Higher dimensional operators. in supersymmetry

Size: px
Start display at page:

Download "Higher dimensional operators. in supersymmetry"

Transcription

1 I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona

2 Outline Effective operators from new physics integrating out heavy states - higher-dimensional - higher-derivative operators (hdo) SUSY hdo - 2-derivative description - SUSY breaking Higher-dim + hdo in MSSM - generation from heavy fields - classification of dim 5 - physical consequences

3 Effective operators from new physics - Known low-energy physics: local interactions of dimension 4 renormalizable QFT predictive power - However at energies < mass of heavy particles some interactions may look non-renormalizable e.g. four-fermion Fermi interactions - Unknown new physics in the multi-tev range: local effective operators O i of dim 4 + δ i L SM + i c i M δ O(4+δ i) i i - M not far from the electroweak scale: lowest-dim operators O i can affect significantly the low energy physics

4 Integrating out heavy fields two types of higher-dim effective operators: - with two (or less) derivatives from tree-level exchanges of massive states ( µ Z µ)h 2 M 2 i ψγ µ D µ ψ M 2 2 Z µz µ 1 M 2(H µ H) 2 2 Z µz µ 1 M 2( ψγ µ ψ) 2 - higher-derivative operators (hdo) generated by: mixing with heavy states string theory DBI action, α /loop corrections

5 L = 1 2 ( φ)2 λ 1φ ( χ)2 + c( φ)( χ) M 2 χ 2 2 λ 2φ 2 χ 2 2 Integrate out the massive field χ L = 1 2 ( φ)2 λ 1φ c2 2 φ 1 M λ 2 φ 2 φ c2 M 2 ( φ)2

6 SUSY hdo General two-derivative SUSY lagrangian: 3 functions of chiral superfields φ i 1 real: Kähler potential K 2 analytic: superpotential W, gauge kinetic function f L susy = + d 4 θ K(φ i ev, φ i ) d 2 θ [ W (φ i ) + f ab (φ i )W a W b] + h.c. chiral gauge superfield W D 2 DV Higher-dim operators: encoded in power exps K = φ i ev φ i + ci jk M φ i ev φ j φ k + h.c. + W = λ ijk φ i φ j φ k + c ijkl M φi φ j φ k φ l + f ab (φ i ) = δ ab + f abi M φi + the first terms in the rhs are renormalizable

7 hdo operators : - hdo in the superpotential (a) λ ij M d 2 θ Φ i Φ j λ ij M D 2 D 2 d 4 θ Φ i D 2 Φ j - hdo in the Kähler potential (b) (c) k ij M 2 k ijk M 2... d 4 θ Φ i Φ j d 4 θ Φ i Φ jd 2 Φ k In components: Φ = z + 2θψ + θ 2 F (a) contains ψ ψ, F z (b) contains z 2, ψ ψ, F F higher-derivative kinetic terms propagating auxiliary fields

8 Example : L = d 4 θ ( Φ Φ + χ χ ) + d 2 θ (mφχ + M2 χ2 ) + h.c. Integrate out the heavy field χ L = d 4 θ [( 1 + m2 M 2 ) ] Φ Φ + m2 M 4Φ Φ + d 2 θ ( m 2 2M Φ2 + ) m2 2M 3Φ Φ + h.c.

9 Reformulate SUSY theories with hdo in terms of two-derivatives: - coupling to gravity much simpler SUSY breaking via gravity easier to study - coupling to a SUSY breaking sector can be studied by standard methods - theories with hdo ghost (super)fields Is the theory sick? No, if treated as effective at energies E M low-energy truncation of sensible high-energy theory : no ghosts in UV lowest hdo encode leading low-energy effects of new physics: integration out of heavy states

10 L = + hdo in the superpotential d 4 θ Φ Φ d 2 θ ( ± ξ Φ Φ + m 2 Φ2 + λ ) 3 Φ3 + h.c. one particle + one ghost with masses: m 2 1 m2, m ξ of order the cutoff L = d 4 θ [ Φ 1 Φ 1 Φ 2 Φ ] 2 + d 2 θ ( [ 1 2 m kpφ k Φ p λ kplφ k Φ p Φ l Φ ξ D 2 Φ ) = ( a1 a 2 b 1 b 2 unitary matrix ) ( ) Φ1 Φ 2 ] + h.c.

