Theory of the ElectroWeak Interactions

Size: px
Start display at page:

Download "Theory of the ElectroWeak Interactions"

Transcription

1 Theory of the ElectroWeak Interactions Riccardo Barbieri 1st Summer School of ITN Corfu, September 4-15, The Standard Model: the indirect informations 2. Higgsless Grojean 3. The Higgs boson as a PGB Grojean 4. Beyond msugra Pokorski All at a hopefully simple and self-contained level, to be complemented by other lectures this same week

2 Particle Physics in one page L SM = 1 4 Fa µνf aµν + i ψ Dψ +ψ i λ ij ψ j h + h.c. + D µ h 2 V (h) +N i M ij N j The gauge sector (1) The flavor sector (2) The EWSB sector (3) The ν-mass sector (4) (if Majorana) Anybody NOT familiar with this? Almost all the focus of these lectures on (3), with, maybe, an incursion on (2) towards the end

3 The impact of the Large Hadron Collider on EWSB 1. The first thorough exploration of the energy scales well above G 1/2 F Λ QCD, G 1/2 F 2. No comparable prior situation at the SppS or at the TEVATRON 1984: W, Z 1994: top 201?: the Higgs boson of the SM Which indirect informations so far?

4 The famous ElectroWeak Precision Tests the Gfitter group CERN-Fermilab-Stanford precision often better than 10 3 In fact: from l max 10 8 cm to (APV) l min cm A naive p-value of 0.23

5 The Higgs boson mass in the SM M Higgs = GeV M Higgs = GeV with LEP and Tevatron direct searches included

6 χ 2 -distributions the Gfitter group (ATLAS and CMS not included)

7 LHC exclusion plots 95% CL limits on σ σ SM

8 The indirect determination of the Higgs mass m W m t m h Rad Corr predict and well. Also? th m t = ± 3.3m W = (13) M Higgs = GeV exp m t = ± 1.1m W = (23)? (the exact meaning of this plot in a while)

9 The main Standard Model effects summarized Ŝ = g g Π 30(0) ˆT = Π 33(0) Π WW (0) π + 0 m 2 W B W 3 h B π + 0 h π 0 W 3 Ŝ G Fm 2 W 12 2π 2 logm h ˆT 3G Fm 2 W 4 2π 2 tan2 θlogm h ρ 1 = ˆT = 1 + 3G Fm 2 t 8 2π 2 t π + π 0 b t Equivalence Theorem W L π

10 A more general use of the EWPT 1 Λ SB Consider a theory characterized by a scale with its virtual effects likely significant in the vac. pol. amplitudes of the vector bosons. At q 2 < Λ 2 SB!"' The dominant effects in:!"&!"#!"$ )!"% *+,-,./, 0',-,./, (with some care when extra light particles, O(m W ), are present) ( T 1,S 3, although not quite)!!!"%!!"$ m h %!!, '!!, SM!!"#!!"#!!"$!!"%!!"%!"$!"#!"& (

11 2 L ef f = L SM +L NP ef f Taking c i = ±1 L NP ef f = Σ i c i Λ 2 O i NP and considering one operator at a time T S 1σ-bounds a light Higgs More conservatively: Λ > ~5 TeV flavour (see below)

12 Current flavour constraints : The CKM picture quantitatively successful Lef NP c i f = Σ i Λ 2 O i NP L ef f = L SM +L NP ef f Isidori, Nir, Perez 2010 A problem and an opportunity

13 On the meaning of these bounds c? i = ±1 The stronger case: fermion compositeness at Λ NP c i 16π 2 The weaker case: NP only induced by loop effects c i α 4π An intermediate case: NP from perturbative tree level c i 1 Need to consider specific models to be more precise also because of possible cancellations

14 The naturalness problem of the Fermi scale There is certainly New Physics (NP) at short distances Λ NP =...,M GUT, M Pl Λ NP >> G 1/2 F to be included in a suitably Extended SM (ESM) How to keep the beautiful consistency of the SM with exp.s? No problem, even not knowing which NP at all, provided: 1. SU(3) SU(2) U(1) kept intact 2. The low energy spectrum of the ESM coincides with the one of the SM, with the inclusion of the Higgs boson Why this is the case? the naturalness problem of the Fermi scale Why the focus on the Higgs boson only? Why we call this a problem? h }SM

