Protein tertiary structure prediction with new machine learning approaches

Size: px
Start display at page:

Download "Protein tertiary structure prediction with new machine learning approaches"

Transcription

1 Protein tertiary structure prediction with new machine learning approaches Rui Kuang Department of Computer Science Columbia University Supervisor: Jason Weston(NEC) and Christina Leslie(Columbia) NEC summer internship talk, August 30th, 2005

2 Agenda 1. Introduction to protein structure 2. Protein backbone angle prediction with structured output learning 3. Protein domain detection based on protein structural classification 4. Discussion

3 1. Protein structure 2. Backbone angle prediction 3. Domain detection 4. Discussion Part 1: Protein structure Protein Derived from Greek word proteios meaning of the first rank in 1838 by Jöns J. Berzelius Crucial in all biological processes Function depends on structure (structure can help us to understand function) Determination of protein structures is time consuming and expensive

4 How to describe protein structure Primary structure: amino acid sequence Secondary structure: local structure elements Tertiary structure: packing and arrangement of secondary structure, also called domain Quaternary structure: arrangement of several polypeptide chains

5 Describe protein tertiary structure by protein backbone angles Phi-Psi Angles 3-D structure (Φ1,Ψ1) (Too complicated to predict!) (Φ2,Ψ2) (Φ3,Ψ3) (Φ4,Ψ4) Simplify (Φ5,Ψ5) (Φ6,Ψ6) (Φ7,Ψ7) (Φ8,Ψ8)

6 Discretization of Phi-Psi Psi angles: conformational states Oliver et al.(journal of Molecular Biology, 1997)

7 Protein blocks 16 small prototypes (a-p) of local protein structures of 5 residue length, clustered from Phi-Psi angles Phi-Psi Angles (Φ1,Ψ1) (Φ2,Ψ2) (Φ3,Ψ3) (Φ4,Ψ4) (Φ5,Ψ5) (Φ6,Ψ6) (Φ7,Ψ7) (Φ8,Ψ8) Protein Blocks g l p d b b m De Brevern et al.(protein Science, 2002)

8 Summary: representations of 3-D 3 D protein structure 3-D structure Phi-Psi Angles (Φ1,Ψ1) (Φ2,Ψ2) (Φ3,Ψ3) (Φ4,Ψ4) (Φ5,Ψ5) (Φ6,Ψ6) (Φ7,Ψ7) (Φ8,Ψ8) Conformational States: AAAGBBBBBBGEBBBB Protein Blocks: ammmalpppmmlmlbb

9 Protein domains A polypeptide chain or a part of a polypeptide chain that can fold independently into a stable tertiary structure.

10 1. Protein structure 2. Backbone angle prediction 3. Domain detection 4. Discussion Part 2: Prediction of protein backbone angle with structured output learning

11 Naïve window-based approach Encode each position independently with sequence information within a length-k window. Kuang, Leslie and Yang et al.(bioinformatics, 2004) Conformational States A A A B B B B G We are neighbors! G We have E dependency! B B B B B A: A: B: B: B: To SVM Predictions are independent.

12 2-Stage window-based approach Take the prediction of the naïve window-based approach as input to a second sets of SVMs. Ideally this smoothing step can correct some wrong predictions. A second stage of smoothing Sequence profiles SVM Prediction profiles A B G E SVM Window-based mapping Predictions Window-based mapping Naïve window-based approach Final Predictions AABGBEGE

13 Topographic SVM Training with profiles+true labels iteratively update the predictions in the testing phase. Sequence profiles Sequence profiles True Label profiles A B G E Window-based mapping Training SVM Window-based mapping Update predictions Mohr and Obermayer et al. (NIPS,2004) Testing + Prediction profiles A B G E From a base approach for the first round

14 Struct-SVM SVM Training: make joint feature mapping and apply large margin principle for the difference between the feature mapping of correct label and of wrong label. This is equivalent to the following optimization problem Testing: a pre-image problem Tsochantaridis(ICML, 2004)

