Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool

Size: px
Start display at page:

Download "Modeling the Immune System W9. Ordinary Differential Equations as Macroscopic Modeling Tool"

Transcription

1 Modeling the Immune System W9 Ordinary Differential Equations as Macroscopic Modeling Tool 1

2 Lecture Notes for ODE Models We use the lecture notes Theoretical Fysiology 2006 by Rob de Boer, U. Utrecht available online at We use a modified version of the slides produced by Jean-Yves Le Boudec for the MIS course during the AY We will study Chapters 1, 2, 3, 4, and 7 2

3 Goal of Lectures on ODE Models Know the method and limitations of ODE models Know the following concepts Logistic equations Saturation functions Lotka Volterra predator prey model Separation of timescales Phase planes Nullclines Steady state analysis Asympotic stability Doubling time Half life Know how to simulate an ODE model 3

4 Chapter 1 and 2 Population Growth Replicating Population Model Where N = the total number of individuals in a population b = birth rate d = death rate Convention: state variables (e.g. N) upper case, parameters (e.g., b,d) and independent variable (e.g. t) lower case; all italic (note the difference between differential operator d/d and d); model parameters are strictly positive 4

5 Birth and Death Parameters What do they mean? How can you measure them? Birth rate b = normalized number of births per time unit Measure births every hour, plot ratio births / population Death rate: d = normalized number of deaths per time unit Measure deaths every hour, plot ratio deaths / population Issue: assume one can measure only the net growth rate b-d Inverse of death rate: 1/d = expected life span Measure lifetime of each cell 5

6 What does the model tell us? (also called expected fitness of an individual, reproductive number) If R 0 < 1 N goes to 0 If R 0 > 1 N goes to 6

7 Equilibrium or Steady State Analysis Definition: dn/dt = 0 7

8 Doubling Time What is the doubling time? Deduce another way to measure (b-d) Plot the growth in log log scales; the slope is (b-d) 8

9 Half -Life Q: Compute the half-life of one individual A: defined as median life assuming exponential lifetime = ln(2) / d 9

10 A Non-Replicating Population Model d = dead rate Example: s = production from thymus of anergic self reacting T cells Check the units Doubling time? R 0? Half-life? 10

11 Non-replicating vs. Replicating Population Models Non-replicating population (saturation: independent external input balanced by death, with casualties proportional to the population size) Replicating population (continuous, exponential growing) 11

12 Density Dependent Death Linear or nonlinear model? Interpretation of k? Fratricide term = Homeostasis Density Dependent Birth 12

13 Steady State Analysis Density dependent death: Also N* (equilibrium point and in ecology carrying capacity ) Carrying capacity proportional to fitness (reproductive ratio) R 0 Density dependent birth: Carrying capacity little dependent on fitness (reproductive ratio) R 0 13

14 The Logistic Growth Model Both previous models are can be combined They all are special cases of the Logistic Growth Model 14

15 Equilibrium Values For r >0 : growth, asymptotically going to K N= K is the only stable equilibrium For r <0: decay to 0 N=0 is the only stable equilibrium How do we know? 15

16 Stability Analysis Assume case r>0 Two equilibria: N= 0 and N= K from dn/dt = f(n) = 0 N= K is the only stable equilibrium Lyapunov exponents: Nonlinear ODE Idea: linearize f(n) at equilibria (e.g. Taylor expansion) Calculate As a function of the sign of λ around the equilibrium point we can check whether a small perturbation h will be damped or amplified Return time (for stable points) 16

17 Phase Plot Analysis Unstable equilibrium stable equilibrium 17

18 What are the Limitations of these ODE Models? Note: all these assumption are NOT characteristic of ODE models in general and most of them can be partially relaxed. For instance: 1. different individuals can be considered at the price of larger ODE systems (i.e. each caste of individual represented by an explicit state variable) 2. Spatial models usually require PDEs but crude spatiality (i.e. individuals placed in a given zone) can be captured with ODEs at the price of additional state variables (i.e. the same individual in a different zone is characterized by a different state variable) 3. Population can be small (but characterized by a lot of interactions) if the model try to reproduce the average behavior over several runs of the same experiment 4. Parameters can vary as a function of independent and state variables; ODEs become nonlinear and more difficult to solve with close form solutions 18