15 Why a problem? 1. To address it at all, need a calculable Higgs mass 2. In the SM δm 2 h = α t Λ 2 t + α g Λ 2 g + α h Λ 2 h with known coeff.s for a given cut-off 3. Even though Λ, whatever will cutoff these div.s is likely to leave a significant contribution to (see below) Too big? m 2 h ( ) 4. Using the naive estimate of ( ) and barring accidental cancellations Λ t 5. Especially low enough that one might have already seen its (indirect)signs Λ t 3.5m h Λ g 9m h > Λ t Λ h 1.3 TeV

16 SM in isolation A more refined analysis m 2 h(phys) =m α t Λ µ d µ m2 h(µ) =α t m 2 h(µ), µ > m h >m t SM + (e.g.) a heavy Fermion coupled to the Higgs boson m 2 h(phys) =m α F Λ µ d µ m2 h(µ) =α F m 2 h(µ), µ < m F m 2 h(µ) m 2 h m 2 h(µ) m 2 F µ µ d µ m2 h(µ) =α F m 2 F, µ > m F m 2 h µ a very precise initial condition at the high scale if m F >> m h on a physical renormalized quantity

17 The Fine Tuning problem of the Fermi scale 1999: the LEP Paradox 2001: the little hierarchy problem B, Strumia While all indirect tests (EWPT, flavour) indicate no new scale below several TeV s, the Higgs boson mass is apparently around the corner and is normally sensitive to any such scale m h 115 GeV ( Λ cutoff 400 GeV )? Λ NP Λ cutoff Λ NP? T ev 2011: the problem still there, more than ever, driving our view about what can/will happen at the LHC

18 The (many) reactions to the FT problem 0. Ignore it and view the SM in isolation (untenable) In case you doubted of its relevance: 1. Cure it by symmetries: SUSY, Higgs as PGB, little Higgs 2. A new strong interaction nearby 3. A new strong interaction not so nearby: quasi-cft 4. Warp space-time: RS 5. Saturate the UV nearby: ADD, classicalons 6. Accept it: the multiverse, the vacua of string theory Anything else?

19 The proposed relevant symmetries 1 Supersymmetry (φ,ψ) m 2 φ 2 if ψ massless 2 Global symmetry h h + α m 2 h 2 3 Gauge symmetry in higher dim.s A µ A µ + d µ α m 2 A 2 µ h = A 5 (likely related to 2 anyhow)

20 EWSB: weak or strong? weak a relatively light Higgs boson exists perturbativity extended high E ( M GUT,M Pl ) perhaps (probably) embedded in susy gauge couplings (perhaps) unify strong EWSB related to new forces, new degrees of freedom or even new dimensions opening up in the TeVs perturbativity lost in the multi-tev range high E extrapolation highly uncertain

New Physics at the Large Hadron Collider

New Physics at the Large Hadron Collider New Physics at the Large Hadron Collider Riccardo Barbieri Paris, April 2-3, 2008 For Summary and References: arxiv: 0802.3988 New physics at the Large Hadron Collider 1. The first thorough exploration

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Exploring new physics at the LHC

Exploring new physics at the LHC Goethe-Universität Frankfurt, January 12th 2011 Exploring new physics at the LHC Michael Krämer (RWTH Aachen) 1 / 46 Goethe-Universität Frankfurt, January 12th 2011 Exploring new physics at the LHC Michael

More information

Oblique corrections from Light Composite Higgs

Oblique corrections from Light Composite Higgs Oblique corrections from Light Composite Higgs Slava Rychkov (ENS Paris & CERN) with Axel Orgogozo 1111.3534 & work in progress EWPT in Standard Model M H 0.0 M W -1.2 % W 0.2 M Z 0.2 % Z 0.1 0! had 0

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

Prospettive future della fenomenologia delle particelle. Riccardo Barbieri IFAE Pavia 19/21 Aprile

Prospettive future della fenomenologia delle particelle. Riccardo Barbieri IFAE Pavia 19/21 Aprile Prospettive future della fenomenologia delle particelle Riccardo Barbieri IFAE 2006 - Pavia 19/21 Aprile Particle Physics in one page L SM = 1 4 Fa µ!f aµ! + i "D" +! i " i j! j h + h.c. + D µ h 2 V (h)

