamics Max Flöttmann and Jannis Uhlendorf June 12, 2007 Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 1 / 54 1 Discrete Population Models Introduction Example: Fibonacci

More information

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt Motivation and Goals Modelling with ODEs 24.10.01 Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation

More information

BIOL 410 Population and Community Ecology. Predation

BIOL 410 Population and Community Ecology. Predation BIOL 410 Population and Community Ecology Predation Intraguild Predation Occurs when one species not only competes with its heterospecific guild member, but also occasionally preys upon it Species 1 Competitor

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Gerardo Zavala. Math 388. Predator-Prey Models

Gerardo Zavala. Math 388. Predator-Prey Models Gerardo Zavala Math 388 Predator-Prey Models Spring 2013 1 History In the 1920s A. J. Lotka developed a mathematical model for the interaction between two species. The mathematician Vito Volterra worked

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Michael H. F. Wilkinson Institute for Mathematics and Computing Science University of Groningen The Netherlands December 2005 Overview What are Ordinary Differential Equations

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

Differential Equations with Mathematica

Differential Equations with Mathematica Differential Equations with Mathematica THIRD EDITION Martha L. Abell James P. Braselton ELSEVIER ACADEMIC PRESS Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

Homework 2. Due Friday, July We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N

Homework 2. Due Friday, July We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N Problem 1 (10 points) Homework Due Friday, July 7 017 We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N, (1) K with N(0) = N 0. (a) Make the substitutions

More information

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington Interactions Yuan Gao Applied Mathematics University of Washington yuangao@uw.edu Spring 2015 1 / 27 Nonlinear System Consider the following coupled ODEs: dx = f (x, y). dt dy = g(x, y). dt In general,

More information

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions?

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions? Math 2930 Worksheet Introduction to Differential Equations Week 1 January 25, 2019 What is a Differential Equation and what are Solutions? A differential equation is an equation that relates an unknown

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 7 Competition (this chapter is still unfinished) Species compete in many ways. Sometimes there are dramatic contests, such as when male bighorns compete for access to mates. Territoriality. That kind of

More information

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts A Primer of Ecology Fourth Edition NICHOLAS J. GOTELLI University of Vermont Sinauer Associates, Inc. Publishers Sunderland, Massachusetts Table of Contents PREFACE TO THE FOURTH EDITION PREFACE TO THE

More information

Interacting Populations.

Interacting Populations. Chapter 2 Interacting Populations. 2.1 Predator/ Prey models Suppose we have an island where some rabbits and foxes live. Left alone the rabbits have a growth rate of 10 per 100 per month. Unfortunately

More information

HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL

HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL ANZIAM J. 452004), 443 456 HARVESTING IN A TWO-PREY ONE-PREDATOR FISHERY: A BIOECONOMIC MODEL T. K. KAR 1 and K. S. CHAUDHURI 2 Received 22 June, 2001; revised 20 September, 2002) Abstract A multispecies

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

THETA-LOGISTIC PREDATOR PREY

THETA-LOGISTIC PREDATOR PREY THETA-LOGISTIC PREDATOR PREY What are the assumptions of this model? 1.) Functional responses are non-linear. Functional response refers to a change in the rate of exploitation of prey by an individual

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

More information

Field experiments on competition. Field experiments on competition. Field experiments on competition

Field experiments on competition. Field experiments on competition. Field experiments on competition INTERACTIONS BETWEEN SPECIES Type of interaction species 1 species 2 competition consumer-resource (pred, herb, para) mutualism detritivore-detritus (food is dead) Field experiments on competition Example

More information

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo 2008-11-07 Graded Project #1 Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo This homework is due to be handed in on Wednesday 12 November 2008 before 13:00 in the post box of the numerical

More information

Lotka-Volterra Models Nizar Ezroura M53

Lotka-Volterra Models Nizar Ezroura M53 Lotka-Volterra Models Nizar Ezroura M53 The Lotka-Volterra equations are a pair of coupled first-order ODEs that are used to describe the evolution of two elements under some mutual interaction pattern.

More information

Population Dynamics II

Population Dynamics II Population Dynamics II In this class, we shall analyze behavioral patterns of ecosystems, in which more than two species interact with each other. Such systems frequently exhibit chaotic behavior. Chaotic

More information

Modeling Prey-Predator Populations

Modeling Prey-Predator Populations Modeling Prey-Predator Populations Alison Pool and Lydia Silva December 13, 2006 Alison Pool and Lydia Silva () Modeling Prey-Predator Populations December 13, 2006 1 / 25 1 Introduction 1 Our Populations

More information

Introduction to Dynamical Systems

Introduction to Dynamical Systems Introduction to Dynamical Systems Autonomous Planar Systems Vector form of a Dynamical System Trajectories Trajectories Don t Cross Equilibria Population Biology Rabbit-Fox System Trout System Trout System

