Formation of a trap in the dusty plasma of photovoltaic atomic battery

Size: px
Start display at page:

Download "Formation of a trap in the dusty plasma of photovoltaic atomic battery"

Transcription

1 nd International Symposium on Plasma Chemistry July 5-, 5; Antwerp, Belgium Formation of a trap in the dusty plasma of photovoltaic atomic battery A.V. Filippov, A.F. Pal, A.N. Starostin and V.. Cherkovets SRC RF Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow, Russia Abstract: Formation of a dusty plasma trap in a non-self-sustained gas discharge controlled by alectron beam is studied. Dust particle charge is defined by taking into account the nonlocality of the electronergy distribution function (DF). It is obtained that for the given gas ionization rate and the applied discharge voltage dust particles have a critical size above which their sedimentation on the cathode occurs. Keywords: non-self-sustained gas discharge, electron beam, dusty plasma, cathode sheath. Introduction The interest to the dusty plasma under pressures of ~ bar has been raised quite recently and is basically connected with studying the possibility of developing autonomous energy sources on the basis of plasma-dusty structures [, ]. The operation of such anergy source bases on plasma created by the products of dust radionuclides particles decay and requires that the ordered structure from dusty particles be created. The non-selfsustained discharge controlled by axternal electron beam appeared to be most suitable tool for experimental modeling of such plasma. Therefore, the present paper reports the results of the work on studying the dusty plasma excited by a fast electron beam under atmospheric or higher pressures.. Self-consistent model of the non-self-sustained discharge The self-consistent model of the non-self-sustained discharge from [3] by taking into account the processes of electron and ion losses owing to the sink to dust particles as well as hydrodynamic equations for the neutral component was developed. Such model is described by the following equations: ne + je = Qion + nionne βein e βde Zd ndne, ni + ji = Qion + nionne βein e βdi Zd ndni, nd + ( ndvd) =, Vd p 6pηr + = mn d d md ezd + g+, m d ( Vd ) Vd ( Vd Vg) d ( ) () () φ = πen n+ Zn, = φ, (3). i e d d ere je = De ne µ ene, ji = µ ini,, are the electron and ion number densities, is the electric field strength, µ e, µ i are the mobilities of electrons and ions respectively, D e is the electron diffusion coefficient, β de, β di are the recombination coefficients of electrons and ions on dust particles with the charge, Q ios the bulk gas ionization rate by axternal source, os the frequency of the gas ionization by plasma electrons, β ei is the coefficient of electron-ion recombination, V d and V g are the velocities of the directed movement of dust particles and gas, g is the acceleration of gravity, ln ( µ ene µ ini) Zd ( ne ni r) = Zdr ln ( µ e µ i) β π eµ β β,,, =, =, di i de di is the charge of a dust particle having a µm radius with takento account the DF non-locality [], r is the radius of dust particles in micrometre. Let us apply the following boundary conditions to system (-3) (the cathode is at z =, the anode is at z =, U dis is the discharge voltage applied to the electrodes, v Te is the thermal velocity of electrons, γ is the coefficient of the secondary ion-electromission from the cathode): ( γ ) nv = kn + kn, n = ; e Te z= e e i i z= e z= n = ; V =, n = ; φ i z= d z=, z= d z=, z= =, φ = U, z= z= Let us assume the following initial conditions:, Udis n =,,, e n = i = z V t t t t t d t φ = = = = = = = = Nd 3 3 z 3 nd = 56 ( 8 8 ) ( ), V y y + θ y y =, t= dis where V dis is the discharge volume, N d is the number of dust particles injected into the discharge; θ(x) is the step function. According [3], the gas ionization transverse directios rather homogeneous. Therefore, it is possible to consider the problem within one-dimension approximation along the z-axis. We can also assume that dis P-II-7-3