11 Physics of SUSY hdo: SUSY breaking can hdo trigger SUSY breaking? scalar potential not positive definite V = particles F i 2 ghosts F j 2 no if SUSY is unbroken in the absence of hdo SUSY minima are stable but V could vanish with SUSY broken However SUSY may be trivial without hdo decoupled in a non-interacting sector

12 L = d 4 θs S + Φ Φ ( ) d 2 θ m 2 S + h.c. + 1 M 2Φ Φ + λ 4M 2 ( SΦ D 2 Φ + h.c. ) equivalent to Y = 1 M D 2 Φ L = d 4 θ ( S S Φ Φ Y Y ) + d 2 θ { S ( λy 2 m 2) MΦY } + h.c. O R SUSY: ( F S = m 2 +λy 2, F Φ = My) (0, 0) vacuum: y = φ = 0 s = arbitrary F S = m 2

13 Higher-dim + hdo in MSSM Generation from heavy fields Higher-dim operators: via interactions with heavy (super)fields Example: singlet coupled to higsses in MSSM Strumia 99 ; Brignole-Casas-Espinosa-Navarro 03 Dine-Seiberg-Thomas 07 W = λσh 1 H 2 +Mσ 2 W eff = λ2 M (H 1H 2 ) 2 can raise the Higgs mass in MSSM? hdo operators: via mixing with heavy fields

14 MSSM: Higgs mixing with heavy doublets + d 4 θ 3,4 i=1,2 H i H i + ( c 1 H 1 H 3 + c 2 H 2 H 4 + h.c. ) d 2 θ (µh 1 H 2 + MH 3 H 4 ) + h.c. µ << M neglecting gauge interactions d 4 θ ( H 1 H 1 + H 2 H 2 + c2 1 M 2H 1 H 1 + c2 2 M 2H 2 H 2 + d 2 θ (µh 1 H 2 + c 1c 2 M H 1 H 2 ) + h.c. dominant at low energy 1 M gauge interactions d 4 θ ( H 2 e V D 2 e V H 1 + h.c. ) )

15 Low-energy supersymmetry: main LHC target Quantum corrections in MSSM: important to reconcile the tree-level relation m h m Z with the experimental limit m h > 114 GeV Higher-dim / hdo operators: can also affect low-energy predictions masses, couplings, interactions,... classification of dim-5 (R-parity conserving) L = L MSSM + L (5)

16 L MSSM = + d 4 θ ( ) Z 1 H 1 ev H 1 + Z 2 H 2 e V H 2 + d 2 θ ( Q λ U U H 2 Q λ D D H 1 L λ E E H 1 + µ H 1 H 2 ) + h.c. soft terms: Z i (S, S ), λ U,D,E (S), µ(s) spurion S m S θ 2 L (5) = 1 M d 2 θ [ Q U T Q Q D + Q U T L L E + λ H (H 1 H 2 ) 2 ] + h.c. + 1 M d 4 θ [ H 1 ev Q Y U U + Q Y D D e V H 2 + L Y E E e V H 2 +A D α ( B H 2 e V ) D α ( C e V H 1 ) + h.c. ] T Q,L (S), λ H (S), Y U,D,E (S, S ), A(S, S ), B(S, S ), C(S, S ) T, Y dangerous FCNC simple ansatz for their absence: T Q = t Q (S) λ U λ D T L = t L (S) λ U λ E λ F (S) = (1 + A F S)λ F Y F = y F (S, S ) λ F F : U, D, E

17 Field redefinitions: H 1 H 1 1 [ ] M D2 1 e V H M Q ρ U U H 2 H 2 1 M D2 [ 2 H 1 ev ] + 1 M Q ρ D D + 1 M L ρ E E ρ U,D,E (S), i (S, S ) T Q, T L, A, B, C = 0 Y F = y F (S ) λ F F : U, D, E L (5) F (η 1 + η 2 S)(H 1 H 2 ) 2 L (5) D (y U + z U S )H 1 ev Q λ U U + (y D + z D S )Q λ D D e V H 2 +(y E + z E S )L λ E E e V H 2 + h.c.

