One-Electron Properties of Solids

Size: px
Start display at page:

Download "One-Electron Properties of Solids"

Transcription

1 One-Electron Properties of Solids Alessandro Erba Università di Torino most slides are courtesy of R. Orlando and B. Civalleri

2 Energy vs Wave-function

3 Energy vs Wave-function

4 Density Matrix

5 Density Matrix

6 Density Matrix

7 Link between Density Matrix and 1-el Props DIRECT SPACE RECIPROCAL SPACE

8 Direct (real) and reciprocal spaces The solution of the Schrödinger equation contains more information than the energy, which can be extracted with appropriate analysis methods Analysis of the quantum-mechanical solution for solids can be done in: DIRECT SPACE 1-electron density ρ(r) (similar to molecular systems) RECIPROCAL SPACE energy bands density of states (DOS) structure factors electron momentum density (orbital energies in molecular systems associated with states with single-double occupation)

9 Wavefunction analysis and properties Band structure Total and projected density of states Electron charge and spin density maps Mulliken population analysis Structure factors Compton profiles Electron momentum density Electrostatic potential, electric field and electric field gradient Fermi contact, hyperfine and nuclear quadrupole coupling tensors Localized Wannier functions (LWF; Boys method) X-ray Structure factors

10 properties Getting started with properties performs the wavefunction analysis (e.g. one-electron properties) Parallel version available. At the end of the SCF process, data on crystalline system and wavefunction are stored in: fort.9 (unformatted) fort.98 (formatted) (keyword: RDFMWF) properties input ends with the keyword END

11 How to run properties Script: runprop17 filename1 filename2 where filename1.f9 and filename2.d3 Visualization tools CRYSPLOT: web-oriented application (

12 How to run properties Script: runprop17 filename1 filename2 where filename1.f9 and filename2.d3 Visualization tools CRYSPLOT: web-oriented application ( CrGra06 DLV: band structure, DOSs, 3D charge density, J-ICE: 3D charge density and mapped electrostatic potential

13 Direct Space

14 Electron Charge Density The Electron Charge Density (ECD) is a 3D function in direct space which exhibits the whole symmetry of the Space Group of the crystal. Bader s Atoms-in-Molecules theory shows that a wealth of information about the chemical features of the system can be obtained from its ECD through a topological analysis.

15 Analysis of the electronic density Visual 2D and 3D plots ECHG ECH3 Numerical Mulliken population analysis PPAN charge of orbital µ charge of atom A bond charge between atoms A and B

16 VISUAL ANALYSIS OF ρ(r) 2D PROJECTION ρ(r) in 2D Si SiO 2 AlPO 4 TOTAL Al P FRAMEWORK PROPERTIES OF ZEOLITES AND AlPOs 1) SELECT A REPRESENTATIVE PLANE 2) SUITABLE REFERENCE: ISOLATED FORMAL IONS (SPHERICAL SYMMETRY). Δρ Solid-ions ELECTR. POTENTIAL F: Corà

17 Δρ(r) deformation maps for crystalline urea Comparison between HF and DFT methods Δρ(r) = ρ(r) bulk - ρ(r) mol Typical pattern of the ECD deformation due to H-bond SVWN (LDA) tends to delocalize the charge density to a larger extent than other methods. This is mitigated when passing to GGA and hybrids (B3LYP and PBE0). Charge redistribution evident in the CO and CN bonds. Depletion around C, build-up on O and N. Charge transfer is confirmed by large changes in the atomic Born charges (in e): ΔZ(O)=-0.63 ΔZ(C)=+0.52 ΔZ(N)=-0.41

18 Hydrogen bonding in molecular crystals P. Ugliengo, D. Hugas ρ crystal Δρ: 0.01 e /a 0 3 ρ 0.12 e /a 0 3 Formic acid ρ crystal - ρ molecules Δρ: e /a 0 3 ρ 0.02 e /a 0 3

19 From the dimers to the formic acid crystal ΔE : B3LYP binding energy (kj/mol) per H-bond Δω : B3LYP OH Symm. harmonic frequency shift (cm -1 ) linear ΔE = 25 polymer ΔE = 27 Δω = -813 cyclic gas-phase Δω = -373 ΔE = 21 Δω = -744 Crystal (010) (011) ΔE = 32 Δω = -870

20 Dimers, chain and crystal vs molecules Cyclic dimer Δρ: e /a 0 3 ρ 0.02 e /a 0 3 Linear dimer increasing density decreasing density null density Chain Crystal

