Protein Docking by Exploiting Multi-dimensional Energy Funnels

Size: px
Start display at page:

Download "Protein Docking by Exploiting Multi-dimensional Energy Funnels"

Transcription

1 Protein Docking by Exploiting Multi-dimensional Energy Funnels Ioannis Ch. Paschalidis 1 Yang Shen 1 Pirooz Vakili 1 Sandor Vajda 2 1 Center for Information and Systems Engineering and Department of Manufacturing Engineering 2 Department of Biomedical Engineering Boston Univeristy IEEE 2006 International Conference of EMBS Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

2 Outline 1 Background Protein Docking Problem Computational Approach 2 Our Work SDU: Semi-Definite Underestimator method Exploiting Energy Funnels for Conformational Search Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

3 Outline 1 Background Protein Docking Problem Computational Approach 2 Our Work SDU: Semi-Definite Underestimator method Exploiting Energy Funnels for Conformational Search Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

4 Protein Buidling block of life Linear chain of amino acids in sequence. Unique 3D structure. Biological function. figures by D. Leja, NHGRI and Alberts et.al, Garland Science Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

5 Protein Docking Protein-involved molecular interactions mediate many important biological processes. Targets of many drugs are to enhance or suppress protein functions. Protein docking seeks to computationally determine how proteins interact, given independent component structures. Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

6 Protein Docking Protein-involved molecular interactions mediate many important biological processes. Targets of many drugs are to enhance or suppress protein functions. Protein docking seeks to computationally determine how proteins interact, given independent component structures. Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

7 Outline 1 Background Protein Docking Problem Computational Approach 2 Our Work SDU: Semi-Definite Underestimator method Exploiting Energy Funnels for Conformational Search Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

8 Free Energy Minimization Energy minimum principle The native protein complex has the lowest free energy. Free energy model G = G s + E int + E vdw G s = E elec + G des T S sc + G other Characteristics Multi-frequency terms Funnel-like shape C. J. Camcacho and S. Vajda, PNAS, 2001 Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

9 Current Methods Monte Carlo minimization based approaches Low resolution search High resolution refinement Multi-stage approaches Rigid grid-based global search by FFT Filtering and clustering Refinement D. Baker et. al, JMB, 2003; D. Kozakov, K. H. Clodfelter, S. Vajda and C. J. Camacho, Biophysical Journal, 2005 Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

10 Outline 1 Background Protein Docking Problem Computational Approach 2 Our Work SDU: Semi-Definite Underestimator method Exploiting Energy Funnels for Conformational Search Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

11 Constructing Semi-Definite Underestimator Mathematical formulation minimize K j=1 (f (φj ) U(φ j ) subject to f (φ j ) U(φ j ), j = 1,..., K, U(φ) = φ Qφ + b φ + c Q 0 U max g ( x ) (scaled) f ( x ) U ( x ) Theorem Formulation above can be reformulated as a Semi-Definite Programming (SDP) problem and solved in polynomial time. Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

12 Biased Sampling Probability density function (p.d.f) g(φ) = U(φ) U max B (U(φ) U max) dφ = U(φ) U max, φ B. A g ( x ) (scaled) U max f ( x ) U ( x ) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

13 SDU Algorithm 1 Initialization: Obtain the set of K random local minima. 2 Underestimation: Solve SDP to obtain the underestimator U(φ) and predictive conformation φ P. 3 Elimination: Discard unfavorable local minima. 4 Focalization: Shrink search region B to the neighborhood of φ P. 5 Exploration: Add local minimum starting from φ P. Add m local minima starting from biased samples. 6 Termination: If convergence condition is statisfied, then stop; otherwise go to Step 2. Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

14 Convergence Theorem The predictive conformation φ P converges to the global minimum φ with probability 1 (w.p.1) as sample size K goes to infinity. lim K P[φP = φ ] = 1. I. Ch. Paschalidis, Y. Shen, S. Vajda and P. Vakili, IEEE Transactions on Automatic Control, in print Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

15 Outline 1 Background Protein Docking Problem Computational Approach 2 Our Work SDU: Semi-Definite Underestimator method Exploiting Energy Funnels for Conformational Search Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