15 Pre-image for Labeling Sequences Hidden-Markov kernel Pre-image is equivalent to Viterbidecoding of a HMM built from support vectors Altun et al. (ICML 2003)

16 Preliminary Results Prediction of Conformational States: 697 sequences of 97,365 amino acids with sequence identity < 25 % Prediction of Protein Blocks: 675 sequences of 146,978 amino acids with sequence identity < 30 % Methods State of art Naïve window-based approach 2-Stage window-based approach Topographic SVM SVM for structured output Accuracy (Conformational States) 75.0% 75.0% 76.0%> 75.3% 70.0%> Accuracy (Protein Blocks) 40.3% 57.7% 59.5%> 58.4% 50%>

17 1. Introduction 2. Backbone angle prediction 3. Domain detection 4. Discussion Part 3: Protein domain detection based on protein structural classification

18 Protein structural classification SCOP Fold Superfamily Family Positive Training Set Murzin et al. (Journal of Molecular Biology, 1995) Negative Training Set Positive Test Set Negative Test Set Family : Sequence identity > 30% or functions and structures are very similar Superfamily : low sequence similarity but functional features suggest probable common evolutionary origin Common fold : same major secondary structures in the same arrangement with the same topological connections

19 Spectrum kernel Feature map indexed by all possible k-length subsequences ( k-mers ) from alphabet Σ of amino acids, Σ = 20 Q1:AKQDYYYYE AKQ KQD QDY DYY YYY YYY YYE Feature Space (AAA-YYY) 1 AKQ 1 1 DYY 1 0 EIA 1 0 IAK 1 1 KQD 0 0 KQY 1 1 QDY 0 0 YEI 1 1 YYE 1 2 YYY 0 Leslie et al. (PSB, 2002) Q2:DYYEIAKQY DYY YYE YEI EIA IAK AKQ KQY K(Q1,Q2)=<( ),( )>=3

20 Profile kernel { } P(x) = p j (b),b Σ, j =1K x Use profile to define position-dependent mutation neighborhoods: E.g. k=3, σ=5 and a profile of negative log probabilities M ( k,σ P( x[ j+ 1: j + k] ))= A K Q ( ) A { C b 1 b 2 Lb k : log( p j + i ( b i )) < σ} i D AKQ YKQ K YKC (2+1+1<σ) AKQ AKC (2+1+1<σ) Q Y (1+1+1<σ) (1+1+2<σ) AKQ ( 0,, 1,, 1,, 1,, 1,, 0 ) AKC AKQ YKC YKQ Kuang and Leslie et al.(jbcb, 2005)

21 Positional classification scores PDB ID: 1f2e PDB ID:1hnf A simple probabilistic model to detect domains: P( S, E F) = P( s 2, e 2 P( s 0 F)* P( e 2, s 1 1 F)* P( s + 1, S 3 1, e 1 F)* P( e + 1, s 1 F)* 1 F)*...* P( sn, en F)* P( en + 1, F 1 2 F)

22 1.Dataset Experiments 7,329 sequences from SCOP Sequence identity less than 95%. 2.Preliminary Results (with a simplified model) Criteria Domain positions Domain start Domain end Accuracy 73.2% 51.1% 31.1% Coverage 73.1% 36.0% 21.9%

23 Part 4: Discussion 1. Introduction 2. Backbone angle prediction 3. Domain detection 4. Discussion Dependency between conformational states or protein blocks does not help much in the 2-stage window-based approach. Struct-SVM does not scale very well for large problems. Perceptron training may speed up the training stage. A proper probabilistic model is needed for detecting domain boundaries from positional classification scores

24 Acknowledgement William Stafford Noble Genome Science Department, University of Washington Asa Ben-Hur Genome Science Department, University of Washington An-Suei Yang Genome Research Center, Academia Sinica of Taiwan Yasemin Altun Toyota Technological Institute at Chicago Thorsten Joachims Computer Science Department, Cornell University

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder

HMM applications. Applications of HMMs. Gene finding with HMMs. Using the gene finder HMM applications Applications of HMMs Gene finding Pairwise alignment (pair HMMs) Characterizing protein families (profile HMMs) Predicting membrane proteins, and membrane protein topology Gene finding