21 Large unit cell system: Crambin Small structural protein extracted from Abyssinian cabbage Crystal structure characterized to very high precision by XRD studies (0.52 Å) P2 1 with two chains per unit cell and 46 residues per chain (1284 atoms) Hartree-Fock calculation STO-3G (3948 GTFs) 6-31G (7194 GTFs) 6-31G(d,p) (12354 GTFs) I.J. Bush (CLRC-DL)

22 Crambin electron charge-density Charge density isosurface coloured according to potential: possible chemically active groups Isosurface of the charge density at 0.1Å resolution: 0.1 e-/unit cell

23 With CRYSTAL14 B3LYP calculation Crambin electron charge-density Exploiting MPP version for SCF and P version for properties 500x500x500 grid of points

24 Crambin electron charge-density About 23 days if run on 1 CPU 10 hours if run on 64 CPUs

25 ρ(r) in 3D: Electrostatic potential in CPO-27-M CPO-27-M: M 2 (dhtp)(h 2 O) 2 8H 2 O dhtp=2,5-dihydroxyterephtalic acid + - Unsaturated metal site CPO-27-Mg

26 ECHG 0 65 COORDINA MARGINS END Electron charge density 2D plot: ECHG E.g.: MgO fcc cubic cell RHF/EBS Notes: Atomic positions can also be used to define A, B and C Window can be made rectangular ECD from a different density matrix: PDIDE, PBAN ECD difference from atoms: PATO Mulliken population analysis order of the derivatives charge density gradients number of point along the B-A segment Cartesian coord.s of points A,B,C defining the 2D window Cartesian coordinates of point A (Å) Cartesian coordinates of point B (Å) Cartesian coordinates of point C (Å) margins are added to the window (order: AB,CD,AD,BC) width of the margins (order: AB,CD,AD,BC) End of properties input

27 ECH3 Electron charge density 3D plot: ECH3 Notes: Grid of point in the primitive unit cell Data stored in fortran unit: fort.31 (DLV) Also saved as cube file: DENS_CUBE.DAT (J-ICE)

28 POT3 Electrostatic Potential 3D plot: POT3 Notes: Data stored in fortran unit: fort.31 (DLV) Also saved as cube file: POT_CUBE.DAT (J-ICE) It can be mapped on a ECD isosurface computed with ECH3

29 J-ICE: A Cloud Visualization Tool for CRYSTAL

30 Analysis of the electronic density Visual 2D and 3D plots ECHG ECH3 Numerical Mulliken population analysis PPAN charge of orbital µ charge of atom A bond charge between atoms A and B

31 PPAN PPAN END Mulliken population analysis: PPAN Mulliken population analysis End of properties input Printed information: AO population Shell population Overlap population

32 ECD: Topological Analysis CP = Critical Point TOPOND is a program that performs the topological analysis of the ECD as computed by CRYSTAL. Now merged into CRYSTAL14

33 ECD: Topological Analysis

34 Experimental Charge Density

35 Static Structure Factors Fourier Transform of the electron charge density

36 Dynamic Structure Factors

37 XFAC Debye-Waller Atomic Thermal Factors

38 Reciprocal Space

39 Reciprocal space properties Band structure Density of states spectrum of one-electron energy levels number of states available at each energy BAND DOSS E LUMO HOMO band gap E conduction band E F valence band molecules solids

40 The language of band structure To make sense of the marvelous electronic properties of the solid state, chemists must learn the language of solid state physics, of band structure R. Hoffmann Traslation invariance in crystalline systems leads to a band structure: Electronic bands Vibrational bands (phonons) Spin bands (spin waves)... Main features of a band structure are: Band width Band gap Fermi level (BWIDTH, ANBD)

41 Band structure representation: α-quartz conduction band Fermi energy gaps 2p O Energy (hartree) 2s Si 1s O 2p Si } 3p Si 2s O valence bands 1s Si top valence band k path

42 BAND MgO END Band structure: BAND E.g.: MgO fcc cubic cell RHF/EBS Band structure Title 4: number of path in the BZ 8: shrinking factor to define the extreme of the path 60: number of k-points along the path 1: first band to be saved 18: last band to be saved 1: plotting option (1=fort.25) 0: printing options (no) Γ X X W Extremes of the paths in the BZ W L as multiple of the shrinking factor L Γ End of properties input Information needed: Path in the BZ Number of bands to be computed. Suggestion: all