16 Exploring Energy Funnels in Conformational Space Motivation Protein binding energy funnels were computationally explored in 1D dissimilarity variables instead of conformational space. Reduced Gō-type potential Residue-level Bound structures with C β side-chain representations Native contacts set N f (x) = (i,j) N (d ij(x) d u ) 1{d ij (x) > d u } + a (i,j) N E ij 1{d l d ij (x) d u } + b (i,j) 1{d ij(x) < d l } Conformational space SE(3) = R 3 SO(3) R 3 : Translational subspace (Euclidean) SO(3): Rotational group (manifold) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

17 Exploring Energy Funnels in Conformational Space Motivation Protein binding energy funnels were computationally explored in 1D dissimilarity variables instead of conformational space. Reduced Gō-type potential Residue-level Bound structures with C β side-chain representations Native contacts set N f (x) = (i,j) N (d ij(x) d u ) 1{d ij (x) > d u } + a (i,j) N E ij 1{d l d ij (x) d u } + b (i,j) 1{d ij(x) < d l } Conformational space SE(3) = R 3 SO(3) R 3 : Translational subspace (Euclidean) SO(3): Rotational group (manifold) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

18 Exploring Energy Funnels in Conformational Space Motivation Protein binding energy funnels were computationally explored in 1D dissimilarity variables instead of conformational space. Reduced Gō-type potential Residue-level Bound structures with C β side-chain representations Native contacts set N f (x) = (i,j) N (d ij(x) d u ) 1{d ij (x) > d u } + a (i,j) N E ij 1{d l d ij (x) d u } + b (i,j) 1{d ij(x) < d l } Conformational space SE(3) = R 3 SO(3) R 3 : Translational subspace (Euclidean) SO(3): Rotational group (manifold) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

19 Energy Funnels in SE(3) Translational funnels Displacement coordinates r Rotational funnels Exponential parametrization ω R 3 R = R 0 e Ω where R rotation matrix R 0 initial rotation matrix Ω skew-symmetric matrix formed by ω Euclidean distance ln(r 1 R 1 2 ) = ln(eω 1 Ω 2 ) = ω 1 ω 2 ( ) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

20 Energy Funnels in SE(3) Translational funnels Displacement coordinates r Rotational funnels Exponential parametrization ω R 3 R = R 0 e Ω where R rotation matrix R 0 initial rotation matrix Ω skew-symmetric matrix formed by ω Euclidean distance ln(r 1 R 1 2 ) = ln(eω 1 Ω 2 ) = ω 1 ω 2 ( ) Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

21 Search Strategy and Settings Computational search Iterative orientational and translational adjustment with SDU Test settings 10 bound protein complexes of different types Start from Å away Average translational displacement 10 Å Average orientational displacement 0.8 radian Initial search region doesn t include the native structure 12 Å cube in the translational subspace 0.3 radian cube in the orientational subspace Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

22 Comparison with Monte Carlo Measures η: success rate (RMSD 3Å) K : required number of energy evaluations to guarantee a success with a probability of 95% (K = max{log (1 η) (1 P), 1}) Algorithm MC SDU Measure η(%) K (K) η(%) K (K) Enzyme-Inhibitor Complexes 1AVW BRC CSE KAI PTC Antigen-Antibody or Other Complexes 1A0O AHW AVZ MLC JEL Average Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

23 Comparison with Monte Carlo Measures η: success rate (RMSD 3Å) K : required number of energy evaluations to guarantee a success with a probability of 95% (K = max{log (1 η) (1 P), 1}) Algorithm MC SDU Measure η(%) K (K) η(%) K (K) Enzyme-Inhibitor Complexes 1AVW BRC CSE KAI PTC Antigen-Antibody or Other Complexes 1A0O AHW AVZ MLC JEL Average Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

24 Sample Trajectory Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

25 Sample Trajectory Click for the movie* *This page is the web version of the talk. For the movie-embedded talk please download the compressed file at Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