18 Physical consequences Higgs mass & potential: not important effect perturbativity of L (5) only η 2 can change the tree-level upper bound m h m Z marginally when m A m Z New couplings from L (5) D z F wrong Yukawas H 1 H 2 y F quartic gauge couplings A h f f detailed study under investigation

19 Conclusions/Prospects Effective actions with higher-dim/hdo: appropriate tools to parametrize our ignorance about new physics Hdo can be rewritten as standard two-derivatives adding extra (ghost) (super)fields artifact of the truncation in deriv. expansion General analysis of their effects in MSSM classification of dim 5 no significant effects to the Higgs mass but additional couplings

Anomaly and gaugino mediation

Anomaly and gaugino mediation Anomaly and gaugino mediation Supergravity mediation X is in the hidden sector, P l suppressed couplings SUSY breaking VEV W = ( W hid (X) + W vis ) (ψ) f = δj i ci j X X ψ j e V ψ 2 i +... Pl τ = θ Y

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

Implications of a Heavy Z Gauge Boson

Implications of a Heavy Z Gauge Boson Implications of a Heavy Z Gauge Boson Motivations A (string-motivated) model Non-standard Higgs sector, CDM, g µ 2 Electroweak baryogenesis FCNC and B s B s mixing References T. Han, B. McElrath, PL, hep-ph/0402064

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Whither SUSY? G. Ross, Birmingham, January 2013

Whither SUSY? G. Ross, Birmingham, January 2013 Whither SUSY? G. Ross, Birmingham, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to

More information

Reφ = 1 2. h ff λ. = λ f

Reφ = 1 2. h ff λ. = λ f I. THE FINE-TUNING PROBLEM A. Quadratic divergence We illustrate the problem of the quadratic divergence in the Higgs sector of the SM through an explicit calculation. The example studied is that of the

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

Higgs Mass Bounds in the Light of Neutrino Oscillation

Higgs Mass Bounds in the Light of Neutrino Oscillation Higgs Mass Bounds in the Light of Neutrino Oscillation Qaisar Shafi in collaboration with Ilia Gogoladze and Nobuchika Okada Bartol Research Institute Department of Physics and Astronomy University of

More information

Updates in the Finite N=1 SU(5) Model

Updates in the Finite N=1 SU(5) Model Updates in the Finite N=1 SU(5) Model Gregory Patellis Physics Department, NTUA Sven Heinemeyer, Myriam Mondragon, Nicholas Tracas, George Zoupanos arxiv:1802.04666 March 31, 2018 Updates in the Finite

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Aspects of SUSY Breaking

Aspects of SUSY Breaking Aspects of SUSY Breaking Zohar Komargodski Institute for Advanced Study, Princeton ZK and Nathan Seiberg : arxiv:0907.2441 Aspects of SUSY Breaking p. 1/? Motivations Supersymmetry is important for particle

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Dynamical supersymmetry breaking, with Flavor

Dynamical supersymmetry breaking, with Flavor Dynamical supersymmetry breaking, with Flavor Cornell University, November 2009 Based on arxiv: 0911.2467 [Craig, Essig, Franco, Kachru, GT] and arxiv: 0812.3213 [Essig, Fortin, Sinha, GT, Strassler] Flavor

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry 1: Formalism of SUSY M. E. Peskin Maria Laach Herbstschule September, 2004 Among models of electroweak symmetry breaking and physics beyond the Standard Model Supersymmetry

More information

Inflation from supersymmetry breaking

Inflation from supersymmetry breaking Inflation from supersymmetry breaking I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, Sorbonne Université, CNRS Paris I. Antoniadis (Athens Mar 018) 1 / 0 In memory of Ioannis Bakas

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Whither SUSY? G. Ross, RAL, January 2013

Whither SUSY? G. Ross, RAL, January 2013 Whither SUSY? G. Ross, RAL, January 2013 whither Archaic or poetic adv 1. to what place? 2. to what end or purpose? conj to whatever place, purpose, etc. [Old English hwider, hwæder; related to Gothic

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β = Markus Bach Institut für Kern- und Teilchenphysik Technische Universität Dresden IKTP Institute Seminar

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

A Note on Supersymmetry Breaking. Stephen D.H. Hsu, Myckola Schwetz. Department of Physics Yale University New Haven, CT

A Note on Supersymmetry Breaking. Stephen D.H. Hsu, Myckola Schwetz. Department of Physics Yale University New Haven, CT YCTP-P3-97 A Note on Supersymmetry Breaking Stephen D.H. Hsu, Myckola Schwetz Department of Physics Yale University New Haven, CT 06520-8120 March, 1997 Abstract Using a simple observation based on holomorphy,

