What would happen? + -

Size: px
Start display at page:

Download "What would happen? + -"

Transcription

1 What would happen? + -

2 Lecture Plan Molecules spend more time in low energy conformations Predicting a structure is approximated as the search for the lowest energy conformation on a protein model Modeling requires data, a molecular model and a strategy to explore protein conformations All practical methods are heuristics; which means that they aren't guaranteed to find THE lowest energy conformation Bigger, faster computers will not get ourselves out of this situation

3 What is a model? Model: a hypothetical description of a complex entity or process. wordnet.princeton.edu/perl/webwn Sir John Kendrew and his model of myoglobin, 1958

4 To model a protein we need? A description of the system. (atom coordinates) An abstraction of what is going on. A way to know whether we are going anywhere. (Force field) A process to find the best protein structure. (optimization)

5 Force fields A set of mathematical functions and parameters to model each relevant forces (VdW, etc.). The energy of 1 atom is the sum of all these terms. The energy of a protein is the sum of energies of all atoms. Force field are mathematical expressions that include all known important factors for molecular interactions. The Natural choice is to use the chemical energy as a score and try to find the structure with the lowest free energy.

6 It doesn t work with free energies G = H TS Free energy is temperature-dependent. Entropic contribution cannot be calculated from a snapshot. Something else must be used.

7 Modeling all relevant energy terms. Energy function A sum of terms that approximate the contributions of known theoretical microscopic forces. EFF = Estr + Ebend + Etors + EVdW + Eel + Ecross

8 Modeling bond stretch/compression In the case of bond stretching/compression, we need to measure the distance r between two atoms, and get from the force field what should be the optimal distance ro for a given pair of atoms.

9 Modeling bond stretch/compression Realistic models of bond stretch-compression are computationally expensive. This figure show how simpler model fare at modeling bond stretching. ab ab ab ab 2 P2 E str R =k 2 R R 0 ab ab 2 ab ab ab 3 ab ab ab 4 P4 E str R ab =k ab R R k R R k R R ab morse E str R =D 1 e R ab

10 Three factors to consider Parameterization nightmare Can someone come up with all these numbers? Generalization How robust is the simulation in a range of conditions. Efficiency The longer it takes to perform a single task, the fewer iterations will be computed in the same amount of time.

11 Modeling VdW Lennard-Jones R0 12 R 0 6 E str R = [ ] R R Rij = ( xi x j ) + ( yi y j ) + ( zi z j ) Is actually a computational stunt so there is no need to compute R but rather use Rn where n is an even factor. EXP6 ( R ) = Ae BR C R6

12 Modeling Electrostatic interactions Modeling electrostatic interaction is critical in many situations. Why? Electrostatic fields decay with 1/ distance. Which makes them the longestranged interactions. QAQB Eel ( RAB ) = ε RAB Coulomb s Law

13 Non-bond interactions create a computational bottleneck Computational cost of non-bonded energy (VdW, El) ~99.88% of computation in protein-sized models. Most of this is very small and does not contribute to the total energy significantly. The number of non-bonded increase to the square of the number of atoms while bonded interaction are increasing roughly linearly.

14 Hydrophobic forces This is not an explicit term. Hydrophobic interaction are due to the difference in free energy between water molecules and polar/non-polar side chains. The effect is thus intrinsic to the computations of electrostatic forces.

15 A process to find the best possible conformation Force fields provide all the functions and parameters to compute the energy of 1 structure. Finding the best structure comes down to finding the structure with the lowest energy. Need a process to change the conformation toward a better structure: optimization. The optimization is iterated until it is reasonable to believe that no better structure can be found.

16 Principle of optimization You start with a protein for which you know all coordinates. Evaluate the energy Find a better structure, usually with small changes Repeat until no better structure can be found. This task is usually NEVER straightforward, unless the system would be made of a small number of atoms.

17 Minimizing The gradient method For each atoms: 1. Computer the force vectors for each term 2. Sum all vectors 3. Move the atoms over a small distance along their resultant vectors. Repeat until all resultant force vectors are of length 0.

18 Optimizing simple functions Energies R Minimum (Ro) R

19 Energies Optimizing more complex functions Conformations Minimum

20 Molecular Simulations Time dependent methods (Molecular Dynamics) Make use of classical mechanics equations such as: F = ma Each atom gets a random kinetic energy vector which is added to the resultant force vector. This simulates thermal motion.