26 Applicability in Real World Binding energy model E = E ACP desolvation + E elec electrostaics + E vdw van der Waals Molecular system settings Atom level resolution Unbound structures with flexible side-chains Test settings Benchmark set of 57 protein complexes Start from cluster centers of initial stage Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

27 Summary A novel global optimization method (SDU) tailored to funnel-like functions was introduced. Reduced potential helped understand and exploit the translational and orienntational energy funnels of protein binding energy. To achieve the same level of accuracy, our method reduced energy evaluations by more than a factor of two on average, compared to MC. Future Directions More accurate energy models. Side-chain packing. Paschalidis, Shen, Vakili, Vajda (BU) Protein Docking EMBC / 22

A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking

A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking 5nd IEEE Conference on Decision and Control December 10-13, 013. Florence, Italy A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking Mohammad Moghadasi, Dima Kozakov,

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes

Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes Introduction Chemical properties that affect binding of enzyme-inhibiting drugs to enzymes The production of new drugs requires time for development and testing, and can result in large prohibitive costs

More information

proteins REVIEW Sampling and scoring: A marriage made in heaven Sandor Vajda,* David R. Hall, and Dima Kozakov

proteins REVIEW Sampling and scoring: A marriage made in heaven Sandor Vajda,* David R. Hall, and Dima Kozakov proteins STRUCTURE O FUNCTION O BIOINFORMATICS REVIEW Sampling and scoring: A marriage made in heaven Sandor Vajda,* David R. Hall, and Dima Kozakov Department of Biomedical Engineering, Boston University,

More information

Combination of Scoring Functions Improves Discrimination in Protein Protein Docking

Combination of Scoring Functions Improves Discrimination in Protein Protein Docking PROTEINS: Structure, Function, and Genetics 52:000 000 (2003) AQ: 1 Combination of Scoring Functions Improves Discrimination in Protein Protein Docking John Murphy, David W. Gatchell, Jahnavi C. Prasad,

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

Prediction and refinement of NMR structures from sparse experimental data

Prediction and refinement of NMR structures from sparse experimental data Prediction and refinement of NMR structures from sparse experimental data Jeff Skolnick Director Center for the Study of Systems Biology School of Biology Georgia Institute of Technology Overview of talk

More information

Abstract. Introduction

Abstract. Introduction In silico protein design: the implementation of Dead-End Elimination algorithm CS 273 Spring 2005: Project Report Tyrone Anderson 2, Yu Bai1 3, and Caroline E. Moore-Kochlacs 2 1 Biophysics program, 2

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

Kd = koff/kon = [R][L]/[RL]

Kd = koff/kon = [R][L]/[RL] Taller de docking y cribado virtual: Uso de herramientas computacionales en el diseño de fármacos Docking program GLIDE El programa de docking GLIDE Sonsoles Martín-Santamaría Shrödinger is a scientific

More information

The mapping of a protein by experimental or computational tools

The mapping of a protein by experimental or computational tools Computational mapping identifies the binding sites of organic solvents on proteins Sheldon Dennis, Tamas Kortvelyesi, and Sandor Vajda Department of Biomedical Engineering, Boston University, Boston, MA

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015

Overview & Applications. T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 04 June, 2015 Overview & Applications T. Lezon Hands-on Workshop in Computational Biophysics Pittsburgh Supercomputing Center 4 June, 215 Simulations still take time Bakan et al. Bioinformatics 211. Coarse-grained Elastic

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy Functions

Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy Functions PROTEINS: Structure, Function, and Genetics 41:518 534 (2000) Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy Functions David W. Gatchell, Sheldon Dennis,

More information

Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450

Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450 Biochemistry 2006, 45, 9393-9407 9393 Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450 Karl H. Clodfelter,

More information

Structural Bioinformatics (C3210) Molecular Docking

Structural Bioinformatics (C3210) Molecular Docking Structural Bioinformatics (C3210) Molecular Docking Molecular Recognition, Molecular Docking Molecular recognition is the ability of biomolecules to recognize other biomolecules and selectively interact