19 Chapter 3. Interacting Populations What does the model ignore? Immune reaction Homeostasis 19

20 Healthy Steady-State Defined as equilibrium when there is no infection Compute it! 20

21 Other Equilibrium Values Set second side of equations to 0 and obtain: 21

22 Fitness/Reproductive Number R 0 Defined here as the number of infected cells reproduced by an infected cell, in the worst case 22

23 Study Stability by the Method of Nullclines 1. Draw the lines in (I,T) space given steady state conditions. Equilibrium point is at intersection 2. Analyze the direction of vector field and see if system tends to be attracted or not by equilibrium point 23

24 f 1 (T,I) f 2 (T,I) f 2 (T,I)=0 f 1 (T,I)<0 f 2 (T,I)<0 f 1 (T,I)=0 Healthy state is stable Only one equilibrium (healthy state) Case δ I /β > σ/δ T 24

25 f 1 (T,I) f 2 (T,I) f 1 (T,I)<0 f 2 (T,I)>0 stable Unstable (saddle point) Case δ I /β < σ/δ T We will see a more systematic method (eigenvalues) later Two equilibria (healthy state + chronical infection) 25

26 Immune Reaction Model 26

27 Example of Simulation 27

28 Equilibria How do we get them? 28

29 29

30 Stability of Equilibrium Point 30

31 31 f 1 (T,I,E) = 0 f 2 (T,I,E) = 0 f 3 (T,I,E) = 0 E f I f T f E f I f T f E f I f T f

32 Here only x 3 * is a stable equilibrium 32

33 Chapter 4 / Section 16.3 Saturation Functions Problem: find rate functions that saturate Hill functions are also called «threshold functions»; h : saturation constant or threshold f(h)=0.5 n : degree of nonlinearity, determine curve shape 33

34 Parameter Influence on Hill/Threshold Functions changing h, n = 10 h = 50, changing n f(x), n= 1 f(x), n=2 Red: exponential functions 34

35 Infection Model Also called Michaelis-Menten Rate of infection per infected cell is a saturating function of T 35

36 Simulations of This Model I T I T 36

37 Chapter 7 Simplification of ODE Model by Separation of Time Scales What do we add to previous model? Viral population dynamics; viral load = steady state of virus population 37

38 Elimination of the Fastest Time Scale Not constant: function of I(t)! 38

39 Compare to Immune Reaction Model Conclusion? The models are the same, with proper parameter settings 39

40 Elimination of the Slowest Time Scale During therapy of chronically infected patients: From steady state analysis of the original 4-equations system Replace E(t) with steady state value E* 40

41 Elimination of the Fastest AND Slowest Time Scale 3-equations system -> 2-equations system: 41

42 Is this a familiar model? 42

43 Added Value of the Model vs. Raw Data 43

44 Self-Study Assignment Responsible: Irina See distributed assignment (available on Moodle as well) 44

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

(Refer Slide Time: 00:32)

(Refer Slide Time: 00:32) Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 12 Scilab simulation of Lotka Volterra

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Michael H. F. Wilkinson Institute for Mathematics and Computing Science University of Groningen The Netherlands December 2005 Overview What are Ordinary Differential Equations

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

THETA-LOGISTIC PREDATOR PREY

THETA-LOGISTIC PREDATOR PREY THETA-LOGISTIC PREDATOR PREY What are the assumptions of this model? 1.) Functional responses are non-linear. Functional response refers to a change in the rate of exploitation of prey by an individual

More information

STUDY OF THE DYNAMICAL MODEL OF HIV

STUDY OF THE DYNAMICAL MODEL OF HIV STUDY OF THE DYNAMICAL MODEL OF HIV M.A. Lapshova, E.A. Shchepakina Samara National Research University, Samara, Russia Abstract. The paper is devoted to the study of the dynamical model of HIV. An application

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

MA 138: Calculus II for the Life Sciences

MA 138: Calculus II for the Life Sciences MA 138: Calculus II for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky. Spring 2016 David Murrugarra (University of Kentucky) MA 138: Section 11.4.2 Spring 2016 1

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System LG de Pillis and AE Radunskaya August 15, 2002 This work was supported in part by a grant from the WM Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1 Simplified System of

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations Systems of ordinary differential equations Last two lectures we have studied models of the form y (t) F (y), y(0) y0 (1) this is an scalar ordinary differential