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Carleton University, Ottawa University of Freiburg W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with

More information

arxiv:hep-ph/ v1 6 Feb 2004

arxiv:hep-ph/ v1 6 Feb 2004 arxiv:hep-ph/0402064v1 6 Feb 2004 AN NMSSM WITHOUT DOMAIN WALLS TAO HAN Department of Physics University of Wisconsin Madison, WI 53706 USA E-mail: than@pheno.physics.wisc.edu PAUL LANGACKER Department

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

SUSY Breaking, Composite Higgs and Hidden Gravity

SUSY Breaking, Composite Higgs and Hidden Gravity SUSY Breaking, Composite Higgs and Hidden Gravity Ryuichiro Kitano (Tohoku U.) Talk at ICEPP meeting, April 1-3, 2009, Tokyo, Japan What's Higgs? Elementary particle? Something else? 1/ H Composite, technicolor,

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions Frank FERRARI Université Libre de Bruxelles and International Solvay Institutes XVth Oporto meeting on Geometry, Topology and Physics:

More information

Scale hierarchies and string phenomenology

Scale hierarchies and string phenomenology Scale hierarchies and string phenomenology I. Antoniadis Albert Einstein Center, University of Bern and LPTHE, UPMC/CNRS, Sorbonne Universités, Paris Workshop on the Standard Model and Beyond Corfu, Greece,

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

FLAVOR PHYSICS BEYOND THE STANDARD MODEL SFB Colloquium DESY Hamburg, July 3rd, 2008 FLAVOR PHYSICS BEYOND THE STANDARD MODEL Gudrun Hiller, Dortmund University of Technology Standard Model of Particle Physics renormalizable quantum field theory

More information

Supersymmetry Highlights. Kevin Hambleton

Supersymmetry Highlights. Kevin Hambleton Supersymmetry Highlights Kevin Hambleton Outline SHO Example Why SUSY? SUSY Fields Superspace Lagrangians SUSY QED MSSM i Warm Up A Hint Of SUSY... Remember Quantum Simple Harmonic Oscillator... Canonical

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

UV Completions of Composite Higgs Models with Partial Compositeness

UV Completions of Composite Higgs Models with Partial Compositeness UV Completions of Composite Higgs Models with Partial Compositeness Marco Serone, SISSA, Trieste Based on 1211.7290, in collaboration with Francesco Caracciolo and Alberto Parolini and work in progress

More information

Implications of an extra U(1) gauge symmetry

Implications of an extra U(1) gauge symmetry Implications of an extra U(1) gauge symmetry Motivations 400 LEP2 (209 GeV) Higgsstrahlung Cross Section A (string-motivated) model σ(e + e - -> ZH) (fb) 350 300 250 200 150 100 50 H 1 H 2 Standard Model

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs

tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs tan(beta) Enhanced Yukawa Couplings for Supersymmetric Higgs Singlets at One-Loop Theoretical Particle Physics University of Manchester 5th October 2006 Based on RNH, A. Pilaftsis hep-ph/0612188 Outline

More information

Right-Handed Neutrinos as the Origin of the Electroweak Scale

Right-Handed Neutrinos as the Origin of the Electroweak Scale Right-Handed Neutrinos as the Origin of the Electroweak Scale Hooman Davoudiasl HET Group, Brookhaven National Laboratory Based on: H. D., I. Lewis, arxiv:1404.6260 [hep-ph] Origin of Mass 2014, CP 3 Origins,

More information

Supersymmetric Higgs Bosons and Beyond

Supersymmetric Higgs Bosons and Beyond FERMILAB-PUB-09-419-T SLAC-PUB-13784 Supersymmetric Higgs Bosons and Beyond Marcela Carena a,b, Kyoungchul Kong a,c, Eduardo Pontón d, José Zurita a,e a Theoretical Physics Department, Fermilab, Batavia,

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

SU(3)-Flavons and Pati-Salam-GUTs

SU(3)-Flavons and Pati-Salam-GUTs SU(3)-Flavons and Pati-Salam-GUTs Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter Universität Siegen Theoretische Physik I Dortmund, 03.07.2012 Outline 1 Running couplings