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago

solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago solving the hierarchy problem Joseph Lykken Fermilab/U. Chicago puzzle of the day: why is gravity so weak? answer: because there are large or warped extra dimensions about to be discovered at colliders

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

SUSY and Exotics. UK HEP ForumFrom the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1 SUSY and Exotics Standard Model and the Origin of Mass Puzzles of Standard Model and Cosmology Bottom-up and top-down motivation Extra dimensions Supersymmetry - MSSM -NMSSM -E 6 SSM and its exotics UK

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Phenomenology of low-energy flavour models: rare processes and dark matter

Phenomenology of low-energy flavour models: rare processes and dark matter IPMU February 2 nd 2016 Phenomenology of low-energy flavour models: rare processes and dark matter Lorenzo Calibbi ITP CAS, Beijing Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Models as existence proofs, speculations or... peaces of physical reality

Models as existence proofs, speculations or... peaces of physical reality Models as existence proofs, speculations or... peaces of physical reality Riccardo Barbieri Zuoz II, July 16/21, 2006 An example of what could happen, based on: An ultra-bottom-up hypothesis 2 concrete

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Where are we heading?

Where are we heading? Where are we heading? PiTP 2013 Nathan Seiberg IAS Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) What are the problems

More information

Confronting Theory with Experiment at the LHC

Confronting Theory with Experiment at the LHC Confronting Theory with Experiment at the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators 21 st IPM Physics Spring Conference May 21-22, 2014 1 Standard Model: a theory of interactions

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Implications of first LHC results

Implications of first LHC results Implications of first LHC results 1) Large extra dimensions (http://arxiv.org/abs/1101.4919) 2) SuperSymmetry (http://arxiv.org/abs/1101.2195) Alessandro Strumia with R. Franceschini, G. Giudice, P. Paolo

More information

Lecture 4 - Beyond the Standard Model (SUSY)

Lecture 4 - Beyond the Standard Model (SUSY) Lecture 4 - Beyond the Standard Model (SUSY) Christopher S. Hill University of Bristol Warwick Flavour ++ Week April 11-15, 2008 Recall the Hierarchy Problem In order to avoid the significant finetuning

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

The Flavour Portal to Dark Matter

The Flavour Portal to Dark Matter Dark Side of the Universe 2015 Kyoto University The Flavour Portal to Dark Matter Lorenzo Calibbi ITP CAS, Beijing December 18th 2015 Introduction Why are we interested in Flavour Physics? SM flavour puzzle

More information

Where are we heading? Nathan Seiberg IAS 2014

Where are we heading? Nathan Seiberg IAS 2014 Where are we heading? Nathan Seiberg IAS 2014 Purpose of this talk A brief, broad brush status report of particle physics Where we are How we got here (some historical perspective) Problems and challenges

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

Beyond the Standard Model

Beyond the Standard Model 4 KIT, 6-10 February 12 Beyond the Standard Model Guido Altarelli Universita di Roma Tre CERN Solutions to the hierarchy problem Supersymmetry: boson-fermion symm. The most ambitious and widely accepted

More information

Magnetic moment (g 2) µ and new physics

Magnetic moment (g 2) µ and new physics Dresden Lepton Moments, July 2010 Introduction A 3σ deviation for a exp µ a SM µ has been established! Currently: a exp µ a SM µ = (255 ± 63 ± 49) 10 11 Expected with new Fermilab exp. (and th. progress):

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Little Higgs at the LHC: Status and Prospects

Little Higgs at the LHC: Status and Prospects Little Higgs at the LHC: Status and Prospects Marco Tonini DESY Theory Group (Hamburg) based on: Reuter/MT, JHEP 1302, 077 (2013) Reuter/MT/de Vries, hep-ph/1307.5010 Reuter/MT/de Vries, DESY-13-123 (in

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Simplified models in collider searches for dark matter. Stefan Vogl

Simplified models in collider searches for dark matter. Stefan Vogl Simplified models in collider searches for dark matter Stefan Vogl Outline Introduction/Motivation Simplified Models for the LHC A word of caution Conclusion How to look for dark matter at the LHC? experimentally

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Higher dimensional operators. in supersymmetry