43 Bilbao Crystallographic Server For all 230 space groups List of special k-points in the BZ Plot of the BZ E.g.: for shrinking factor 8 ½, 0, ½ ½, ¼, ¾ 4 2 6

44 A simple example: an infinite linear chain a

45 A simple example: an infinite linear chain Minimal basis set one Bloch function per CO 1 elettron/cell monodimensional matrices By using translation invariance π/a α-2β 4β π/a k α+2β -1.0 E

46 Band gap in solids: DFT methods (II) Calculated band structure for cubic KNbO 3 along the Γ-X direction of reciprocal space, as a function of the Hamiltonian. The values indicate the mixing parameter α in global hybrid HF-BLYP scheme: E X = αe X HF + (1-α)E X BLYP. F. Corà, M. Alfredsson, G. Mallia, D.S. Middlemiss, W.C. Mackrodt, R. Dovesi, R. Orlando, Structure and Bonding 113 (2004) 171

47 Band gap in solids: DFT methods (I) Comparison of experimental band gaps for the SC/40 set with values computed with four different generations of DFT. The local spin-density approximation (LSDA), a generalized-gradient approximation (PBE), a meta- GGA (TPSS), and the hybrid functional HSE03. Accuracy : Hybrid > mgga > GGA > LDA SC/40: 40 semiconductors J. Heid, J.E. Peralta, G.E. Scuseria, R.L. Martin, J. Chem. Phys. 123 (2005)

48 Density of states The density of states can be projected onto the atomic orbitals (PDOS): V BZ : volume of the Brillouin zone δ: Dirac s delta function The density of states projected onto atom A: (based on Mulliken partition of charges) Total density of states: In the integration we lose information: DOS is less informative than band structures, but simpler for big systems and PDOS allows to pick AO contribution to bands.

49 WO3: bulk, surfaces, defects DOS, PDOS (How many levels available at each energy, N(E)) Surface states kink states defect states ~200 atoms: impossible to Highlight in band-structure.

50 Density of States: DOSS E.g.: MgO fcc cubic cell RHF/EBS NEWK DOSS END Band structure Shrinking factors: IS1, ISP Fermi energy; no printing options 2: nr. of projections (total DOS always computed) 200: number of points along energy axis 7: first band to be saved 14: last band to be saved 1: plotting option (1=fort.25) 12: degree of the polynomial used for DOSs expansion 0: printing options (no) -1 1: projection onto all the AOs (-1) of Mg (1st atom) -1 2: projection onto all the AOs (-1) of O (2nd atom) End of properties input Information needed: NEWK must be always run before DOSS Projection can be also done on selected atomic orbitals

51 Compton Effect

52 Compton Profiles A directional Compton profile of crystalline urea.

53 Compton Profiles

54 DFT Failure in Momentum Space

55 Compton Profiles with CRYSTAL BIDIERD

ASSESSMENT OF DFT METHODS FOR SOLIDS

ASSESSMENT OF DFT METHODS FOR SOLIDS MSSC2009 - Ab Initio Modeling in Solid State Chemistry ASSESSMENT OF DFT METHODS FOR SOLIDS Raffaella Demichelis Università di Torino Dipartimento di Chimica IFM 1 MSSC2009 - September, 10 th 2009 Table

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations

IFM Chemistry Computational Chemistry 2010, 7.5 hp LAB2. Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Computer laboratory exercise 1 (LAB2): Quantum chemical calculations Introduction: The objective of the second computer laboratory exercise is to get acquainted with a program for performing quantum chemical

More information

Vibrational frequencies in solids: tools and tricks

Vibrational frequencies in solids: tools and tricks Vibrational frequencies in solids: tools and tricks Roberto Dovesi Gruppo di Chimica Teorica Università di Torino Torino, 4-9 September 2016 This morning 3 lectures: R. Dovesi Generalities on vibrations

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

CHEM6085: Density Functional Theory

CHEM6085: Density Functional Theory Lecture 11 CHEM6085: Density Functional Theory DFT for periodic crystalline solids C.-K. Skylaris 1 Electron in a one-dimensional periodic box (in atomic units) Schrödinger equation Energy eigenvalues

More information

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig

7/29/2014. Electronic Structure. Electrons in Momentum Space. Electron Density Matrices FKF FKF. Ulrich Wedig Electron Density Matrices Density matrices Γ, an alternative to the wavefunction Ψ, for the description of a quantum system Electronic Structure The N-particle density matrix Electrons in Momentum Space