More information

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy

Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Design of a Novel Globular Protein Fold with Atomic-Level Accuracy Brian Kuhlman, Gautam Dantas, Gregory C. Ireton, Gabriele Varani, Barry L. Stoddard, David Baker Presented by Kate Stafford 4 May 05 Protein

More information

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria Other Cells Hormones Viruses Toxins Cell Bacteria ΔH < 0 reaction is exothermic, tells us nothing about the spontaneity of the reaction Δ H > 0 reaction is endothermic, tells us nothing about the spontaneity

More information

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS TASKQUARTERLYvol.20,No4,2016,pp.353 360 PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS MARTIN ZACHARIAS Physics Department T38, Technical University of Munich James-Franck-Str.

More information

Protein Folding Prof. Eugene Shakhnovich

Protein Folding Prof. Eugene Shakhnovich Protein Folding Eugene Shakhnovich Department of Chemistry and Chemical Biology Harvard University 1 Proteins are folded on various scales As of now we know hundreds of thousands of sequences (Swissprot)

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Physicochemical and residue conservation calculations to improve the ranking of protein protein docking solutions

Physicochemical and residue conservation calculations to improve the ranking of protein protein docking solutions Physicochemical and residue conservation calculations to improve the ranking of protein protein docking solutions YUHUA DUA, 1 BOOJALA V.B. REDDY, 2 AD YIAIS. KAZESSIS 1,2 1 Department of Chemical Engineering

More information

Free Energy Landscapes of Encounter Complexes in Protein-Protein Association

Free Energy Landscapes of Encounter Complexes in Protein-Protein Association 1166 Biophysical Journal Volume 76 March 1999 1166 1178 Free Energy Landscapes of Encounter Complexes in Protein-Protein Association Carlos J. Camacho, Zhiping Weng, Sandor Vajda, and Charles DeLisi Department

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Introduction to Evolutionary Concepts

Introduction to Evolutionary Concepts Introduction to Evolutionary Concepts and VMD/MultiSeq - Part I Zaida (Zan) Luthey-Schulten Dept. Chemistry, Beckman Institute, Biophysics, Institute of Genomics Biology, & Physics NIH Workshop 2009 VMD/MultiSeq

More information

Optimal Clustering for Detecting Near-Native Conformations in Protein Docking

Optimal Clustering for Detecting Near-Native Conformations in Protein Docking Biophysical Journal Volume 89 August 2005 867 875 867 Optimal Clustering for Detecting Near-Native Conformations in Protein Docking Dima Kozakov,* Karl H. Clodfelter, y Sandor Vajda,* y and Carlos J. Camacho*

More information

Life Science Webinar Series

Life Science Webinar Series Life Science Webinar Series Elegant protein- protein docking in Discovery Studio Francisco Hernandez-Guzman, Ph.D. November 20, 2007 Sr. Solutions Scientist fhernandez@accelrys.com Agenda In silico protein-protein

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 Allowed phi-psi angles Red areas are preferred, yellow areas are allowed, and white is avoided 2.3a Hamiltonian

More information

Using AutoDock 4 with ADT: A Tutorial

Using AutoDock 4 with ADT: A Tutorial Using AutoDock 4 with ADT: A Tutorial Ruth Huey Sargis Dallakyan Alex Perryman David S. Goodsell (Garrett Morris) 9/2/08 Using AutoDock 4 with ADT 1 What is Docking? Predicting the best ways two molecules

More information

BCB410 Protein-Ligand Docking Exercise Set Shirin Shahsavand December 11, 2011

BCB410 Protein-Ligand Docking Exercise Set Shirin Shahsavand December 11, 2011 BCB410 Protein-Ligand Docking Exercise Set Shirin Shahsavand December 11, 2011 1. Describe the search algorithm(s) AutoDock uses for solving protein-ligand docking problems. AutoDock uses 3 different approaches

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins

Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins Multi-Scale Hierarchical Structure Prediction of Helical Transmembrane Proteins Zhong Chen Dept. of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602 Email: zc@csbl.bmb.uga.edu