More information

December 2, :4 WSPC/INSTRUCTION FILE jbcb-profile-kernel. Profile-based string kernels for remote homology detection and motif extraction

December 2, :4 WSPC/INSTRUCTION FILE jbcb-profile-kernel. Profile-based string kernels for remote homology detection and motif extraction Journal of Bioinformatics and Computational Biology c Imperial College Press Profile-based string kernels for remote homology detection and motif extraction Rui Kuang 1, Eugene Ie 1,3, Ke Wang 1, Kai Wang

More information

SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition Iain Melvin 1,2, Eugene Ie 3, Rui Kuang 4, Jason Weston 1, William Stafford Noble 5, Christina Leslie 2,6 1 NEC

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity.

2MHR. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. Protein structure classification is important because it organizes the protein structure universe that is independent of sequence similarity. A global picture of the protein universe will help us to understand

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Structure Comparison CMPS 6630: Introduction to Computational Biology and Bioinformatics Structure Comparison Protein Structure Comparison Motivation Understand sequence and structure variability Understand Domain architecture

More information

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008

Jessica Wehner. Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Journal Club Jessica Wehner Summer Fellow Bioengineering and Bioinformatics Summer Institute University of Pittsburgh 29 May 2008 Comparison of Probabilistic Combination Methods for Protein Secondary Structure

More information

CAP 5510 Lecture 3 Protein Structures

CAP 5510 Lecture 3 Protein Structures CAP 5510 Lecture 3 Protein Structures Su-Shing Chen Bioinformatics CISE 8/19/2005 Su-Shing Chen, CISE 1 Protein Conformation 8/19/2005 Su-Shing Chen, CISE 2 Protein Conformational Structures Hydrophobicity

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 2/15/07 CAP5510 1 EM Algorithm Goal: Find θ, Z that maximize Pr

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Fall 2017 Databases and Protein Structure Representation October 2, 2017 Molecular Biology as Information Science > 12, 000 genomes sequenced, mostly bacterial (2013) > 5x10 6 unique sequences available

More information

A new prediction strategy for long local protein. structures using an original description

A new prediction strategy for long local protein. structures using an original description Author manuscript, published in "Proteins Structure Function and Bioinformatics 2009;76(3):570-87" DOI : 10.1002/prot.22370 A new prediction strategy for long local protein structures using an original

More information

Basics of protein structure

Basics of protein structure Today: 1. Projects a. Requirements: i. Critical review of one paper ii. At least one computational result b. Noon, Dec. 3 rd written report and oral presentation are due; submit via email to bphys101@fas.harvard.edu

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

Motif Prediction in Amino Acid Interaction Networks

Motif Prediction in Amino Acid Interaction Networks Motif Prediction in Amino Acid Interaction Networks Omar GACI and Stefan BALEV Abstract In this paper we represent a protein as a graph where the vertices are amino acids and the edges are interactions

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Template Free Protein Structure Modeling Jianlin Cheng, PhD

Template Free Protein Structure Modeling Jianlin Cheng, PhD Template Free Protein Structure Modeling Jianlin Cheng, PhD Professor Department of EECS Informatics Institute University of Missouri, Columbia 2018 Protein Energy Landscape & Free Sampling http://pubs.acs.org/subscribe/archive/mdd/v03/i09/html/willis.html

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

#33 - Genomics 11/09/07

#33 - Genomics 11/09/07 BCB 444/544 Required Reading (before lecture) Lecture 33 Mon Nov 5 - Lecture 31 Phylogenetics Parsimony and ML Chp 11 - pp 142 169 Genomics Wed Nov 7 - Lecture 32 Machine Learning Fri Nov 9 - Lecture 33

More information

Fast and accurate semi-supervised protein homology detection with large uncurated sequence databases

Fast and accurate semi-supervised protein homology detection with large uncurated sequence databases Rutgers Computer Science Technical Report RU-DCS-TR634 May 2008 Fast and accurate semi-supervised protein homology detection with large uncurated sequence databases by Pai-Hsi Huang, Pavel Kuksa, Vladimir