2 electron transfer coefficients and the coefficient of electron-ion recombination are constant (this is justified since the field in the positive column under the considered regime is weak [3], and the electron number density in the near-cathode layer is small). The z-axis is directed upwards. In the steady regime the gas velocity is equal to zero. The typical velocity relaxation time of dust particles considerably exceeds their typical number density time setting, therefore, it is possible to neglect their inertia and to define their velocity from the stationary equation of their movement. Let us solve the equations in system (-3) in the following way. Firstly, we solve the electron number balance equation by the iteration method (by the sweep method according to the Crank Nicolson scheme) and the Poissoquation (by the sweep method) with using the electron number densities which were determined at this iteration. Then we solve the number balance equation for ions according to the explicit scheme with using the directed differences to determine the drift members. After this, we solve the equation of continuity for a dusty component. a),i - (cm -3 ) n d (kv/cm) (V/cm) Numerical simulation results and discussions The simulation results of dusty trap formation presented in Figs. -5. It is seen Fig. how a dusty particle trap for charged dusty particles forms. Fig. b shows the distributions for dusty particle charge and the electric field in the levitation area in a larger scale. The ionization rate for xenon at atmospheric pressure and room temperature was assumed to be equal to Q ion = cm -3 s -, the voltage U dis = kv was applied to the discharge gap. N d = 5 5 particles of r = 5 µm were injected into the discharge area. It is seen Fig. how a disk-like dusty particle structure where all the plasma parameters remained practically constant is formed. In Fig. there are analogous distributions for a non-self-sustained discharge in argon. Comparison of Figs. and shows considerable difference in the behavior of positive ion number density in the near-cathode layer: in xenon is greater in the near-cathode layer than the positive column, and in argon the ion number density is significantly lower in the near-cathode layer than the positive column. This is due to the following fact. Balance equation of positive ions () in the steady regime results in the following: j = Q β Z nn () i ioi e i id d d i Taking into consideration the equality of the ion number density gradient in the discharge gap to zero practically everywhere, we caxpress the divergence of the positive ion flux in the following way: b) Fig.. Steady distributions for electron ( ) and ion ( ) number densities, a dusty component charge (n d ) ilementary charge units and the electric field strength () in the discharge gap in xenon at Q ion = cm -3 s -, U dis = kv, N d = 6, r = 3 µm, ρ d =.9 g/cm 3. - n (cm -3 ) (kv/cm) n d. Fig.. Steady distributions for electron ( ) and ion ( ) concentrations, a dusty component charge (n d ) ilementary charge units and the electric field -5 P-II-7-3

3 strength () in the discharge gap in argon at Q ion = cm -3 s -, U dis = kv, N d = 3 5, r = 5 µm, ρ d =.9 g/cm 3. P-II-7-3 3

4 Comparison of Figs. and shows considerable difference in the behavior of positive ion number density in the near-cathode layer: in xenon is greater in the near-cathode layer than the positive column, and in argon the ion number density is significantly lower in the near-cathode layer than the positive column. This is due to the following fact. Balance equation of positive ions () in the steady regime results in the following: j = Q β Z nn (). i ioi e i id d d i Taking into consideration the equality of the ion number density gradient in the discharge gap to zero practically everywhere, we caxpress the divergence of the positive ion flux in the following way: ji ( kn i i) = kn i i + ki ni (5). kn = π ekn n n ( ) i i i i i e The Poissoquation (3) was used in the final step in (5). Using (5) with the negativity of the charge of levitating dusty particles, we have from () the following: ( ) Q β n n n =. ioi e i id i i e In the positive column, therefore, from (5) we obtain n = Q β. (6). i, pc ioi In the near-cathode layer, therefore, n = Q β. (7). i, sh iod We can see from the Table that in xenolectron-ion and Langevin recombination coefficients are very close to each other, therefore, the ion number densities in the positive column and in the near-cathode layer are also close. In argon β id is more than four times greater than β ei, therefore, the ion number density in the positive colums approximately times greater than that in the near-cathode layer. In Fig. 3 there is distribution of the electron and ion number densities, dusty particle charges and electric field strength in the non-self-sustained discharge in xenon under injecting dusty particles of two sizes. In this case two equations of continuity and motion were solved for the particles of each size. a),i - (cm -3 ) n d..5. (V/cm) -75 n d (kv/cm) In Table the electron-ion (β ei ) and Langevin (β id ) recombination coefficients, ion number densities in the near-cathode layer (,sh ) from (7) and in the positive column (,pc ) according to (6) in the non-self-sustained discharge in heavy inert gases at atmospheric pressure are presented Table. Parameters of the dusty plasma created by e-beam. Q ion, cm -3 s - β ei, cm 3 /s β id, cm 3 /s n, Газ,sh, cm -3 i,pc cm Ar Kr Xe b)..5. Fig. 3. Distribution of the electron and ion number densities (a), dusty particle charge (b) and electric field strength in the non-self-sustained discharge for r = µm, N d = 6, r = 3 µm, N d = N d /3, ρ d = ρ d =.9 g/cm 3. Fig.3 illustrates how the separation of different sized particles in height occurs in the cathode layer. Let us note anteresting feature in the distribution of the electric field strength and the number density of dusty particles: in the levitation area of dusty particles they appear to be practically constant. It is seen Fig. 3 that larger particles levitate in the area with the greater field than P-II-7-3