More information

FlexPepDock In a nutshell

FlexPepDock In a nutshell FlexPepDock In a nutshell All Tutorial files are located in http://bit.ly/mxtakv FlexPepdock refinement Step 1 Step 3 - Refinement Step 4 - Selection of models Measure of fit FlexPepdock Ab-initio Step

More information

Limitations of temperature replica exchange (T-REMD) for protein folding simulations

Limitations of temperature replica exchange (T-REMD) for protein folding simulations Limitations of temperature replica exchange (T-REMD) for protein folding simulations Jed W. Pitera, William C. Swope IBM Research pitera@us.ibm.com Anomalies in protein folding kinetic thermodynamic 322K

More information

Towards Physics-based Models for ADME/Tox. Tyler Day

Towards Physics-based Models for ADME/Tox. Tyler Day Towards Physics-based Models for ADME/Tox Tyler Day Overview Motivation Application: P450 Site of Metabolism Application: Membrane Permeability Future Directions and Applications Motivation Advantages

More information

Improving Protein Function Prediction with Molecular Dynamics Simulations. Dariya Glazer Russ Altman

Improving Protein Function Prediction with Molecular Dynamics Simulations. Dariya Glazer Russ Altman Improving Protein Function Prediction with Molecular Dynamics Simulations Dariya Glazer Russ Altman Motivation Sometimes the 3D structure doesn t score well for a known function. The experimental structure

More information

Today s lecture. Molecular Mechanics and docking. Lecture 22. Introduction to Bioinformatics Docking - ZDOCK. Protein-protein docking

Today s lecture. Molecular Mechanics and docking. Lecture 22. Introduction to Bioinformatics Docking - ZDOCK. Protein-protein docking C N F O N G A V B O N F O M A C S V U Molecular Mechanics and docking Lecture 22 ntroduction to Bioinformatics 2007 oday s lecture 1. Protein interaction and docking a) Zdock method 2. Molecular motion

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 If you throw up a stone, it is Physics. If you throw up a stone, it is Physics. If it lands on your head, it is

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

doi: /j.jmb J. Mol. Biol. (2005) 347,

doi: /j.jmb J. Mol. Biol. (2005) 347, doi:10.1016/j.jmb.2005.01.058 J. Mol. Biol. (2005) 347, 1077 1101 The Relationship between the Flexibility of Proteins and their Conformational States on Forming Protein Protein Complexes with an Application

More information

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA

Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Supporting Information Protein Structure Determination from Pseudocontact Shifts Using ROSETTA Christophe Schmitz, Robert Vernon, Gottfried Otting, David Baker and Thomas Huber Table S0. Biological Magnetic

More information

THIS work is motivated by a fundamental and challenging

THIS work is motivated by a fundamental and challenging 664 EEE TRANSACTONS ON AUTOMATC CONTROL, VOL. 52, NO. 4, APRL 2007 SDU: A Semidefinite Programming-Based Underestimation Method for Stochastic Global Optimization in Protein Docking oannis Ch. Paschalidis,

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

Assignment 2 Atomic-Level Molecular Modeling

Assignment 2 Atomic-Level Molecular Modeling Assignment 2 Atomic-Level Molecular Modeling CS/BIOE/CME/BIOPHYS/BIOMEDIN 279 Due: November 3, 2016 at 3:00 PM The goal of this assignment is to understand the biological and computational aspects of macromolecular

More information

FDS: Flexible Ligand and Receptor Docking with a Continuum Solvent Model and Soft-Core Energy Function

FDS: Flexible Ligand and Receptor Docking with a Continuum Solvent Model and Soft-Core Energy Function FDS: Flexible Ligand and Receptor Docking with a Continuum Solvent Model and Soft-Core Energy Function RICHARD D. TAYLOR, 1, * PHILIP J. JEWSBURY, 2 JONATHAN W. ESSEX 1 1 Department of Chemistry, University

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C.