More information

K-means-based Feature Learning for Protein Sequence Classification

K-means-based Feature Learning for Protein Sequence Classification K-means-based Feature Learning for Protein Sequence Classification Paul Melman and Usman W. Roshan Department of Computer Science, NJIT Newark, NJ, 07102, USA pm462@njit.edu, usman.w.roshan@njit.edu Abstract

More information

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics

Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Statistical Machine Learning Methods for Bioinformatics IV. Neural Network & Deep Learning Applications in Bioinformatics Jianlin Cheng, PhD Department of Computer Science University of Missouri, Columbia

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 the goal is the prediction of the secondary structure conformation which is local each amino

More information

Protein Structure Prediction using String Kernels. Technical Report

Protein Structure Prediction using String Kernels. Technical Report Protein Structure Prediction using String Kernels Technical Report Department of Computer Science and Engineering University of Minnesota 4-192 EECS Building 200 Union Street SE Minneapolis, MN 55455-0159

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

STRUCTURAL BIOINFORMATICS I. Fall 2015

STRUCTURAL BIOINFORMATICS I. Fall 2015 STRUCTURAL BIOINFORMATICS I Fall 2015 Info Course Number - Classification: Biology 5411 Class Schedule: Monday 5:30-7:50 PM, SERC Room 456 (4 th floor) Instructors: Vincenzo Carnevale - SERC, Room 704C;

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

The Homology Kernel: A Biologically Motivated Sequence Embedding into Euclidean Space

The Homology Kernel: A Biologically Motivated Sequence Embedding into Euclidean Space The Homology Kernel: A Biologically Motivated Sequence Embedding into Euclidean Space Eleazar Eskin Department of Computer Science Engineering University of California, San Diego eeskin@cs.ucsd.edu Sagi

More information

An Introduction to Machine Learning

An Introduction to Machine Learning An Introduction to Machine Learning L6: Structured Estimation Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune, January

More information

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence

Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Number sequence representation of protein structures based on the second derivative of a folded tetrahedron sequence Naoto Morikawa (nmorika@genocript.com) October 7, 2006. Abstract A protein is a sequence

More information

Lecture 18 Generalized Belief Propagation and Free Energy Approximations

Lecture 18 Generalized Belief Propagation and Free Energy Approximations Lecture 18, Generalized Belief Propagation and Free Energy Approximations 1 Lecture 18 Generalized Belief Propagation and Free Energy Approximations In this lecture we talked about graphical models and

More information

PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM

PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM 43 1 PROTEIN FOLD RECOGNITION USING THE GRADIENT BOOST ALGORITHM Feng Jiao School of Computer Science, University of Waterloo, Canada fjiao@cs.uwaterloo.ca Jinbo Xu Toyota Technological Institute at Chicago,

More information

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An Artificial

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Protein Fold Recognition Using Gradient Boost Algorithm

Protein Fold Recognition Using Gradient Boost Algorithm Protein Fold Recognition Using Gradient Boost Algorithm Feng Jiao 1, Jinbo Xu 2, Libo Yu 3 and Dale Schuurmans 4 1 School of Computer Science, University of Waterloo, Canada fjiao@cs.uwaterloo.ca 2 Toyota

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Similarity-Based Theoretical Foundation for Sparse Parzen Window Prediction

Similarity-Based Theoretical Foundation for Sparse Parzen Window Prediction Similarity-Based Theoretical Foundation for Sparse Parzen Window Prediction Nina Balcan Avrim Blum Nati Srebro Toyota Technological Institute Chicago Sparse Parzen Window Prediction We are concerned with

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

INDEXING METHODS FOR PROTEIN TERTIARY AND PREDICTED STRUCTURES

INDEXING METHODS FOR PROTEIN TERTIARY AND PREDICTED STRUCTURES INDEXING METHODS FOR PROTEIN TERTIARY AND PREDICTED STRUCTURES By Feng Gao A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements for