21 Molecular Simulations Verlet Algorithm Numerical solution to Newton s equations r i 1=r i v i t 1/ 2 ai t 2 r i 1=r i v i t 1/2 ai t 2 ri+1 = ( 2ri ri 1 ) + ai t 2 a can be computed from F = ma

22 Molecular Simulations t Reasonable: Femtoseconds Scope of simulation (ideal): (practical): Millisecond 10-3 Microsecond 10-6

23 Molecular Simulations Timesteps To simulate a microsecond, it takes a very, very long time To simulate slow processes, the time scale isn t realistic.

24 Other Optimization strategies Simulated Annealing Scaling down the energy landscape makes the crossing of barrier more probable. Time to do so it in short supply, however!

25 Why modeling proteins Anticodon binding site on erf3 2 possibilities. From phylogenetic information, a few residues were identified as players. Use molecular mechanics to see whether the surface of the protein can accommodate an anti-codon. Inagaki, Y., Blouin, C., Doolittle, W.F., and Roger, A.J Convergence and constraint in eukaryotic release factor 1 (erf1) domain 1: the evolution of stop codon specificity. Nucleic Acids Res 30:

26 Why modeling proteins Modeling a weird substrate into an active site. Mandelate racemase can bind a substrate with two rings! Is there room for this in the wild type active site? The answer is yes, although a bit counter-intuitive. Siddiqi, F, Bourque, J., Jiang, H., Gardner, M., St. Maurice, M., Blouin, C., and Bearne S.L., Perturbing the Hydrophobic Pocket of Mandelate Racemase to Probe Phenyl Motion During Catalysis. Biochemistry 44(25):

27 Folding polypeptide isn t expected to work out as well because Empirical models are parameterized with pre-folded proteins. Role of water in partially folder proteins is significant. Time scale for folding a protein is still a bit out of range for simulation. Assistance in folding, either from Chaperones, other monomers isn t there. Folding process is seeded by the chain extension during translation. Folding of peptide occurs an a time scale COMPLETELY beyond what we can get away with today.

28 Protein folding from Scratch Must be restrained to a limited scope Two genes: TC5b and TC3b Both have references structure for validation. Sequences NLYIQWLKDGGPSSGRPPPS (TC5b; 304 atoms) NLFIEWLKNGGPSSGAPPPS (TC3b; 289 atoms) Software: AMBER 6.0 Model: AMBER Solvation: Generalize Born/solvent-accessible surface area This means that the water molecules are not explicitly defined in the simulation and the effect of the solvent is treated as a macro property.

29 Protein folding from Scratch Must be restrained to a limited scope Understanding folding and design: Replica-exchange simulation of Trp-Cage miniproteins. Pitera, JW., Swope, W Proc. Natl. Acad. Sci. USA, 100: The GIST Run 23 simulation (4ns) in parallel, each at a different temperature from hot to cold. At every 5ps, redistribute the best conformation to the coldest simulation. This is much more effective at exploring solutions than a 23 X 4ns simulation

30 Protein folding from Scratch Impact RED is the reference, GREEN is the computed model. Large Energy barriers are not as high in small, isolated structures. It is reasonable to limit the scope of these simulations to protein domains.

31 Protein folding from Scratch Validation The root mean square deviation RMSD ( n RMSD = atom =i v v wi i iref n n wi ) RMSD from any of the snapshots i =1 2.0 RMSD from the average snapshot.

32 Why multiple temperature sampling work Total energy remains constant: ET = EFF + Ek So, at higher temperatures, higher energy structures are more often observed. This means more alternative conformation sampled in the same amount of time. Each of these conformational groups gets in turn refined at lower temperature. Statistically, most of the simulation time of the coldest chain will be spent in the energy well with the lowest energy.

33 Building a large machine for protein folding IBM Blue Gene project (65K processors, never enough, however)

34 High Performance achievement in MD NAMD Open source University of Illinois, Dept. of theoretical physics Benchmark system (their big one)

35 Parallel computing and Molecular dynamics Folding proteins from an extended conformation is a difficult problem because of the crossing of energy barriers. The following slides describe the limitations of simulating the crossing of energy barrier using massively parallel techniques.