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring 2006 Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. Latombe Scribe: Neda Nategh How do you update the energy function during the

More information

Anchor residues in protein protein interactions

Anchor residues in protein protein interactions Anchor residues in protein protein interactions Deepa Rajamani, Spencer Thiel, Sandor Vajda, and Carlos J. Camacho PNAS 2004;101;11287-11292; originally published online Jul 21, 2004; doi:10.1073/pnas.0401942101

More information

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University

Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Alpha-helical Topology and Tertiary Structure Prediction of Globular Proteins Scott R. McAllister Christodoulos A. Floudas Princeton University Department of Chemical Engineering Program of Applied and

More information

Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion

Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion Stochastic Conformational Roadmaps for Computing Ensemble Properties of Molecular Motion Mehmet Serkan Apaydın, Douglas L. Brutlag, Carlos Guestrin, David Hsu, and Jean-Claude Latombe Stanford University,

More information

Introduction to AutoDock and AutoDock Tools

Introduction to AutoDock and AutoDock Tools Introduction to AutoDock and AutoDock Tools Alexander B. Pacheco User Services Consultant LSU HPC & LONI sys-help@loni.org HPC Training Series Louisiana State University Baton Rouge Mar. 28, 2012 HPC@LSU

More information

Diffusion Wavelets and Applications

Diffusion Wavelets and Applications Diffusion Wavelets and Applications J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon, M. Mohlenkamp, MM, R. Schul, A.D. Szlam Demos, web pages and preprints available at: S.Lafon: www.math.yale.edu/~sl349

More information

User Guide for LeDock

User Guide for LeDock User Guide for LeDock Hongtao Zhao, PhD Email: htzhao@lephar.com Website: www.lephar.com Copyright 2017 Hongtao Zhao. All rights reserved. Introduction LeDock is flexible small-molecule docking software,

More information

Solvent & geometric effects on non-covalent interactions

Solvent & geometric effects on non-covalent interactions Solvent & geometric effects on non-covalent interactions Scott L. Cockroft PhysChem Forum 10, Syngenta, Jealott s Hill, 23 rd March 11 QSAR & Physical Organic Chemistry Quantifiable Physicochemical Properties

More information

3D HP Protein Folding Problem using Ant Algorithm

3D HP Protein Folding Problem using Ant Algorithm 3D HP Protein Folding Problem using Ant Algorithm Fidanova S. Institute of Parallel Processing BAS 25A Acad. G. Bonchev Str., 1113 Sofia, Bulgaria Phone: +359 2 979 66 42 E-mail: stefka@parallel.bas.bg

More information

Novel Monte Carlo Methods for Protein Structure Modeling. Jinfeng Zhang Department of Statistics Harvard University

Novel Monte Carlo Methods for Protein Structure Modeling. Jinfeng Zhang Department of Statistics Harvard University Novel Monte Carlo Methods for Protein Structure Modeling Jinfeng Zhang Department of Statistics Harvard University Introduction Machines of life Proteins play crucial roles in virtually all biological

More information

A Robustness Optimization of SRAM Dynamic Stability by Sensitivity-based Reachability Analysis

A Robustness Optimization of SRAM Dynamic Stability by Sensitivity-based Reachability Analysis ASP-DAC 2014 A Robustness Optimization of SRAM Dynamic Stability by Sensitivity-based Reachability Analysis Yang Song, Sai Manoj P. D. and Hao Yu School of Electrical and Electronic Engineering, Nanyang

More information

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013

Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India. 1 st November, 2013 Hydration of protein-rna recognition sites Ranjit P. Bahadur Assistant Professor Department of Biotechnology Indian Institute of Technology Kharagpur, India 1 st November, 2013 Central Dogma of life DNA

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Carbohydrate- Protein interac;ons are Cri;cal in Life and Death. Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Carbohydrate- Protein interac;ons are Cri;cal in Life and Death. Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria ther Cells Carbohydrate- Protein interac;ons are Cri;cal in Life and Death ormones Viruses Toxins Cell Bacteria ow to Model Protein- ligand interac;ons? Protein Protein Protein DNA/RNA Protein Carbohydrate

More information

Detection of Protein Binding Sites II

Detection of Protein Binding Sites II Detection of Protein Binding Sites II Goal: Given a protein structure, predict where a ligand might bind Thomas Funkhouser Princeton University CS597A, Fall 2007 1hld Geometric, chemical, evolutionary