More information

Analysis of N-terminal Acetylation data with Kernel-Based Clustering

Analysis of N-terminal Acetylation data with Kernel-Based Clustering Analysis of N-terminal Acetylation data with Kernel-Based Clustering Ying Liu Department of Computational Biology, School of Medicine University of Pittsburgh yil43@pitt.edu 1 Introduction N-terminal acetylation

More information

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks

Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks Dynamic Probabilistic Models for Latent Feature Propagation in Social Networks Creighton Heaukulani and Zoubin Ghahramani University of Cambridge TU Denmark, June 2013 1 A Network Dynamic network data

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Support Vector Machines. Goals for the lecture

Support Vector Machines. Goals for the lecture Support Vector Machines Mark Craven and David Page Coputer Sciences 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Soe of the slides in these lectures have been adapted/borrowed fro aterials developed

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy

Presentation Outline. Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Prediction of Protein Secondary Structure using Neural Networks at Better than 70% Accuracy Burkhard Rost and Chris Sander By Kalyan C. Gopavarapu 1 Presentation Outline Major Terminology Problem Method

More information

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Biomedical Informatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD William and Nancy Thompson Missouri Distinguished Professor Department

More information

An Introduction to Bioinformatics Algorithms Hidden Markov Models

An Introduction to Bioinformatics Algorithms   Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Protein Structure Prediction Using Multiple Artificial Neural Network Classifier *

Protein Structure Prediction Using Multiple Artificial Neural Network Classifier * Protein Structure Prediction Using Multiple Artificial Neural Network Classifier * Hemashree Bordoloi and Kandarpa Kumar Sarma Abstract. Protein secondary structure prediction is the method of extracting

More information

Data Mining in Bioinformatics HMM

Data Mining in Bioinformatics HMM Data Mining in Bioinformatics HMM Microarray Problem: Major Objective n Major Objective: Discover a comprehensive theory of life s organization at the molecular level 2 1 Data Mining in Bioinformatics

More information

A New Similarity Measure among Protein Sequences

A New Similarity Measure among Protein Sequences A New Similarity Measure among Protein Sequences Kuen-Pin Wu, Hsin-Nan Lin, Ting-Yi Sung and Wen-Lian Hsu * Institute of Information Science Academia Sinica, Taipei 115, Taiwan Abstract Protein sequence

More information

Conditional Neural Fields

Conditional Neural Fields Conditional Neural Fields Jian Peng Toyota Technological Institute at Chicago 6045 S. Kenwood Ave. Chicago, IL 60637 jpengwhu@gmail.com Liefeng Bo Toyota Technological Institute at Chicago 6045 S. Kenwood

More information

A General Model for Amino Acid Interaction Networks

A General Model for Amino Acid Interaction Networks Author manuscript, published in "N/P" A General Model for Amino Acid Interaction Networks Omar GACI and Stefan BALEV hal-43269, version - Nov 29 Abstract In this paper we introduce the notion of protein

More information

Lecture 7 Sequence analysis. Hidden Markov Models

Lecture 7 Sequence analysis. Hidden Markov Models Lecture 7 Sequence analysis. Hidden Markov Models Nicolas Lartillot may 2012 Nicolas Lartillot (Universite de Montréal) BIN6009 may 2012 1 / 60 1 Motivation 2 Examples of Hidden Markov models 3 Hidden

More information

Study of Mining Protein Structural Properties and its Application

Study of Mining Protein Structural Properties and its Application Study of Mining Protein Structural Properties and its Application A Dissertation Proposal Presented to the Department of Computer Science and Information Engineering College of Electrical Engineering and

More information

Support Vector Machine. Natural Language Processing Lab lizhonghua

Support Vector Machine. Natural Language Processing Lab lizhonghua Support Vector Machine Natural Language Processing Lab lizhonghua Support Vector Machine Introduction Theory SVM primal and dual problem Parameter selection and practical issues Compare to other classifier

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

Automated Assignment of Backbone NMR Data using Artificial Intelligence

Automated Assignment of Backbone NMR Data using Artificial Intelligence Automated Assignment of Backbone NMR Data using Artificial Intelligence John Emmons στ, Steven Johnson τ, Timothy Urness*, and Adina Kilpatrick* Department of Computer Science and Mathematics Department