36 Limitations of Parallel computing It takes 1500 days to complete a thesis for one student If the student is helped by someone, the work may go 2X as fast: 750 days. What if 1500 students are working on the same thesis? Overhead Communication Load balancing

37 Parallel computing Factors that complicate parallelization: Some work have to be executed in a sequence Communicating the task and the results becomes an increasingly important time step as the task become small. Each individual process have to wait for the slowest one to finish, leading to a loss of efficiency. It doesn't make sense to have much more CPU than atoms in the system!

38 Time scale in protein folding In the order of micro to milliseconds This is not achievable by modern computers. ~ days for 1 experiment (~28 years) folding@home Using unspent cycles from idle hardware (PS3, Xboxes, PC (Screensaver) )

39 Crossing energy barrier Most of the time is spent waiting for the thermal motion to topple a structure over a barrier. Principle of Ensemble dynamics M CPU should take M X less time to go over a barrier. For breaking 3-10 H-bonds (~22.3 kj/m) If an even occurs on average every 10,000 ns, the chance to witness this event during a 30 ns simulation is 0.3%. If the same simulation runs on 10,000 machines, one expect to observe the event ~30 times over 30 ns.

40 Ensemble Dynamics Start M dynamic calculations with the same initial structure. Once 1 thread finds a barrier and go over it, copy the state of this thread into all other M1 replicate processes. The communication overhead is negligible if the crossings are rare events, which is the case.

41 Villin's headpiece Note how most of the interactions in the partially folded protein are nonnative. This means that in order to resume folding, these must be broken. The Villin headpiece is one of the fastest (known) folding peptide!! What about simulating anything else?

42 Energy Landscape Observe that in this figure that there are: one folding pathway One intermediate Two energy barriers

43 Progress in last 2 years Rates of protein folding appear to be correctly predicted using ensemble dynamics.

44 Progress on large systems Multiplicate simulation of SNARE-mediated vesicle fusion have been published. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion Peter M. Kasson, Nicholas W. Kelley, Nina Singhal, Marija Vrljic, Axel T. Brunger,,, and Vijay S. Pande PNAS August 8, 2006 vol. 103 no

45 Summary Biological models are assumed to have the lowest energy. Optimization is used to find the lowest energy structures, and thus the biologically relevant conformation. Simulation time is the bottleneck. The more you sample, the more likely that the solution will be good. There are some progress in solving protein folding using heuristics and parallel computing, but the solution depend on theoretical breakthroughs, not the addition of hardware.

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror Molecular dynamics simulation CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror 1 Outline Molecular dynamics (MD): The basic idea Equations of motion Key properties of MD simulations Sample applications

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Limitations of temperature replica exchange (T-REMD) for protein folding simulations

Limitations of temperature replica exchange (T-REMD) for protein folding simulations Limitations of temperature replica exchange (T-REMD) for protein folding simulations Jed W. Pitera, William C. Swope IBM Research pitera@us.ibm.com Anomalies in protein folding kinetic thermodynamic 322K

More information

BIOC : Homework 1 Due 10/10

BIOC : Homework 1 Due 10/10 Contact information: Name: Student # BIOC530 2012: Homework 1 Due 10/10 Department Email address The following problems are based on David Baker s lectures of forces and protein folding. When numerical

More information

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding

Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding Energy Landscapes and Accelerated Molecular- Dynamical Techniques for the Study of Protein Folding John K. Prentice Boulder, CO BioMed Seminar University of New Mexico Physics and Astronomy Department

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Advanced Molecular Dynamics

Advanced Molecular Dynamics Advanced Molecular Dynamics Introduction May 2, 2017 Who am I? I am an associate professor at Theoretical Physics Topics I work on: Algorithms for (parallel) molecular simulations including GPU acceleration

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Lecture 34 Protein Unfolding Thermodynamics

Lecture 34 Protein Unfolding Thermodynamics Physical Principles in Biology Biology 3550 Fall 2018 Lecture 34 Protein Unfolding Thermodynamics Wednesday, 21 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Clicker Question

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Yesterday s Nobel Prize: single-particle cryoelectron microscopy 2 Outline Energy

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 86 28 MAY 21 NUMBER 22 Mathematical Analysis of Coupled Parallel Simulations Michael R. Shirts and Vijay S. Pande Department of Chemistry, Stanford University, Stanford,

More information

Molecular Dynamics. A very brief introduction

Molecular Dynamics. A very brief introduction Molecular Dynamics A very brief introduction Sander Pronk Dept. of Theoretical Physics KTH Royal Institute of Technology & Science For Life Laboratory Stockholm, Sweden Why computer simulations? Two primary

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

The protein folding problem consists of two parts:

The protein folding problem consists of two parts: Energetics and kinetics of protein folding The protein folding problem consists of two parts: 1)Creating a stable, well-defined structure that is significantly more stable than all other possible structures.