More information

Goals. Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions

Goals. Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions Structural Analysis of the EGR Family of Transcription Factors: Templates for Predicting Protein DNA Interactions Jamie Duke 1,2 and Carlos Camacho 3 1 Bioengineering and Bioinformatics Summer Institute,

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation Jakob P. Ulmschneider and William L. Jorgensen J.A.C.S. 2004, 126, 1849-1857 Presented by Laura L. Thomas and

More information

5.1. Hardwares, Softwares and Web server used in Molecular modeling

5.1. Hardwares, Softwares and Web server used in Molecular modeling 5. EXPERIMENTAL The tools, techniques and procedures/methods used for carrying out research work reported in this thesis have been described as follows: 5.1. Hardwares, Softwares and Web server used in

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Protein Structure Prediction

Protein Structure Prediction Page 1 Protein Structure Prediction Russ B. Altman BMI 214 CS 274 Protein Folding is different from structure prediction --Folding is concerned with the process of taking the 3D shape, usually based on

More information

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007

Softwares for Molecular Docking. Lokesh P. Tripathi NCBS 17 December 2007 Softwares for Molecular Docking Lokesh P. Tripathi NCBS 17 December 2007 Molecular Docking Attempt to predict structures of an intermolecular complex between two or more molecules Receptor-ligand (or drug)

More information

Rapid evaluation of electrostatic interactions in multi-phase media

Rapid evaluation of electrostatic interactions in multi-phase media Rapid evaluation of electrostatic interactions in multi-phase media P.G. Martinsson, The University of Colorado at Boulder Acknowledgements: Some of the work presented is joint work with Mark Tygert and

More information

Docking with Water in the Binding Site using GOLD

Docking with Water in the Binding Site using GOLD Docking with Water in the Binding Site using GOLD Version 2.0 November 2017 GOLD v5.6 Table of Contents Docking with Water in the Binding Site... 2 Case Study... 3 Introduction... 3 Provided Input Files...

More information

Sparse linear models

Sparse linear models Sparse linear models Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 2/22/2016 Introduction Linear transforms Frequency representation Short-time

More information

The prediction of membrane protein types with NPE

The prediction of membrane protein types with NPE The prediction of membrane protein types with NPE Lipeng Wang 1a), Zhanting Yuan 1, Xuhui Chen 1, and Zhifang Zhou 2 1 College of Electrical and Information Engineering Lanzhou University of Technology,

More information

Multi-Funnel Underestimation in Protein Docking

Multi-Funnel Underestimation in Protein Docking Multi-Funnel Underestimation in Protein Docking Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison January 2008 0 Underestimation Schemes Fact Multiple minima = hard optimization

More information

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3

Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 02, 2010 WeC17.1 Benjamin L. Pence 1, Hosam K. Fathy 2, and Jeffrey L. Stein 3 (1) Graduate Student, (2) Assistant

More information

Alchemical free energy calculations in OpenMM

Alchemical free energy calculations in OpenMM Alchemical free energy calculations in OpenMM Lee-Ping Wang Stanford Department of Chemistry OpenMM Workshop, Stanford University September 7, 2012 Special thanks to: John Chodera, Morgan Lawrenz Outline

More information

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues

Programme Last week s quiz results + Summary Fold recognition Break Exercise: Modelling remote homologues Programme 8.00-8.20 Last week s quiz results + Summary 8.20-9.00 Fold recognition 9.00-9.15 Break 9.15-11.20 Exercise: Modelling remote homologues 11.20-11.40 Summary & discussion 11.40-12.00 Quiz 1 Feedback

More information

Ch. 10 Vector Quantization. Advantages & Design

Ch. 10 Vector Quantization. Advantages & Design Ch. 10 Vector Quantization Advantages & Design 1 Advantages of VQ There are (at least) 3 main characteristics of VQ that help it outperform SQ: 1. Exploit Correlation within vectors 2. Exploit Shape Flexibility