More information

Jeremy Chang Identifying protein protein interactions with statistical coupling analysis

Jeremy Chang Identifying protein protein interactions with statistical coupling analysis Jeremy Chang Identifying protein protein interactions with statistical coupling analysis Abstract: We used an algorithm known as statistical coupling analysis (SCA) 1 to create a set of features for building

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2014 1 HMM Lecture Notes Dannie Durand and Rose Hoberman November 6th Introduction In the last few lectures, we have focused on three problems related

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

MIRA, SVM, k-nn. Lirong Xia

MIRA, SVM, k-nn. Lirong Xia MIRA, SVM, k-nn Lirong Xia Linear Classifiers (perceptrons) Inputs are feature values Each feature has a weight Sum is the activation activation w If the activation is: Positive: output +1 Negative, output

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach

Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Identification of Representative Protein Sequence and Secondary Structure Prediction Using SVM Approach Prof. Dr. M. A. Mottalib, Md. Rahat Hossain Department of Computer Science and Information Technology

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Combining pairwise sequence similarity and support vector machines for remote protein homology detection

Combining pairwise sequence similarity and support vector machines for remote protein homology detection Combining pairwise sequence similarity and support vector machines for remote protein homology detection Li Liao Central Research & Development E. I. du Pont de Nemours Company li.liao@usa.dupont.com William

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Integrating multi-attribute similarity networks for robust representation of the protein space

Integrating multi-attribute similarity networks for robust representation of the protein space BIOINFORMATICS ORIGINAL PAPER Vol. 22 no. 13 2006, pages 1585 1592 doi:10.1093/bioinformatics/btl130 Structural bioinformatics Integrating multi-attribute similarity networks for robust representation

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Motif Extraction and Protein Classification

Motif Extraction and Protein Classification Motif Extraction and Protein Classification Vered Kunik 1 Zach Solan 2 Shimon Edelman 3 Eytan Ruppin 1 David Horn 2 1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel {kunikver,ruppin}@tau.ac.il

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

Graphical Models Another Approach to Generalize the Viterbi Algorithm

Graphical Models Another Approach to Generalize the Viterbi Algorithm Exact Marginalization Another Approach to Generalize the Viterbi Algorithm Oberseminar Bioinformatik am 20. Mai 2010 Institut für Mikrobiologie und Genetik Universität Göttingen mario@gobics.de 1.1 Undirected

More information

PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS

PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS PREDICTION OF PROTEIN BINDING SITES BY COMBINING SEVERAL METHODS T. Z. SEN, A. KLOCZKOWSKI, R. L. JERNIGAN L.H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University Ames, IA

More information

Machine Learning Approaches to Biological Sequence and Phenotype Data Analysis. Renqiang Min

Machine Learning Approaches to Biological Sequence and Phenotype Data Analysis. Renqiang Min Machine Learning Approaches to Biological Sequence and Phenotype Data Analysis by Renqiang Min A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2011 1 HMM Lecture Notes Dannie Durand and Rose Hoberman October 11th 1 Hidden Markov Models In the last few lectures, we have focussed on three problems

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences Jianlin Cheng, PhD Department of Computer Science University of Missouri 2008 Free for Academic

More information

Algorithms for Predicting Structured Data

Algorithms for Predicting Structured Data 1 / 70 Algorithms for Predicting Structured Data Thomas Gärtner / Shankar Vembu Fraunhofer IAIS / UIUC ECML PKDD 2010 Structured Prediction 2 / 70 Predicting multiple outputs with complex internal structure

More information

Hidden Markov Models. Terminology, Representation and Basic Problems

Hidden Markov Models. Terminology, Representation and Basic Problems Hidden Markov Models Terminology, Representation and Basic Problems Data analysis? Machine learning? In bioinformatics, we analyze a lot of (sequential) data (biological sequences) to learn unknown parameters

More information

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki.