More information

Alchemical free energy calculations in OpenMM

Alchemical free energy calculations in OpenMM Alchemical free energy calculations in OpenMM Lee-Ping Wang Stanford Department of Chemistry OpenMM Workshop, Stanford University September 7, 2012 Special thanks to: John Chodera, Morgan Lawrenz Outline

More information

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror

Energy functions and their relationship to molecular conformation. CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Energy functions and their relationship to molecular conformation CS/CME/BioE/Biophys/BMI 279 Oct. 3 and 5, 2017 Ron Dror Outline Energy functions for proteins (or biomolecular systems more generally)

More information

Lecture 11: Protein Folding & Stability

Lecture 11: Protein Folding & Stability Structure - Function Protein Folding: What we know Lecture 11: Protein Folding & Stability 1). Amino acid sequence dictates structure. 2). The native structure represents the lowest energy state for a

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall Protein Folding: What we know. Protein Folding Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2003 Structure - Function Protein Folding: What we know 1). Amino acid sequence dictates structure. 2). The native structure represents

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

ENZYME KINETICS AND INHIBITION

ENZYME KINETICS AND INHIBITION ENZYME KINETICS AND INHIBITION The kinetics of reactions involving enzymes are a little bit different from other reactions. First of all, there are sometimes lots of steps involved. Also, the reaction

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror

Protein structure prediction. CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror Protein structure prediction CS/CME/BioE/Biophys/BMI 279 Oct. 10 and 12, 2017 Ron Dror 1 Outline Why predict protein structure? Can we use (pure) physics-based methods? Knowledge-based methods Two major

More information

Short Announcements. 1 st Quiz today: 15 minutes. Homework 3: Due next Wednesday.

Short Announcements. 1 st Quiz today: 15 minutes. Homework 3: Due next Wednesday. Short Announcements 1 st Quiz today: 15 minutes Homework 3: Due next Wednesday. Next Lecture, on Visualizing Molecular Dynamics (VMD) by Klaus Schulten Today s Lecture: Protein Folding, Misfolding, Aggregation

More information

Protein Folding experiments and theory

Protein Folding experiments and theory Protein Folding experiments and theory 1, 2,and 3 Protein Structure Fig. 3-16 from Lehninger Biochemistry, 4 th ed. The 3D structure is not encoded at the single aa level Hydrogen Bonding Shared H atom

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding

Lecture 21 (11/3/17) Protein Stability, Folding, and Dynamics Hydrophobic effect drives protein folding Reading: Ch4; 142-151 Problems: Ch4 (text); 14, 16 Ch6 (text); 1, 4 NEXT (after exam) Reading: Ch8; 310-312, 279-285, 285-289 Ch24; 957-961 Problems: Ch8 (text); 1,2,22 Ch8 (study-guide:facts); 1,2,3,4,5,9,10

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/309/5742/1868/dc1 Supporting Online Material for Toward High-Resolution de Novo Structure Prediction for Small Proteins Philip Bradley, Kira M. S. Misura, David Baker*

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 If you throw up a stone, it is Physics. If you throw up a stone, it is Physics. If it lands on your head, it is

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Improving Protein Function Prediction with Molecular Dynamics Simulations. Dariya Glazer Russ Altman

Improving Protein Function Prediction with Molecular Dynamics Simulations. Dariya Glazer Russ Altman Improving Protein Function Prediction with Molecular Dynamics Simulations Dariya Glazer Russ Altman Motivation Sometimes the 3D structure doesn t score well for a known function. The experimental structure

More information

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed.