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION

NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION 1 NILPOTENT SUPERGRAVITY, INFLATION AND MODULI STABILIZATION Based on : - I.Antoniadis, E.D., S.Ferrara and A. Sagnotti, Phys.Lett.B733 (2014) 32 [arxiv:1403.3269 [hep-th]]. - E.D., S.Ferrara, A.Kehagias

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Universal Extra Dimensions

Universal Extra Dimensions Universal Extra Dimensions Add compact dimension(s) of radius R ~ ant crawling on tube Kaluza-Klein tower of partners to SM particles due to curled-up extra dimensions of radius R n = quantum number for

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

To Higgs or not to Higgs

To Higgs or not to Higgs To Higgs or not to Higgs vacuum stability and the origin of mass Wolfgang Gregor Hollik DESY Hamburg Theory Group Dec 12 2016 MU Programmtag Mainz The Higgs mechanism and the origin of mass [CERN bulletin]

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

Alternatives to the GUT Seesaw

Alternatives to the GUT Seesaw Alternatives to the GUT Seesaw Motivations Higher-dimensional operators String instantons Other (higher dimensions, Higgs triplets) Motivations Many mechanisms for small neutrino mass, both Majorana and

More information

LHC Phenomenology of SUSY multi-step GUTs

LHC Phenomenology of SUSY multi-step GUTs 0/14 J. Reuter LHC Phenomenology of SUSY multi-step GUTs PHENO 09, Madison, 1.5.009 LHC Phenomenology of SUSY multi-step GUTs Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PL B64 (006),

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide) 1.1 Algebras 2-component notation for 4d spinors ( ) ψα ψ = χ α (1) C matrix ( ɛαβ 0 C AB = 0 ɛ α β ) ; ɛ αβ = ɛ α β =

More information

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY beyond standard model ZHONG-ZHI XIANYU Tsinghua University June 9, 015 Why Higgs? Why gravity? An argument from equivalence principle Higgs:

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

arxiv:hep-ph/ v1 16 Mar 1994

arxiv:hep-ph/ v1 16 Mar 1994 TU-455 Mar. 1994 A Solution to the Polonyi Problem in the Minimum SUSY-GUT arxiv:hep-ph/940396v1 16 Mar 1994 T. Moroi and T. Yanagida Department of Physics, Tohoku University, Sendai 980, Japan Abstract

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Vector Superfields. A Vector superfield obeys the constraint:

Vector Superfields. A Vector superfield obeys the constraint: Lecture 5 A Vector superfield obeys the constraint: Vector Superfields Note: still more degrees of freedom than needed for a vector boson. Some not physical! Remember Vector bosons appears in gauge theories!

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

Two-Higgs-doublet models with Higgs symmetry

Two-Higgs-doublet models with Higgs symmetry Two-Higgs-doublet models with Higgs symmetry Chaehyun Yu a a School of Physics, KIAS, Seoul 130-722, Korea Abstract We investigate two-higgs-doublet models (2HDMs) with local U(1) H Higgs flavor symmetry

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/3

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Phenomenology of the flavour messenger sector

Phenomenology of the flavour messenger sector ULB, Bruxelles October 12th 2012 Phenomenology of the flavour messenger sector Lorenzo Calibbi ULB based on: L.C., Z. Lalak, S. Pokorski, R. Ziegler, arxiv:1203.1489 [hep-ph] & arxiv:1204.1275 [hep-ph]

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Supersymmetry and the LHC: An Introduction

Supersymmetry and the LHC: An Introduction Supersymmetry and the LHC: An Introduction Brent D. Nelson Northeastern University 8/13/2007 Outline 1 1. Why do we need to look beyond the Standard Model? 2. What is supersymmetry? What is the MSSM? 3.