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

M.5 Modeling the Effect of Functional Responses

M.5 Modeling the Effect of Functional Responses M.5 Modeling the Effect of Functional Responses The functional response is referred to the predation rate as a function of the number of prey per predator. It is recognized that as the number of prey increases,

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

M469, Fall 2010, Practice Problems for the Final

M469, Fall 2010, Practice Problems for the Final M469 Fall 00 Practice Problems for the Final The final exam for M469 will be Friday December 0 3:00-5:00 pm in the usual classroom Blocker 60 The final will cover the following topics from nonlinear systems

More information

1 The pendulum equation

1 The pendulum equation Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

More information

Theoretical Fysiology. Rob de Boer, Theoretical Biology, UU

Theoretical Fysiology. Rob de Boer, Theoretical Biology, UU Theoretical Fysiology Rob de Boer, Theoretical Biology, UU 26 2 Contents 1 Introduction 5 1.1 The simplest possible model................................. 5 1.2 Exponential growth and decay...............................

More information

Introduction to Dynamical Systems Basic Concepts of Dynamics

Introduction to Dynamical Systems Basic Concepts of Dynamics Introduction to Dynamical Systems Basic Concepts of Dynamics A dynamical system: Has a notion of state, which contains all the information upon which the dynamical system acts. A simple set of deterministic

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington

Interactions. Yuan Gao. Spring Applied Mathematics University of Washington Interactions Yuan Gao Applied Mathematics University of Washington yuangao@uw.edu Spring 2015 1 / 27 Nonlinear System Consider the following coupled ODEs: dx = f (x, y). dt dy = g(x, y). dt In general,

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

3.5 Competition Models: Principle of Competitive Exclusion

3.5 Competition Models: Principle of Competitive Exclusion 94 3. Models for Interacting Populations different dimensional parameter changes. For example, doubling the carrying capacity K is exactly equivalent to halving the predator response parameter D. The dimensionless

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions. Part A Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

More information

Workshop on Theoretical Ecology and Global Change March 2009

Workshop on Theoretical Ecology and Global Change March 2009 2022-3 Workshop on Theoretical Ecology and Global Change 2-18 March 2009 Stability Analysis of Food Webs: An Introduction to Local Stability of Dynamical Systems S. Allesina National Center for Ecological

More information

Applications in Biology

Applications in Biology 11 Applications in Biology In this chapter we make use of the techniques developed in the previous few chapters to examine some nonlinear systems that have been used as mathematical models for a variety

More information

Linearization of Differential Equation Models

Linearization of Differential Equation Models Linearization of Differential Equation Models 1 Motivation We cannot solve most nonlinear models, so we often instead try to get an overall feel for the way the model behaves: we sometimes talk about looking

More information

A Stability Analysis on Models of Cooperative and Competitive Species

A Stability Analysis on Models of Cooperative and Competitive Species Research Journal of Mathematical and Statistical Sciences ISSN 2320 6047 A Stability Analysis on Models of Cooperative and Competitive Species Abstract Gideon Kwadzo Gogovi 1, Justice Kwame Appati 1 and

More information

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Lotka Volterra Predator-Prey Model with a Predating Scavenger Lotka Volterra Predator-Prey Model with a Predating Scavenger Monica Pescitelli Georgia College December 13, 2013 Abstract The classic Lotka Volterra equations are used to model the population dynamics

More information

ANALYSIS OF HEPATITIS C VIRUS INFECTION MODELS WITH HEPATOCYTE HOMEOSTASIS

ANALYSIS OF HEPATITIS C VIRUS INFECTION MODELS WITH HEPATOCYTE HOMEOSTASIS ANALYSIS OF HEPATITIS C VIRUS INFECTION MODELS WITH HEPATOCYTE HOMEOSTASIS TIMOTHY C. RELUGA, HAREL DAHARI, AND ALAN S. PERELSON THEORETICAL BIOLOGY AND BIOPHYSICS GROUP, THEORETICAL DIVISION LOS ALAMOS

More information

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54

Population Dynamics. Max Flöttmann and Jannis Uhlendorf. June 12, Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, / 54 Population Dynamics Max Flöttmann and Jannis Uhlendorf June 12, 2007 Max Flöttmann and Jannis Uhlendorf () Population Dynamics June 12, 2007 1 / 54 1 Discrete Population Models Introduction Example: Fibonacci