Many proteins spontaneously refold into native form in vitro with high fidelity and high speed. Macromolecular Processes 20. Protein Folding Composed of 50 500 amino acids linked in 1D sequence by the polypeptide backbone The amino acid physical and chemical properties of the 20 amino acids dictate

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

CMPS 3110: Bioinformatics. Tertiary Structure Prediction

CMPS 3110: Bioinformatics. Tertiary Structure Prediction CMPS 3110: Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the laws of physics! Conformation space is finite

More information

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction

CMPS 6630: Introduction to Computational Biology and Bioinformatics. Tertiary Structure Prediction CMPS 6630: Introduction to Computational Biology and Bioinformatics Tertiary Structure Prediction Tertiary Structure Prediction Why Should Tertiary Structure Prediction Be Possible? Molecules obey the

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Ab-initio protein structure prediction

Ab-initio protein structure prediction Ab-initio protein structure prediction Jaroslaw Pillardy Computational Biology Service Unit Cornell Theory Center, Cornell University Ithaca, NY USA Methods for predicting protein structure 1. Homology

More information

Energetics and Thermodynamics

Energetics and Thermodynamics DNA/Protein structure function analysis and prediction Protein Folding and energetics: Introduction to folding Folding and flexibility (Ch. 6) Energetics and Thermodynamics 1 Active protein conformation

More information

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC The precise definition of a dihedral or torsion angle can be found in spatial geometry Angle between to planes Dihedral

More information

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole

ONETEP PB/SA: Application to G-Quadruplex DNA Stability. Danny Cole ONETEP PB/SA: Application to G-Quadruplex DNA Stability Danny Cole Introduction Historical overview of structure and free energy calculation of complex molecules using molecular mechanics and continuum

More information

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS

PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS TASKQUARTERLYvol.20,No4,2016,pp.353 360 PROTEIN-PROTEIN DOCKING REFINEMENT USING RESTRAINT MOLECULAR DYNAMICS SIMULATIONS MARTIN ZACHARIAS Physics Department T38, Technical University of Munich James-Franck-Str.

More information

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV

Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur. Lecture - 06 Protein Structure IV Biochemistry Prof. S. DasGupta Department of Chemistry Indian Institute of Technology Kharagpur Lecture - 06 Protein Structure IV We complete our discussion on Protein Structures today. And just to recap

More information

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C.

CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. CS 273 Prof. Serafim Batzoglou Prof. Jean-Claude Latombe Spring 2006 Lecture 12 : Energy maintenance (1) Lecturer: Prof. J.C. Latombe Scribe: Neda Nategh How do you update the energy function during the

More information

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water

Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Reactive molecular dynamics simulations of plasma treatment of emerging pollutants in water Pascal Brault GREMI, UMR7344 CNRS Université d Orléans, Orléans, France Outline Plasma- liquid interactions Reactive

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Convergence of replica exchange molecular dynamics

Convergence of replica exchange molecular dynamics THE JOURNAL OF CHEMICAL PHYSICS 123, 154105 2005 Convergence of replica exchange molecular dynamics Wei Zhang and Chun Wu Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche

Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche Protein Structure Prediction II Lecturer: Serafim Batzoglou Scribe: Samy Hamdouche The molecular structure of a protein can be broken down hierarchically. The primary structure of a protein is simply its

More information

Homework 9: Protein Folding & Simulated Annealing : Programming for Scientists Due: Thursday, April 14, 2016 at 11:59 PM

Homework 9: Protein Folding & Simulated Annealing : Programming for Scientists Due: Thursday, April 14, 2016 at 11:59 PM Homework 9: Protein Folding & Simulated Annealing 02-201: Programming for Scientists Due: Thursday, April 14, 2016 at 11:59 PM 1. Set up We re back to Go for this assignment. 1. Inside of your src directory,

More information

The Quantum Landscape

The Quantum Landscape The Quantum Landscape Computational drug discovery employing machine learning and quantum computing Contact us! lucas@proteinqure.com Or visit our blog to learn more @ www.proteinqure.com 2 Applications

More information

Protein Folding In Vitro*

Protein Folding In Vitro* Protein Folding In Vitro* Biochemistry 412 February 29, 2008 [*Note: includes computational (in silico) studies] Fersht & Daggett (2002) Cell 108, 573. Some folding-related facts about proteins: Many small,

More information

Gromacs Workshop Spring CSC

Gromacs Workshop Spring CSC Gromacs Workshop Spring 2007 @ CSC Erik Lindahl Center for Biomembrane Research Stockholm University, Sweden David van der Spoel Dept. Cell & Molecular Biology Uppsala University, Sweden Berk Hess Max-Planck-Institut

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

Chapter 12: Intracellular sorting

Chapter 12: Intracellular sorting Chapter 12: Intracellular sorting Principles of intracellular sorting Principles of intracellular sorting Cells have many distinct compartments (What are they? What do they do?) Specific mechanisms are

More information

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr.