Higher dimensional operators. in supersymmetry I. Antoniadis CERN Higher dimensional operators in supersymmetry with E. Dudas, D. Ghilencea, P. Tziveloglou Planck 2008, Barcelona Outline Effective operators from new physics integrating out heavy states

More information

IFAE06: new physics without new physics

IFAE06: new physics without new physics www.cern.ch/astrumia/ifae06.pdf IFAE06: new physics without new physics Hopefully for the last time, re-review motivations and expectations for LHC. 0) LHC book says: find the Higgs. But no Higgs = new

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Physics Highlights from 12 Years at LEP

Physics Highlights from 12 Years at LEP Physics Highlights from 12 Years at LEP Colloquium Frascati,, 8.2.2001 Dieter Schlatter CERN / Geneva 1 Standard Model In 1989 ingredients of Standard Model were known: Matter particles: u,d,s,c,b,t quarks

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC 15.01.2010 Marek Olechowski Institut of Theoretical Physics, University of Warsaw LIGHT GLUINOS? Early supersymmetry discovery potential of the LHC Phenomenology

More information

Beyond the MSSM (BMSSM)

Beyond the MSSM (BMSSM) Beyond the MSSM (BMSSM) Nathan Seiberg Strings 2007 SUSY 2012 Based on M. Dine, N.S., and S. Thomas, to appear Assume The LHC (or the Tevatron) will discover some of the particles in the MSSM. These include

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Natural SUSY and the LHC

Natural SUSY and the LHC Natural SUSY and the LHC Clifford Cheung University of California, Berkeley Lawrence Berkeley National Lab N = 4 SYM @ 35 yrs I will address two questions in this talk. What is the LHC telling us about

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

From Higgsless to Composite Higgs Models

From Higgsless to Composite Higgs Models From Higgsless to Composite Higgs Models E = mc 2 based on works in collaboration with E = hν G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP062007)045 R. Contino, M. Moretti, F. Puccinini

More information

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

From Higgsless to Composite Higgs Models

From Higgsless to Composite Higgs Models From Higgsless to Composite Higgs Models E = mc 2 based on works in collaboration with E = hν G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP062007)045 R. Contino, M. Moretti, F. Puccinini

More information

SFB 676 selected theory issues (with a broad brush)

SFB 676 selected theory issues (with a broad brush) SFB 676 selected theory issues (with a broad brush) Leszek Motyka Hamburg University, Hamburg & Jagellonian University, Krakow Physics of HERA and goals of the Large Hadron Collider The Higgs boson Supersymmetry

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VIII: 29 février f 2008 The Flavour Sector Particle Physics in one page L SM = 1 4 Fa µνf

More information

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09 The first year of the LHC and Theory G.G.Ross, Krakow, December 09 The LHC a discovery machine The gauge sector : new gauge bosons? The maber sector : new quarks and leptons? The scalar sector : the hierarchy

More information

The Future of Supersymmetry

The Future of Supersymmetry The Future of Supersymmetry Sreerup Raychaudhuri TIFR HEP Seminar Institute of Physics, Bhubaneswar ...in recent times, supersymmetry has been getting a lot of bad press Supersymmetry Bites the Dust Where

More information

Where are we heading? Nathan Seiberg IAS 2016

Where are we heading? Nathan Seiberg IAS 2016 Where are we heading? Nathan Seiberg IAS 2016 Two half-talks A brief, broad brush status report of particle physics and what the future could be like The role of symmetries in physics and how it is changing

More information

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B

PH5211: High Energy Physics. Prafulla Kumar Behera Room: HSB-304B PH5211: High Energy Physics Prafulla Kumar Behera E-mail:behera@iitm.ac.in Room: HSB-304B Information Class timing: Wed. 11am, Thur. 9am, Fri. 8am The course will be graded as follows: 1 st quiz (20 marks)

More information

Introduction to MSSM

Introduction to MSSM Introduction to MSSM Shrihari Gopalakrishna Institute of Mathematical Sciences (IMSc), Chennai SUSY & DM 013 IISc, Bangalore October 013 Talk Outline Supersymmetry (SUSY) Basics Superfield formalism Constructing