More information

Theory of Ordinary Differential Equations. Stability and Bifurcation I. John A. Burns

Theory of Ordinary Differential Equations. Stability and Bifurcation I. John A. Burns Theory of Ordinary Differential Equations Stability and Bifurcation I John A. Burns Center for Optimal Design And Control Interdisciplinary Center for Applied Mathematics Virginia Polytechnic Institute

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 15, 2002 This work was supported in part by a grant from the W.M. Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1. Simplified System

More information

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point, 1.2. Direction Fields: Graphical Representation of the ODE and its Solution Section Objective(s): Constructing Direction Fields. Interpreting Direction Fields. Definition 1.2.1. A first order ODE of the

More information

Stability Analysis of Predator- Prey Models via the Liapunov Method

Stability Analysis of Predator- Prey Models via the Liapunov Method Stability Analysis of Predator- Prey Models via the Liapunov Method Gatto, M. and Rinaldi, S. IIASA Research Memorandum October 1975 Gatto, M. and Rinaldi, S. (1975) Stability Analysis of Predator-Prey

More information

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, 2016 Exam Scores Question Score Total 1 10 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger Project I: Predator-Prey Equations The Lotka-Volterra Predator-Prey Model is given by: du dv = αu βuv = ρβuv

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Chaos and Liapunov exponents

Chaos and Liapunov exponents PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

More information

Where do differential equations come from?

Where do differential equations come from? Where do differential equations come from? Example: Keeping track of cell growth (a balance equation for cell mass) Rate of change = rate in rate out Old example: Cell size The cell is spherical. Nutrient

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

Predator-Prey Model with Ratio-dependent Food

Predator-Prey Model with Ratio-dependent Food University of Minnesota Duluth Department of Mathematics and Statistics Predator-Prey Model with Ratio-dependent Food Processing Response Advisor: Harlan Stech Jana Hurkova June 2013 Table of Contents

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations Scott A. McKinley October 22, 2013 In these notes, which replace the material in your textbook, we will learn a modern view of analyzing systems of differential

More information

Lotka-Volterra Models Nizar Ezroura M53

Lotka-Volterra Models Nizar Ezroura M53 Lotka-Volterra Models Nizar Ezroura M53 The Lotka-Volterra equations are a pair of coupled first-order ODEs that are used to describe the evolution of two elements under some mutual interaction pattern.

More information

A Stochastic Viral Infection Model with General Functional Response

A Stochastic Viral Infection Model with General Functional Response Nonlinear Analysis and Differential Equations, Vol. 4, 16, no. 9, 435-445 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/nade.16.664 A Stochastic Viral Infection Model with General Functional Response

More information

Autonomous Systems and Stability

Autonomous Systems and Stability LECTURE 8 Autonomous Systems and Stability An autonomous system is a system of ordinary differential equations of the form 1 1 ( 1 ) 2 2 ( 1 ). ( 1 ) or, in vector notation, x 0 F (x) That is to say, an

More information

Controlling Systemic Inflammation Using NMPC. Using Nonlinear Model Predictive Control with State Estimation

Controlling Systemic Inflammation Using NMPC. Using Nonlinear Model Predictive Control with State Estimation Controlling Systemic Inflammation Using Nonlinear Model Predictive Control with State Estimation Gregory Zitelli, Judy Day July 2013 With generous support from the NSF, Award 1122462 Motivation We re going

More information

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION Analysis of bacterial population growth using extended logistic Growth model with distributed delay Tahani Ali Omer Department of Mathematics and Statistics University of Missouri-ansas City ansas City,

More information

Mathematical Models of Biological Systems

Mathematical Models of Biological Systems Mathematical Models of Biological Systems CH924 November 25, 2012 Course outline Syllabus: Week 6: Stability of first-order autonomous differential equation, genetic switch/clock, introduction to enzyme

More information

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs

Dynamics of a Population Model Controlling the Spread of Plague in Prairie Dogs Dynamics of a opulation Model Controlling the Spread of lague in rairie Dogs Catalin Georgescu The University of South Dakota Department of Mathematical Sciences 414 East Clark Street, Vermillion, SD USA