Application of the Markov State Model to Molecular Dynamics of Biological Molecules. Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Application of the Markov State Model to Molecular Dynamics of Biological Molecules Speaker: Xun Sang-Ni Supervisor: Prof. Wu Dr. Jiang Introduction Conformational changes of proteins : essential part

More information

Exercise 2: Solvating the Structure Before you continue, follow these steps: Setting up Periodic Boundary Conditions

Exercise 2: Solvating the Structure Before you continue, follow these steps: Setting up Periodic Boundary Conditions Exercise 2: Solvating the Structure HyperChem lets you place a molecular system in a periodic box of water molecules to simulate behavior in aqueous solution, as in a biological system. In this exercise,

More information

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING:

DISCRETE TUTORIAL. Agustí Emperador. Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: DISCRETE TUTORIAL Agustí Emperador Institute for Research in Biomedicine, Barcelona APPLICATION OF DISCRETE TO FLEXIBLE PROTEIN-PROTEIN DOCKING: STRUCTURAL REFINEMENT OF DOCKING CONFORMATIONS Emperador

More information

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics

Proteins polymer molecules, folded in complex structures. Konstantin Popov Department of Biochemistry and Biophysics Proteins polymer molecules, folded in complex structures Konstantin Popov Department of Biochemistry and Biophysics Outline General aspects of polymer theory Size and persistent length of ideal linear

More information

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract:

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract: Hydration Dynamics at a Hydrophobic Surface Sunyia Hussain 6/15/212 ChE21D final project Abstract: Water is the universal solvent of life, crucial to the function of all biomolecules. Proteins, membranes,

More information

Exploring the energy landscape

Exploring the energy landscape Exploring the energy landscape ChE210D Today's lecture: what are general features of the potential energy surface and how can we locate and characterize minima on it Derivatives of the potential energy

More information

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University Thermodynamics Entropy and its Applications Lecture 11 NC State University System and surroundings Up to this point we have considered the system, but we have not concerned ourselves with the relationship

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Jaewoon Jung (RIKEN, RIKEN AICS) Yuji Sugita (RIKEN, RIKEN AICS, RIKEN QBiC, RIKEN ithes) Molecular Dynamics

More information

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2 and 3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions: Van der Waals Interactions

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds)

Advanced sampling. fluids of strongly orientation-dependent interactions (e.g., dipoles, hydrogen bonds) Advanced sampling ChE210D Today's lecture: methods for facilitating equilibration and sampling in complex, frustrated, or slow-evolving systems Difficult-to-simulate systems Practically speaking, one is

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Types of RNA Messenger RNA (mrna) makes a copy of DNA, carries instructions for making proteins,

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Protein Folding. I. Characteristics of proteins. C α

Protein Folding. I. Characteristics of proteins. C α I. Characteristics of proteins Protein Folding 1. Proteins are one of the most important molecules of life. They perform numerous functions, from storing oxygen in tissues or transporting it in a blood

More information

The Computational Microscope

The Computational Microscope The Computational Microscope Computational microscope views at atomic resolution... Rs SER RER C E M RER N GA L... how living cells maintain health and battle disease John Stone Our Microscope is Made

More information

Molecular dynamics simulation of Aquaporin-1. 4 nm

Molecular dynamics simulation of Aquaporin-1. 4 nm Molecular dynamics simulation of Aquaporin-1 4 nm Molecular Dynamics Simulations Schrödinger equation i~@ t (r, R) =H (r, R) Born-Oppenheimer approximation H e e(r; R) =E e (R) e(r; R) Nucleic motion described

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM Homology modeling Dinesh Gupta ICGEB, New Delhi Protein structure prediction Methods: Homology (comparative) modelling Threading Ab-initio Protein Homology modeling Homology modeling is an extrapolation