More information

HMM part 1. Dr Philip Jackson

HMM part 1. Dr Philip Jackson Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. HMM part 1 Dr Philip Jackson Probability fundamentals Markov models State topology diagrams Hidden Markov models -

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Protein Structure Prediction, Engineering & Design CHEM 430

Protein Structure Prediction, Engineering & Design CHEM 430 Protein Structure Prediction, Engineering & Design CHEM 430 Eero Saarinen The free energy surface of a protein Protein Structure Prediction & Design Full Protein Structure from Sequence - High Alignment

More information

2008 Biowerkzeug Ltd.

2008 Biowerkzeug Ltd. 2008 Biowerkzeug Ltd. 1 Contents Summary...3 1 Simulation...4 1.1 Setup...4 1.2 Output...4 2 Settings...5 3 Analysis...9 3.1 Setup...9 3.2 Input options...9 3.3 Descriptions...10 Please note that we cannot

More information

Human and Server CAPRI Protein Docking Prediction Using LZerD with Combined Scoring Functions. Daisuke Kihara

Human and Server CAPRI Protein Docking Prediction Using LZerD with Combined Scoring Functions. Daisuke Kihara Human and Server CAPRI Protein Docking Prediction Using LZerD with Combined Scoring Functions Daisuke Kihara Department of Biological Sciences Department of Computer Science Purdue University, Indiana,

More information

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

Simulated Annealing for Constrained Global Optimization

Simulated Annealing for Constrained Global Optimization Monte Carlo Methods for Computation and Optimization Final Presentation Simulated Annealing for Constrained Global Optimization H. Edwin Romeijn & Robert L.Smith (1994) Presented by Ariel Schwartz Objective

More information

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2015 Supporting Information Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004

CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 CS273: Algorithms for Structure Handout # 2 and Motion in Biology Stanford University Thursday, 1 April 2004 Lecture #2: 1 April 2004 Topics: Kinematics : Concepts and Results Kinematics of Ligands and

More information

Chemical Shift Restraints Tools and Methods. Andrea Cavalli

Chemical Shift Restraints Tools and Methods. Andrea Cavalli Chemical Shift Restraints Tools and Methods Andrea Cavalli Overview Methods Overview Methods Details Overview Methods Details Results/Discussion Overview Methods Methods Cheshire base solid-state Methods

More information

Research Article Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules

Research Article Basin Hopping as a General and Versatile Optimization Framework for the Characterization of Biological Macromolecules Hindawi Publishing Corporation Advances in Artificial Intelligence Volume 2012, Article ID 674832, 19 pages doi:10.1155/2012/674832 Research Article Basin Hopping as a General and Versatile Optimization

More information

ATLAS of Biochemistry

ATLAS of Biochemistry ATLAS of Biochemistry USER GUIDE http://lcsb-databases.epfl.ch/atlas/ CONTENT 1 2 3 GET STARTED Create your user account NAVIGATE Curated KEGG reactions ATLAS reactions Pathways Maps USE IT! Fill a gap

More information

High-Rank Matrix Completion and Subspace Clustering with Missing Data

High-Rank Matrix Completion and Subspace Clustering with Missing Data High-Rank Matrix Completion and Subspace Clustering with Missing Data Authors: Brian Eriksson, Laura Balzano and Robert Nowak Presentation by Wang Yuxiang 1 About the authors

More information

Bayesian Nonparametric Rasch Modeling: Methods and Software

Bayesian Nonparametric Rasch Modeling: Methods and Software Bayesian Nonparametric Rasch Modeling: Methods and Software George Karabatsos University of Illinois-Chicago Keynote talk Friday May 2, 2014 (9:15-10am) Ohio River Valley Objective Measurement Seminar

More information

Portal. User Guide Version 1.0. Contributors

Portal.   User Guide Version 1.0. Contributors Portal www.dockthor.lncc.br User Guide Version 1.0 Contributors Diogo A. Marinho, Isabella A. Guedes, Eduardo Krempser, Camila S. de Magalhães, Hélio J. C. Barbosa and Laurent E. Dardenne www.gmmsb.lncc.br

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information