More information

Mathematical models in life sciences. Lecture notes of a course held by Marco Di Francesco based on the book by J. D. Murray

Mathematical models in life sciences. Lecture notes of a course held by Marco Di Francesco based on the book by J. D. Murray Mathematical models in life sciences Lecture notes of a course held by Marco Di Francesco based on the book by J. D. Murray December 31, 2010 Contents I Continuous time dependent models 3 1 Ordinary differential

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL. If they co-exist in the same environment:

POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL. If they co-exist in the same environment: POPULATION DYNAMICS: TWO SPECIES MODELS; Susceptible Infected Recovered (SIR) MODEL Next logical step: consider dynamics of more than one species. We start with models of 2 interacting species. We consider,

More information

Autonomous Equations and Stability Sections

Autonomous Equations and Stability Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Autonomous Equations and Stability Sections 2.4-2.5 Dr. John Ehrke Department of Mathematics Fall 2012 Autonomous Differential

More information

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v),

We have two possible solutions (intersections of null-clines. dt = bv + muv = g(u, v). du = au nuv = f (u, v), Let us apply the approach presented above to the analysis of population dynamics models. 9. Lotka-Volterra predator-prey model: phase plane analysis. Earlier we introduced the system of equations for prey

More information

Lecture - 11 Bendixson and Poincare Bendixson Criteria Van der Pol Oscillator

Lecture - 11 Bendixson and Poincare Bendixson Criteria Van der Pol Oscillator Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 11 Bendixson and Poincare Bendixson Criteria

More information

Mathematical Modelling Lecture 10 Difference Equations

Mathematical Modelling Lecture 10 Difference Equations Lecture 10 Difference Equations phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and

More information

SEMELPAROUS PERIODICAL INSECTS

SEMELPAROUS PERIODICAL INSECTS SEMELPROUS PERIODICL INSECTS BRENDN FRY Honors Thesis Spring 2008 Chapter Introduction. History Periodical species are those whose life cycle has a fixed length of n years, and whose adults do not appear

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 MATH 56A: STOCHASTIC PROCESSES CHAPTER 0 0. Chapter 0 I reviewed basic properties of linear differential equations in one variable. I still need to do the theory for several variables. 0.1. linear differential

More information

Calculus Review Session. Rob Fetter Duke University Nicholas School of the Environment August 13, 2015

Calculus Review Session. Rob Fetter Duke University Nicholas School of the Environment August 13, 2015 Calculus Review Session Rob Fetter Duke University Nicholas School of the Environment August 13, 2015 Schedule Time Event 2:00 2:20 Introduction 2:20 2:40 Functions; systems of equations 2:40 3:00 Derivatives,

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Homework 2. Due Friday, July We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N

Homework 2. Due Friday, July We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N Problem 1 (10 points) Homework Due Friday, July 7 017 We studied the logistic equation in class as a model of population growth. It is given by dn dt = rn 1 N, (1) K with N(0) = N 0. (a) Make the substitutions

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

A Producer-Consumer Model With Stoichiometry

A Producer-Consumer Model With Stoichiometry A Producer-Consumer Model With Stoichiometry Plan B project toward the completion of the Master of Science degree in Mathematics at University of Minnesota Duluth Respectfully submitted by Laura Joan Zimmermann

More information

Gerardo Zavala. Math 388. Predator-Prey Models

Gerardo Zavala. Math 388. Predator-Prey Models Gerardo Zavala Math 388 Predator-Prey Models Spring 2013 1 History In the 1920s A. J. Lotka developed a mathematical model for the interaction between two species. The mathematician Vito Volterra worked

More information

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale BIOS 3010: ECOLOGY Dr Stephen Malcolm Laboratory 6: Lotka-Volterra, the logistic equation & Isle Royale This is a computer-based activity using Populus software (P), followed by EcoBeaker analyses of moose

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( )

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( ) 1. The growth of a cancerous tumor can be modeled by the Gompertz Law: ( ) dn b = an ln, (1) dt N where N measures the size of the tumor. (a) Interpret the parameters a and b (both non-negative) biologically.

More information

Populations Study Guide (KEY) All the members of a species living in the same place at the same time.