More information

New Physics from the String Vacuum

New Physics from the String Vacuum New Physics from the String Vacuum The string vacuum Extended MSSM quivers String remnants Small neutrino masses Quivers: Cvetič, Halverson, PL, JHEP 1111,058 (1108.5187) Z : Rev.Mod.Phys.81,1199 (0801.145)

More information

The discrete beauty of local GUTs

The discrete beauty of local GUTs The discrete beauty of local GUTs Hans Peter Nilles Physikalisches Institut Universität Bonn The discrete beauty of local grand unification, GUTs and Strings, MPI München, February 2010 p. 1/33 Outline

More information

EWSB by strongly-coupled dynamics: an EFT approach

EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach (page 1) Outline Motivation Linear vs non-linear realization of EWSB Organizing the expansion: Power-counting

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Implications et perspectives theoriques

Implications et perspectives theoriques Implications et perspectives theoriques Riccardo Barbieri SNS and INFN, Pisa 1/26 Particle Physics in one page L ST L SM = 1 4 Fa µnf aµn + iȳ 6Dy + D µ h 2 V (h) +y i l ij y j h + h.c. The gauge sector

More information

Matter, antimatter, colour and flavour in particle physics

Matter, antimatter, colour and flavour in particle physics Matter, antimatter, colour and flavour in particle physics Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France RBI, Zagreb, 5

More information

The Electroweak Symmetry Breaking Riddle

The Electroweak Symmetry Breaking Riddle Corfu 09-1 September 09 The Electroweak Symmetry Breaking Riddle Guido Altarelli Roma Tre/CERN The LHC physics run will soon start,... hopefully! After the incident on Sept.19 08 we must wait till Nov.

More information

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model Electroweak Physics Precision Experiments: Historical Perspective LEP/SLC Physics Probing the Standard Model Beyond the Standard Model The Z, the W, and the Weak Neutral Current Primary prediction and

More information

Minimal Z models and the early LHC

Minimal Z models and the early LHC F. Zwirner University of Padova & INFN Minimal Z models and the early LHC Indirect Searches for New Physics at the time of LHC GGI, 23 March 2010 Original part of the talk based on: E.Salvioni, G.Villadoro,

More information

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Higgs in the light of Hadron Collider limits: impact on a 4th generation Higgs in the light of Hadron Collider limits: impact on a 4th generation Jack Gunion U.C. Davis Saclay, June 6, 2011 Outline Review of Experimental Status. Eliminating a 4th generation for a light SM-like

More information

WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India

WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India Contents Basic Constituents of Matter and their Interactions : Matter Fermions and Gauge

More information

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY Fourth SM Family at the LHC: ATLAS prospects Saleh SULTANSOY TOBB University of Economics and Technology, Ankara, Turkey & AMEA Institute of Physics, Baku, Azerbaijan PDG 2?: S. Sultansoy LHC2FC WG4, 3.2.29

More information

Is SUSY alive and well?

Is SUSY alive and well? Alessandro Strumia, talk at Is SUSY alive and well? No Madrid, September 29, 2016. Was SUSY alive and well? Yes SM B, L SUSY Natural Beauty g 1 = g 2 = g 3 Dark Matter Superstring TOE And for a good reason

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

Effective Field Theory and EDMs

Effective Field Theory and EDMs ACFI EDM School November 2016 Effective Field Theory and EDMs Vincenzo Cirigliano Los Alamos National Laboratory 1 Lecture III outline EFT approach to physics beyond the Standard Model Standard Model EFT

More information

Done Naturalness Desert Discovery Summary. Open Problems. Sourendu Gupta. Special Talk SERC School, Bhubaneshwar November 13, 2017

Done Naturalness Desert Discovery Summary. Open Problems. Sourendu Gupta. Special Talk SERC School, Bhubaneshwar November 13, 2017 Open Problems Special Talk SERC School, Bhubaneshwar November 13, 2017 1 What has been achieved? 2 Naturalness and hierarchy problems 3 The desert 4 Unexpected discoveries 5 Summary Outline 1 What has

More information

Theoretical Developments Beyond the Standard Model

Theoretical Developments Beyond the Standard Model Theoretical Developments Beyond the Standard Model by Ben Allanach (DAMTP, Cambridge University) Talk outline Bestiary of some relevant models SUSY dark matter Spins and alternatives B.C. Allanach p.1/18

More information