More information

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem

Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Dynamical SUSY Breaking with Anomalous U(1) and the SUSY Flavor Problem Wang Kai DEPARTMENT OF PHYSICS OKLAHOMA STATE UNIVERSITY In Collaboration with Dr. K.S. Babu and Ts. Enkhbat November 25, 2003 1

More information

Supersymmetry and the LHC: An Introduction

Supersymmetry and the LHC: An Introduction Supersymmetry and the LHC: An Introduction Brent D. Nelson Northeastern University 8/11/2009 Some History... 1 1974 The free world discovers supergauge transformations 1979 Technicolor as a theory of BSM

More information

Supersymmetry Basics. J. Hewett SSI J. Hewett

Supersymmetry Basics. J. Hewett SSI J. Hewett Supersymmetry Basics J. Hewett SSI 2012 J. Hewett Basic SUSY References A Supersymmetry Primer, Steve Martin hep-ph/9709356 Theory and Phenomenology of Sparticles, Manual Drees, Rohini Godbole, Probir

More information

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002 Physics at e + e - Linear Colliders 4. Supersymmetric particles M. E. Peskin March, 2002 In this final lecture, I would like to discuss supersymmetry at the LC. Supersymmetry is not a part of the Standard

More information

Magnetic moment (g 2) µ and new physics

Magnetic moment (g 2) µ and new physics Dresden Lepton Moments, July 2010 Introduction A 3σ deviation for a exp µ a SM µ has been established! Currently: a exp µ a SM µ = (255 ± 63 ± 49) 10 11 Expected with new Fermilab exp. (and th. progress):

More information

Crosschecks for Unification

Crosschecks for Unification Crosschecks for Unification Hans Peter Nilles Physikalisches Institut Universität Bonn Crosschecks for Unification, Planck09, Padova, May 2009 p. 1/39 Questions Do present observations give us hints for

More information

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications Joseph P. Conlon DAMTP, Cambridge University Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications p. 1/4

More information

Exceptional Supersymmetry. at the Large Hadron Collider

Exceptional Supersymmetry. at the Large Hadron Collider Exceptional Supersymmetry at the Large Hadron Collider E 6 SSM model and motivation Contents Why go beyond the Standard Model? Why consider non-minimal SUSY? Exceptional SUSY Structure, particle content

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

Theory of the ElectroWeak Interactions

Theory of the ElectroWeak Interactions Theory of the ElectroWeak Interactions Riccardo Barbieri 1st Summer School of ITN Corfu, September 4-15, 2011 1. The Standard Model: the indirect informations 2. Higgsless Grojean 3. The Higgs boson as

More information

Metastability. Michael Dine. In collaboration with J. Feng, J. Mason, and E. Silverstein; current collaboration with N. Seiberg

Metastability. Michael Dine. In collaboration with J. Feng, J. Mason, and E. Silverstein; current collaboration with N. Seiberg Metastability Michael Dine In collaboration with J. Feng, J. Mason, and E. Silverstein; current collaboration with N. Seiberg In particle physics, we have often considered the possibility that the universe

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

LECTURE 2: Super theories

LECTURE 2: Super theories LECTURE 2: Super theories Carlos Muñoz Universidad Autónoma de Madrid & Instituto de Física Teórica UAM/CSIC ISAPP09-Como, July 8-16 Carlos Muñoz Super theories 2 ~0.00000001 Carlos Muñoz Super theories

More information

G.F. Giudice. Theoretical Implications of the Higgs Discovery. DaMeSyFla Meeting Padua, 11 April 2013

G.F. Giudice. Theoretical Implications of the Higgs Discovery. DaMeSyFla Meeting Padua, 11 April 2013 Theoretical Implications of the Higgs Discovery G.F. Giudice DaMeSyFla Meeting Padua, 11 April 2013 GFG, A. Strumia, arxiv:1108.6077 J. Elias-Miró, J.R. Espinosa, GFG, G. Isidori, A. Riotto, A. Strumia,

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

The SCTM Phase Transition

The SCTM Phase Transition The SCTM Phase Transition ICTP / SAIFR 2015 Mateo García Pepin In collaboration with: Mariano Quirós Motivation The Model The phase transition Summary EW Baryogenesis A mechanism to explain the observed

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

Research Article Metastability of an Extended Higgs Model

Research Article Metastability of an Extended Higgs Model International Scholarly Research Network ISRN High Energy Physics Volume 1, Article ID 81915, 1 pages doi:1.54/1/81915 Research Article Metastability of an Extended Higgs Model A. Tofighi Department of

More information

The Minimal Lee-Wick Standard Model

The Minimal Lee-Wick Standard Model The Minimal Lee-Wick Standard Model Richard Lebed West Coast LHC Theory Meeting UCLA, November 2008 Work performed with Chris Carone, College of William & Mary Physics Letters B668, 221 (2008) Outline

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information