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

ELEMENTARY BAND THEORY

ELEMENTARY BAND THEORY ELEMENTARY BAND THEORY PHYSICIST Solid state band Valence band, VB Conduction band, CB Fermi energy, E F Bloch orbital, delocalized n-doping p-doping Band gap, E g Direct band gap Indirect band gap Phonon

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

Translation Symmetry, Space Groups, Bloch functions, Fermi energy

Translation Symmetry, Space Groups, Bloch functions, Fermi energy Translation Symmetry, Space Groups, Bloch functions, Fermi energy Roberto Orlando and Silvia Casassa Università degli Studi di Torino July 20, 2015 School Ab initio Modelling of Solids (UniTo) Symmetry

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

Density Functional Theory - II part

Density Functional Theory - II part Density Functional Theory - II part antonino.polimeno@unipd.it Overview From theory to practice Implementation Functionals Local functionals Gradient Others From theory to practice From now on, if not

More information

DFT / SIESTA algorithms

DFT / SIESTA algorithms DFT / SIESTA algorithms Javier Junquera José M. Soler References http://siesta.icmab.es Documentation Tutorials Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Configurational and energetical study of the (100) and

More information

Orbital Density Dependent Functionals

Orbital Density Dependent Functionals Orbital Density Dependent Functionals S. Kluepfel1, P. Kluepfel1, Hildur Guðmundsdóttir1 and Hannes Jónsson1,2 1. Univ. of Iceland; 2. Aalto University Outline: Problems with GGA approximation (PBE, RPBE,...)

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration Prepared by Lydia Nemec and Volker Blum Berlin, May 2012 Some rules on expected documentation

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

Introduction to first-principles modelling and CASTEP

Introduction to first-principles modelling and CASTEP to first-principles modelling and Phil Hasnip to + Atomistic Simulations If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Spin densities and related quantities in paramagnetic defects

Spin densities and related quantities in paramagnetic defects Spin densities and related quantities in paramagnetic defects Roberto Orlando Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale Via G. Bellini 25/G, Alessandria roberto.orlando@unipmn.it

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

Exchange-Correlation Functional

Exchange-Correlation Functional Exchange-Correlation Functional Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Gaussian Basis Sets for Solid-State Calculations

Gaussian Basis Sets for Solid-State Calculations Gaussian Basis Sets for Solid-State Calculations K. Doll Molpro Quantum Chemistry Software Institute of Theoretical Chemistry, D-70569 Stuttgart, Germany MW-MSSC 2017, Minneapolis, July 10, 2017 Introduction

More information

Electrons in a weak periodic potential

Electrons in a weak periodic potential Electrons in a weak periodic potential Assumptions: 1. Static defect-free lattice perfectly periodic potential. 2. Weak potential perturbative effect on the free electron states. Perfect periodicity of

More information

Speed-up of ATK compared to

Speed-up of ATK compared to What s new @ Speed-up of ATK 2008.10 compared to 2008.02 System Speed-up Memory reduction Azafulleroid (molecule, 97 atoms) 1.1 15% 6x6x6 MgO (bulk, 432 atoms, Gamma point) 3.5 38% 6x6x6 MgO (k-point sampling

More information

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type

Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Supplemental Material: Experimental and Theoretical Investigations of the Electronic Band Structure of Metal-Organic Framework of HKUST-1 Type Zhigang Gu, a Lars Heinke, a,* Christof Wöll a, Tobias Neumann,

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » Recap of HK theorems and KS equations» The physical meaning of the XC energy» Solution of a one-particle Schroedinger equation» Pseudo Potentials»

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

2. Surface geometric and electronic structure: a primer

2. Surface geometric and electronic structure: a primer 2. Surface geometric and electronic structure: a primer 2.1 Surface crystallography 2.1.1. Crystal structures - A crystal structure is made up of two basic elements: lattice + basis Basis: Lattice: simplest

More information

Ab initio structure prediction for molecules and solids

Ab initio structure prediction for molecules and solids Ab initio structure prediction for molecules and solids Klaus Doll Max-Planck-Institute for Solid State Research Stuttgart Chemnitz, June/July 2010 Contents structure prediction: 1) global search on potential

More information

DFT: Exchange-Correlation

DFT: Exchange-Correlation DFT: Local functionals, exact exchange and other post-dft methods Stewart Clark University of Outline Introduction What is exchange and correlation? Quick tour of XC functionals (Semi-)local: LDA, PBE,

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel?