Populations Study Guide (KEY) All the members of a species living in the same place at the same time. Populations Study Guide (KEY) 1. Define Population. All the members of a species living in the same place at the same time. 2. List and explain the three terms that describe population. a. Size. How large

More information

3 Single species models. Reading: Otto & Day (2007) section 4.2.1

3 Single species models. Reading: Otto & Day (2007) section 4.2.1 3 Single species models 3.1 Exponential growth Reading: Otto & Day (2007) section 4.2.1 We can solve equation 17 to find the population at time t given a starting population N(0) = N 0 as follows. N(t)

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

Continuous Threshold Policy Harvesting in Predator-Prey Models

Continuous Threshold Policy Harvesting in Predator-Prey Models Continuous Threshold Policy Harvesting in Predator-Prey Models Jon Bohn and Kaitlin Speer Department of Mathematics, University of Wisconsin - Madison Department of Mathematics, Baylor University July

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

Modeling Population Dynamics: a Graphical Approach

Modeling Population Dynamics: a Graphical Approach Modeling Population Dynamics: a Graphical Approach Rob J. de Boer Theoretical Biology & Bioinformatics Utrecht University i c Utrecht University, 28 Ebook publically available at: http://tbb.bio.uu.nl/rdb/books/

More information

MATH3203 Lecture 1 Mathematical Modelling and ODEs

MATH3203 Lecture 1 Mathematical Modelling and ODEs MATH3203 Lecture 1 Mathematical Modelling and ODEs Dion Weatherley Earth Systems Science Computational Centre, University of Queensland February 27, 2006 Abstract Contents 1 Mathematical Modelling 2 1.1

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Math 341 Fall 2006 Final Exam December 12th, Name:

Math 341 Fall 2006 Final Exam December 12th, Name: Math 341 Fall 2006 Final Exam December 12th, 2006 Name: You may use a calculator, your note card and something to write with. You must attach your notecard to the exam when you turn it in. You cannot use

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

Unit #17 - Differential Equations Section 11.7

Unit #17 - Differential Equations Section 11.7 Unit #17 - Differential Equations Section 11.7 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

7.7 LOTKA-VOLTERRA M ODELS

7.7 LOTKA-VOLTERRA M ODELS 77 LOTKA-VOLTERRA M ODELS sstems, such as the undamped pendulum, enabled us to draw the phase plane for this sstem and view it globall In that case we were able to understand the motions for all initial

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

Modeling Prey-Predator Populations

Modeling Prey-Predator Populations Modeling Prey-Predator Populations Alison Pool and Lydia Silva December 13, 2006 Alison Pool and Lydia Silva () Modeling Prey-Predator Populations December 13, 2006 1 / 25 1 Introduction 1 Our Populations

More information

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage Applied Mathematical Sciences, Vol. 1, 216, no. 43, 2121-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.63128 A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and

More information

Math 266: Autonomous equation and population dynamics

Math 266: Autonomous equation and population dynamics Math 266: Autonomous equation and population namics Long Jin Purdue, Spring 2018 Autonomous equation An autonomous equation is a differential equation which only involves the unknown function y and its

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

Nonlinear System Analysis

Nonlinear System Analysis Nonlinear System Analysis Lyapunov Based Approach Lecture 4 Module 1 Dr. Laxmidhar Behera Department of Electrical Engineering, Indian Institute of Technology, Kanpur. January 4, 2003 Intelligent Control

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

Non-Linear Models. Non-Linear Models Cont d

Non-Linear Models. Non-Linear Models Cont d Focus on more sophistiated interaction models between systems. These lead to non-linear, rather than linear, DEs; often not soluble exactly in analytical form so use Phase-Plane Analysis. This is a method

More information

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability.

Key words and phrases. Bifurcation, Difference Equations, Fixed Points, Predator - Prey System, Stability. ISO 9001:008 Certified Volume, Issue, March 013 Dynamical Behavior in a Discrete Prey- Predator Interactions M.ReniSagaya Raj 1, A.George Maria Selvam, R.Janagaraj 3.and D.Pushparajan 4 1,,3 Sacred Heart

More information

Modelling and Mathematical Methods in Process and Chemical Engineering

Modelling and Mathematical Methods in Process and Chemical Engineering Modelling and Mathematical Methods in Process and Chemical Engineering Solution Series 3 1. Population dynamics: Gendercide The system admits two steady states The Jacobi matrix is ẋ = (1 p)xy k 1 x ẏ

More information