Protein Bioinformatics. Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet sandberg.cmb.ki. Protein Bioinformatics Rickard Sandberg Dept. of Cell and Molecular Biology Karolinska Institutet rickard.sandberg@ki.se sandberg.cmb.ki.se Outline Protein features motifs patterns profiles signals 2 Protein

More information

Conditional Graphical Models for Protein Structure Prediction

Conditional Graphical Models for Protein Structure Prediction Conditional Graphical Models for Protein Structure Prediction Yan Liu Language Technologies Institute School of Computer Science Carnegie Mellon University Submitted in partial fulfillment of the requirements

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Outline 1. CG-Islands 2. The Fair Bet Casino 3. Hidden Markov Model 4. Decoding Algorithm 5. Forward-Backward Algorithm 6. Profile HMMs 7. HMM Parameter Estimation 8. Viterbi Training

More information

Support vector machines Lecture 4

Support vector machines Lecture 4 Support vector machines Lecture 4 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin Q: What does the Perceptron mistake bound tell us? Theorem: The

More information

Combining pairwise sequence similarity and support vector machines for remote protein homology detection

Combining pairwise sequence similarity and support vector machines for remote protein homology detection Combining pairwise sequence similarity and support vector machines for remote protein homology detection Li Liao Central Research & Development E. I. du Pont de Nemours Company li.liao@usa.dupont.com William

More information

frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity

frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity 1 frmsdalign: Protein Sequence Alignment Using Predicted Local Structure Information for Pairs with Low Sequence Identity HUZEFA RANGWALA and GEORGE KARYPIS Department of Computer Science and Engineering

More information

Classification of Ordinal Data Using Neural Networks

Classification of Ordinal Data Using Neural Networks Classification of Ordinal Data Using Neural Networks Joaquim Pinto da Costa and Jaime S. Cardoso 2 Faculdade Ciências Universidade Porto, Porto, Portugal jpcosta@fc.up.pt 2 Faculdade Engenharia Universidade

More information

A Support Vector Method for Multivariate Performance Measures

A Support Vector Method for Multivariate Performance Measures A Support Vector Method for Multivariate Performance Measures Thorsten Joachims Cornell University Department of Computer Science Thanks to Rich Caruana, Alexandru Niculescu-Mizil, Pierre Dupont, Jérôme

More information

Support Vector and Kernel Methods

Support Vector and Kernel Methods SIGIR 2003 Tutorial Support Vector and Kernel Methods Thorsten Joachims Cornell University Computer Science Department tj@cs.cornell.edu http://www.joachims.org 0 Linear Classifiers Rules of the Form:

More information

Reconstructing Amino Acid Interaction Networks by an Ant Colony Approach

Reconstructing Amino Acid Interaction Networks by an Ant Colony Approach Author manuscript, published in "Journal of Computational Intelligence in Bioinformatics 2, 2 (2009) 131-146" Reconstructing Amino Acid Interaction Networks by an Ant Colony Approach Omar GACI and Stefan

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 8: Sequence Labeling Jimmy Lin University of Maryland Thursday, March 14, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

Protein Complex Identification by Supervised Graph Clustering

Protein Complex Identification by Supervised Graph Clustering Protein Complex Identification by Supervised Graph Clustering Yanjun Qi 1, Fernanda Balem 2, Christos Faloutsos 1, Judith Klein- Seetharaman 1,2, Ziv Bar-Joseph 1 1 School of Computer Science, Carnegie

More information

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing

Bioinformatics. Proteins II. - Pattern, Profile, & Structure Database Searching. Robert Latek, Ph.D. Bioinformatics, Biocomputing Bioinformatics Proteins II. - Pattern, Profile, & Structure Database Searching Robert Latek, Ph.D. Bioinformatics, Biocomputing WIBR Bioinformatics Course, Whitehead Institute, 2002 1 Proteins I.-III.

More information

Protein Secondary Structure Prediction

Protein Secondary Structure Prediction Protein Secondary Structure Prediction Doug Brutlag & Scott C. Schmidler Overview Goals and problem definition Existing approaches Classic methods Recent successful approaches Evaluating prediction algorithms

More information