More information

A Stability Analysis on Models of Cooperative and Competitive Species

A Stability Analysis on Models of Cooperative and Competitive Species Research Journal of Mathematical and Statistical Sciences ISSN 2320 6047 A Stability Analysis on Models of Cooperative and Competitive Species Abstract Gideon Kwadzo Gogovi 1, Justice Kwame Appati 1 and

More information

Chapter 4. Systems of ODEs. Phase Plane. Qualitative Methods

Chapter 4. Systems of ODEs. Phase Plane. Qualitative Methods Chapter 4 Systems of ODEs. Phase Plane. Qualitative Methods Contents 4.0 Basics of Matrices and Vectors 4.1 Systems of ODEs as Models 4.2 Basic Theory of Systems of ODEs 4.3 Constant-Coefficient Systems.

More information

Math 341 Fall 2006 Final Exam December 12th, Name:

Math 341 Fall 2006 Final Exam December 12th, Name: Math 341 Fall 2006 Final Exam December 12th, 2006 Name: You may use a calculator, your note card and something to write with. You must attach your notecard to the exam when you turn it in. You cannot use

More information

APPM 2360 Lab #3: The Predator Prey Model

APPM 2360 Lab #3: The Predator Prey Model APPM 2360 Lab #3: The Predator Prey Model 1 Instructions Labs may be done in groups of 3 or less. One report must be turned in for each group and must be in PDF format. Labs must include each student s:

More information

1.2. Introduction to Modeling

1.2. Introduction to Modeling G. NAGY ODE August 30, 2018 1 Section Objective(s): Population Models Unlimited Resources Limited Resources Interacting Species 1.2. Introduction to Modeling 1.2.1. Population Model with Unlimited Resources.

More information

Predator-Prey Model with Ratio-dependent Food

Predator-Prey Model with Ratio-dependent Food University of Minnesota Duluth Department of Mathematics and Statistics Predator-Prey Model with Ratio-dependent Food Processing Response Advisor: Harlan Stech Jana Hurkova June 2013 Table of Contents

More information

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs Dynamics of a opulation Model Controlling the Spread of lague in rairie Dogs Catalin Georgescu The University of South Dakota Department of Mathematical Sciences 414 East Clark Street, Vermillion, SD USA

More information

Communities and Populations

Communities and Populations ommunities and Populations Two models of population change The logistic map The Lotke-Volterra equations for oscillations in populations Prisoner s dilemma Single play Iterated play ommunity-wide play

More information

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2?

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2? Is chaos possible in 1d? - yes - no - I don t know What is the long term behavior for the following system if x(0) = π/2? In the insect outbreak problem, what kind of bifurcation occurs at fixed value

More information

Predator-Prey Population Dynamics

Predator-Prey Population Dynamics Predator-Prey Population Dynamics Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 2,

More information

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( )

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( ) 1. The growth of a cancerous tumor can be modeled by the Gompertz Law: ( ) dn b = an ln, (1) dt N where N measures the size of the tumor. (a) Interpret the parameters a and b (both non-negative) biologically.

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

PREDATOR-PREY DYNAMICS

PREDATOR-PREY DYNAMICS 10 PREDATOR-PREY DYNAMICS Objectives Set up a spreadsheet model of interacting predator and prey populations. Modify the model to include an explicit carrying capacity for the prey population, independent

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations Systems of ordinary differential equations Last two lectures we have studied models of the form y (t) F (y), y(0) y0 (1) this is an scalar ordinary differential

More information

Research Article The Mathematical Study of Pest Management Strategy

Research Article The Mathematical Study of Pest Management Strategy Discrete Dynamics in Nature and Society Volume 22, Article ID 25942, 9 pages doi:.55/22/25942 Research Article The Mathematical Study of Pest Management Strategy Jinbo Fu and Yanzhen Wang Minnan Science

More information

Discrete time dynamical systems (Review of rst part of Math 361, Winter 2001)

Discrete time dynamical systems (Review of rst part of Math 361, Winter 2001) Discrete time dynamical systems (Review of rst part of Math 36, Winter 2) Basic problem: x (t);; dynamic variables (e.g. population size of age class i at time t); dynamics given by a set of n equations

More information

Unit Ten Summary Introduction to Dynamical Systems and Chaos

Unit Ten Summary Introduction to Dynamical Systems and Chaos Unit Ten Summary Introduction to Dynamical Systems Dynamical Systems A dynamical system is a system that evolves in time according to a well-defined, unchanging rule. The study of dynamical systems is

More information

Effect of Species 2 on Species 1 Competition - - Predator-Prey + - Parasite-Host + -

Effect of Species 2 on Species 1 Competition - - Predator-Prey + - Parasite-Host + - Community Ecology Community - a group of organisms, of different species, living in the same area Community ecology is the study of the interactions between species The presence of one species may affect

More information

Community Ecology. Classification of types of interspecific interactions: Effect of Species 1 on Species 2