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

Advanced Molecular Molecular Dynamics

Advanced Molecular Molecular Dynamics Advanced Molecular Molecular Dynamics Technical details May 12, 2014 Integration of harmonic oscillator r m period = 2 k k and the temperature T determine the sampling of x (here T is related with v 0

More information

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES V.V. Korenkov 1,3, a, E.G. Nikonov 1, b, M. Popovičová 2, с 1 Joint Institute for Nuclear

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

Free energy simulations

Free energy simulations Free energy simulations Marcus Elstner and Tomáš Kubař January 14, 2013 Motivation a physical quantity that is of most interest in chemistry? free energies Helmholtz F or Gibbs G holy grail of computational

More information

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis Unit 6 Goal: Students will be able to describe the processes of transcription and translation. Protein Synthesis: Protein synthesis uses the information in genes to make proteins. 2 Steps

More information

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will:

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will: As we wrap up kinetics we will: Lecture 22: The Arrhenius Equation and reaction mechanisms. Briefly summarize the differential and integrated rate law equations for 0, 1 and 2 order reaction Learn how

More information

Lecture 2: Linear regression

Lecture 2: Linear regression Lecture 2: Linear regression Roger Grosse 1 Introduction Let s ump right in and look at our first machine learning algorithm, linear regression. In regression, we are interested in predicting a scalar-valued

More information

Computational complexity and some Graph Theory

Computational complexity and some Graph Theory Graph Theory Lars Hellström January 22, 2014 Contents of todays lecture An important concern when choosing the algorithm to use for something (after basic requirements such as correctness and stability)

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Hydrophobic Aided Replica Exchange: an Efficient Algorithm for Protein Folding in Explicit Solvent

Hydrophobic Aided Replica Exchange: an Efficient Algorithm for Protein Folding in Explicit Solvent 19018 J. Phys. Chem. B 2006, 110, 19018-19022 Hydrophobic Aided Replica Exchange: an Efficient Algorithm for Protein Folding in Explicit Solvent Pu Liu, Xuhui Huang, Ruhong Zhou,, and B. J. Berne*,, Department

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Paul Sigler et al, 1998.

Paul Sigler et al, 1998. Biological systems are necessarily metastable. They are created, modulated, and destroyed according to a temporal plan that meets the survival needs of the cell, organism, and species...clearly, no biological

More information

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2

Molecular Dynamics, Monte Carlo and Docking. Lecture 21. Introduction to Bioinformatics MNW2 Molecular Dynamics, Monte Carlo and Docking Lecture 21 Introduction to Bioinformatics MNW2 Allowed phi-psi angles Red areas are preferred, yellow areas are allowed, and white is avoided 2.3a Hamiltonian

More information

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc.

schematic diagram; EGF binding, dimerization, phosphorylation, Grb2 binding, etc. Lecture 1: Noncovalent Biomolecular Interactions Bioengineering and Modeling of biological processes -e.g. tissue engineering, cancer, autoimmune disease Example: RTK signaling, e.g. EGFR Growth responses

More information

Lecture 5: Electrostatic Interactions & Screening

Lecture 5: Electrostatic Interactions & Screening Lecture 5: Electrostatic Interactions & Screening Lecturer: Prof. Brigita Urbanc (brigita@drexel.edu) PHYS 461 & 561, Fall 2009-2010 1 A charged particle (q=+1) in water, at the interface between water

More information

Statistical methods research done as science rather than math: Estimates on the boundary in random regressions

Statistical methods research done as science rather than math: Estimates on the boundary in random regressions Statistical methods research done as science rather than math: Estimates on the boundary in random regressions This lecture is about how we study statistical methods. It uses as an example a problem that

More information

Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs

Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs Adaptive Heterogeneous Computing with OpenCL: Harnessing hundreds of GPUs and CPUs Simon McIntosh-Smith simonm@cs.bris.ac.uk Head of Microelectronics Research University of Bristol, UK 1 ! Collaborators

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

Molecular Dynamics. Molecules in motion

Molecular Dynamics. Molecules in motion Molecular Dynamics Molecules in motion 1 Molecules in mo1on Molecules are not sta1c, but move all the 1me Source: h9p://en.wikipedia.org/wiki/kine1c_theory 2 Gasses, liquids and solids Gasses, liquids

More information