CRYSTAL in parallel: replicated and distributed (MPP) data. Why parallel? CRYSTAL in parallel: replicated and distributed (MPP) data Roberto Orlando Dipartimento di Chimica Università di Torino Via Pietro Giuria 5, 10125 Torino (Italy) roberto.orlando@unito.it 1 Why parallel?

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Quantum Condensed Matter Physics Lecture 4

Quantum Condensed Matter Physics Lecture 4 Quantum Condensed Matter Physics Lecture 4 David Ritchie QCMP Lent/Easter 2019 http://www.sp.phy.cam.ac.uk/drp2/home 4.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Quantum chemical studies of the physics around the metal-insulator transition in (EDO- TTF)2PF6 Linker, Gerrit

Quantum chemical studies of the physics around the metal-insulator transition in (EDO- TTF)2PF6 Linker, Gerrit University of Groningen Quantum chemical studies of the physics around the metal-insulator transition in (EDO- TTF)2PF6 Linker, Gerrit IMPORTANT NOTE: You are advised to consult the publisher's version

More information

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO

MODULE 2: QUANTUM MECHANICS. Practice: Quantum ESPRESSO MODULE 2: QUANTUM MECHANICS Practice: Quantum ESPRESSO I. What is Quantum ESPRESSO? 2 DFT software PW-DFT, PP, US-PP, PAW http://www.quantum-espresso.org FREE PW-DFT, PP, PAW http://www.abinit.org FREE

More information

Jun Yang, Michael Dolg Institute of Theoretical Chemistry, University of Cologne Greinstr. 4, D-50939, Cologne, Germany

Jun Yang, Michael Dolg Institute of Theoretical Chemistry, University of Cologne Greinstr. 4, D-50939, Cologne, Germany Ab initio Density Functional Theory Investigation of Monoclinic BiB 3 O 6 within a LCAO Scheme: the Bi lone pair and its role in electronic structure and vibrational modes Jun Yang, Michael Dolg Institute

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Phonon calculations with SCAN

Phonon calculations with SCAN Workshop on the SCAN density functional: Fundamentals, practices, and extensions Temple university, Philadelphia May 18th, 2017 Hands-on tutorial 3 Phonon calculations with SCAN Yubo Zhang and Jianwei

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-3 Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Qunatum Methods for Plasma-Facing Materials Alain ALLOUCHE Univ.de Provence, Lab.de la Phys.

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Density matrix functional theory vis-á-vis density functional theory

Density matrix functional theory vis-á-vis density functional theory Density matrix functional theory vis-á-vis density functional theory 16.4.007 Ryan Requist Oleg Pankratov 1 Introduction Recently, there has been renewed interest in density matrix functional theory (DMFT)

More information

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory.

Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn was awarded with the Nobel Prize in Chemistry in 1998 for his development of the density functional theory. Walter Kohn receiving his Nobel Prize from His Majesty the King at the Stockholm

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

Orbital dependent correlation potentials in ab initio density functional theory

Orbital dependent correlation potentials in ab initio density functional theory Orbital dependent correlation potentials in ab initio density functional theory noniterative - one step - calculations Ireneusz Grabowski Institute of Physics Nicolaus Copernicus University Toruń, Poland

More information

Population Analysis. Mulliken Population Analysis APPENDIX S

Population Analysis. Mulliken Population Analysis APPENDIX S APPENDIX S Population Analysis On p. 665, electronic density ρ is defined. If the wave function is a Slater determinant p. 397) and assuming the double occupancy of orbitals ϕ i, we have see 11.7) ρ r

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Calculations of band structures

Calculations of band structures Chemistry and Physics at Albany Planning for the Future Calculations of band structures using wave-function based correlation methods Elke Pahl Centre of Theoretical Chemistry and Physics Institute of

More information

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University

Advanced Quantum Chemistry III: Part 3. Haruyuki Nakano. Kyushu University Advanced Quantum Chemistry III: Part 3 Haruyuki Nakano Kyushu University 2013 Winter Term 1. Hartree-Fock theory Density Functional Theory 2. Hohenberg-Kohn theorem 3. Kohn-Sham method 4. Exchange-correlation

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT

Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Self-Consistent Implementation of Self-Interaction Corrected DFT and of the Exact Exchange Functionals in Plane-Wave DFT Kiril Tsemekhman (a), Eric Bylaska (b), Hannes Jonsson (a,c) (a) Department of Chemistry,