Community Ecology. Classification of types of interspecific interactions: Effect of Species 1 on Species 2 Community Ecology Community - a group of organisms, of different species, living in the same area Community ecology is the study of the interactions between species The presence of one species may affect

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Stability and bifurcation in a two species predator-prey model with quintic interactions

Stability and bifurcation in a two species predator-prey model with quintic interactions Chaotic Modeling and Simulation (CMSIM) 4: 631 635, 2013 Stability and bifurcation in a two species predator-prey model with quintic interactions I. Kusbeyzi Aybar 1 and I. acinliyan 2 1 Department of

More information

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v),

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v), Let us apply the approach presented above to the analysis of population dynamics models. 9. Lotka-Volterra predator-prey model: phase plane analysis. Earlier we introduced the system of equations for prey

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

SEMELPAROUS PERIODICAL INSECTS

SEMELPAROUS PERIODICAL INSECTS SEMELPROUS PERIODICL INSECTS BRENDN FRY Honors Thesis Spring 2008 Chapter Introduction. History Periodical species are those whose life cycle has a fixed length of n years, and whose adults do not appear

More information

Population Ecology & Biosystematics

Population Ecology & Biosystematics Population Ecology & Biosystematics Population: a group of conspecific individuals occupying a particular place at a particular time This is an operational definition Compare with Deme: a population unevenly

More information

1 The pendulum equation

1 The pendulum equation Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

More information

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions. Part A Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

Ecology 203, Exam III. November 16, Print name:

Ecology 203, Exam III. November 16, Print name: Ecology 203, Exam III. November 16, 2005. Print name: Read carefully. Work accurately and efficiently. The exam is worth 100 points (plus 6 extra credit points). Choose four of ten concept-exploring questions

More information

Predator-Prey and Weight Change Models

Predator-Prey and Weight Change Models 1 Predator-Prey and Weight Change Models Lab Objective: We introduce built-in methods for solving Initial Value Problems and apply the methods to two dynamical systems. The rst system looks at the relationship

More information

Workshop on Theoretical Ecology and Global Change March 2009

Workshop on Theoretical Ecology and Global Change March 2009 2022-3 Workshop on Theoretical Ecology and Global Change 2-18 March 2009 Stability Analysis of Food Webs: An Introduction to Local Stability of Dynamical Systems S. Allesina National Center for Ecological

More information

MANAGEMENT AND ANALYSIS OF BIOLOGICAL POPULATIONS

MANAGEMENT AND ANALYSIS OF BIOLOGICAL POPULATIONS ',' Developments in Agricultural and Managed-Forest Ecology, 8 MANAGEMENT AND ANALYSIS OF BIOLOGICAL POPULATIONS by BEAN-SAN GOH Department ofmathematics, University of Western Australia, Nedlands, W.A.

More information

Alternatives to competition. Lecture 13. Facilitation. Functional types of consumers. Stress Gradient Hypothesis

Alternatives to competition. Lecture 13. Facilitation. Functional types of consumers. Stress Gradient Hypothesis Lecture 13 Finishing Competition and Facilitation Consumer-Resource interactions Predator-prey population dynamics Do predators regulate prey? Lotka-Volterra predator-prey model Predator behavior matters:

More information

Non-Linear Models. Non-Linear Models Cont d

Non-Linear Models. Non-Linear Models Cont d Focus on more sophistiated interaction models between systems. These lead to non-linear, rather than linear, DEs; often not soluble exactly in analytical form so use Phase-Plane Analysis. This is a method

More information

Competition. Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition

Competition. Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition Competition Different kinds of competition Modeling competition Examples of competition-case studies Understanding the role of competition Competition The outcome of competition is that an individual suffers

More information

INTERPRETING POPULATION DYNAMICS GRAPH

INTERPRETING POPULATION DYNAMICS GRAPH INTERPRETING POPULATION DYNAMIS GRAPH OJETIVES TASKS Name: To learn about three types of population dynamics graphs To determine which type of graph you constructed from the Pike and Perch Game To interpret

More information

Interactions between predators and prey

Interactions between predators and prey Interactions between predators and prey What is a predator? Predator An organism that consumes other organisms and inevitably kills them. Predators attack and kill many different prey individuals over

More information

Stability Analysis of Predator- Prey Models via the Liapunov Method

Stability Analysis of Predator- Prey Models via the Liapunov Method Stability Analysis of Predator- Prey Models via the Liapunov Method Gatto, M. and Rinaldi, S. IIASA Research Memorandum October 1975 Gatto, M. and Rinaldi, S. (1975) Stability Analysis of Predator-Prey

More information

Introduction. Chapter What is this book about?

Introduction. Chapter What is this book about? Chapter 1 Introduction 1.1 What is this book about? This book is about how to construct and use computational models of specific parts of the nervous system, such as a neuron, a part of a neuron or a network

More information