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Table of Contents. Table of Contents Bi2Se3 topological insulator. Build the Bi2Se3 crystal. Bi2Se3 bulk band structure

Table of Contents. Table of Contents Bi2Se3 topological insulator. Build the Bi2Se3 crystal. Bi2Se3 bulk band structure Table of Contents Table of Contents Bi2Se3 topological insulator Build the Bi2Se3 crystal Lattice Basis Bi2Se3 bulk band structure GGA calculation SOGGA calculation Results Bi2Se3 surface: Spin-orbit band

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory

Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that. Keith Refson STFC Rutherford Appleton Laboratory Electronic band structure, sx-lda, Hybrid DFT, LDA+U and all that Keith Refson STFC Rutherford Appleton Laboratory LDA/GGA DFT is good but... Naive LDA/GGA calculation severely underestimates band-gaps.

More information

Electronic Structure of Crystalline Solids

Electronic Structure of Crystalline Solids Electronic Structure of Crystalline Solids Computing the electronic structure of electrons in solid materials (insulators, conductors, semiconductors, superconductors) is in general a very difficult problem

More information

MODULE 2: QUANTUM MECHANICS. Principles and Theory

MODULE 2: QUANTUM MECHANICS. Principles and Theory MODULE 2: QUANTUM MECHANICS Principles and Theory You are here http://www.lbl.gov/cs/html/exascale4energy/nuclear.html 2 Short Review of Quantum Mechanics Why do we need quantum mechanics? Bonding and

More information

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno Quantum Chemical Simulations and Descriptors Dr. Antonio Chana, Dr. Mosè Casalegno Classical Mechanics: basics It models real-world objects as point particles, objects with negligible size. The motion

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

Dalton Quantum Chemistry Program

Dalton Quantum Chemistry Program 1 Quotation from home page: Dalton Quantum Chemistry Program Dalton QCP represents a powerful quantum chemistry program for the calculation of molecular properties with SCF, MP2, MCSCF or CC wave functions.

More information

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Lecture Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Reminder

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Lecture 2: Bonding in solids

Lecture 2: Bonding in solids Lecture 2: Bonding in solids Electronegativity Van Arkel-Ketalaar Triangles Atomic and ionic radii Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonds in Reciprocal space

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Wavefunction and electronic struture in solids: Bloch functions, Fermi level and other concepts.

Wavefunction and electronic struture in solids: Bloch functions, Fermi level and other concepts. Wavefunction and electronic struture in solids: Bloch functions, Fermi level and other concepts. Silvia Casassa Università degli Studi di Torino July 12, 2017 Minnesota Workshop on ab initio MSC Symmetry

More information

The Self Interaction Correction revisited

The Self Interaction Correction revisited The Self Interaction Correction revisited Explicit dynamics of clusters and molecules under irradiation Spectroscopic accuracy at low energy SIC problem : one electron interacts with its own mean-field!

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

Lecture 4: Basic elements of band theory

Lecture 4: Basic elements of band theory Phys 769 Selected Topics in Condensed Matter Physics Summer 010 Lecture 4: Basic elements of band theory Lecturer: Anthony J. Leggett TA: Bill Coish 1 Introduction Most matter, in particular most insulating

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

Table of Contents. Table of Contents Spin-orbit splitting of semiconductor band structures

Table of Contents. Table of Contents Spin-orbit splitting of semiconductor band structures Table of Contents Table of Contents Spin-orbit splitting of semiconductor band structures Relavistic effects in Kohn-Sham DFT Silicon band splitting with ATK-DFT LSDA initial guess for the ground state

More information

Example: H 2 O (the car file)

Example: H 2 O (the car file) Example: H 2 O (the car file) As a practical example of DFT methods we calculate the energy and electronic properties of the water molecule. In order to carry out the DFT calculation you will need a set

More information

INPUT DESCRIPTION FOR SQM version 1.0

INPUT DESCRIPTION FOR SQM version 1.0 INPUT DESCRIPTION FOR SQM version 1.0 INTRODUCTION SQM is an add-on module for the PQS program which scales force constants to produce a Scaled Quantum Mechanical (SQM) Force Field. This can correct for

More information

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Torino, Italy, September 4-9, 2016 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Supporting Information

Supporting Information Supporting Information Three Polymorphic Forms of Ciprofloxacin Maleate: Formation Pathways, Crystal Structures, Calculations and Thermodynamic Stability Aspects Artem O. Surov a, Andrei V. Churakov b,

More information