5 small ones. In Fig. there is distribution of the modified nonideality parameter in the discharge gap in the non-selfsustained discharge in argon at various applied voltages. Γ Calculation shows that the critical radius also increases when the applied voltage to the discharge is increased. N d Fig.. Modified nonideality parameter Г * in argon at Q ion = cm -3 s - as a function of the height over the cathode. Curve is for U dis = 5 V, is for V, 3 is for 5 V, is for V. The modified non-ideality parameter Γ * is defined by the following expression [5]: ( κ κ ) * Γ =Γ + + e κ where Γ is the non-ideality parameter: Γ = e /at d, T d is the temperature of the dusty component inergetic units, κ is the structural parameter: κ = k sh a, k sh is the screening constant, a is the average interparticle distance: a = n d -/3, n d is the density of dust particles. Fig. illustrates that in the disk-like structure the dusty component is a liquid, the nonideality parameter decreasing with the growth of the voltage, which is due to the decrease in dusty cloud density (it is seen Fig. that when the applied voltage grows the width of the dusty cloud increases, which leads to the decrease in the density in case the total number of particles is constant). The total number of dusty particles in the discharge area considerably depends on the radius of dusty particles. It appears that for the given dust material density, gas ionization rate and applied voltage the dusty particles have a critical radius above which all the particles injected into the discharge area deposit on the cathode. As axample, Fig. 5 shows that when the radius grows there remains less and less particles in the discharge gap in the stationary regime, while the particles with the radius of µm and larger cannot levitate in the non-selfsustained discharge in xenon at the given parameters at all. Table shows the sizes of particles still levitating in the discharge area while the particles whose radius is.5 µm larger deposit upon the lower electrode within about s. It is seen that the growth of the gas ionization rate is accompanied by the growth of the critical radius... t (s) Fig. 5. Time evolution of the total number of dust particles N d in xenon, Q ion = 5 cm -3 s -, U dis = kv. Curve r = µm,.5 µm, 3.75 µm, - µm. Table. The largest size (in µm) of levitating dust particles with ρ d =.9 g/cm 3 at U dis = V. Q ion cm -3 s Argon Krypton.5 7 Xenon Conclusions It is shown on the basis of the self-consistency model of the non-self-sustained discharge inert gases how a trap for dust particles forms. It is obtained that for the given gas ionization rate and the applied discharge voltage the dust particles have a critical size above which their sedimentation on the cathode occurs. 5. Acknowledgments The work was supported by the State Atomic nergy Corporation Rosatom (contract no. Н.х ) and a grant from the President of the Russian Federation (no. NSh-93..). 6. References [] V.Yu. Baranov, A F. Pal, A.A. Pustovalov, et al. in: Isotopes: Properties, Production, Application. (V.Yu. Baranov; d.) (Moscow: Fizmatlit), Vol., 59 [in Russian] (5) [] A.V. Filippov, A.F. Pal', A.N. Starostin, et al. Ukr. J. Phys., 5, 37 (5) [3] A.V. Filippov, V.N. Babichev, N.A. Dyatko, et al. JTP,, 3 (6) [] A.V. Filippov, N.A. Dyatko and A.S. Kostenko. JTP, 9, 985 () [5] O.S. Vaulina and S.A. Khrapak. JTP, 9, 87 () P-II-7-3 5

RESEARCH ON TWO-STAGE ENGINE SPT-MAG

RESEARCH ON TWO-STAGE ENGINE SPT-MAG RESEARCH ON TWO-STAGE ENGINE SPT-MAG A.I. Morozov a, A.I. Bugrova b, A.D. Desiatskov b, V.K. Kharchevnikov b, M. Prioul c, L. Jolivet d a Kurchatov s Russia Research Center, Moscow, Russia 123098 b Moscow

More information

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA

Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712, USA 1 MAGNETIZED DIRECT CURRENT MICRODISCHARGE, I: EFFECT OF THE GAS PRESSURE Dmitry Levko and Laxminarayan L. Raja Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at

More information

MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT

MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT MEASUREMENT OF THE ION DRAG FORCE IN A COMPLEX DC- PLASMA USING THE PK-4 EXPERIMENT M.H.THOMA 1, H. HÖFNER 1, S. A. KHRAPAK 1, M. KRETSCHMER 1, R.A. QUINN 1, S. RATYNSKAIA 1, G.E. MORFILL 1, A. USACHEV,

More information

Characteristics and classification of plasmas

Characteristics and classification of plasmas Characteristics and classification of plasmas PlasTEP trainings course and Summer school 2011 Warsaw/Szczecin Indrek Jõgi, University of Tartu Partfinanced by the European Union (European Regional Development

More information

Voids in Dusty Plasma of a Stratified DC Glow Discharge in Noble Gases

Voids in Dusty Plasma of a Stratified DC Glow Discharge in Noble Gases Contrib. Plasma Phys. 56, No. 3-4, 234 239 (2016) / DOI 10.1002/ctpp.201500099 Voids in Dusty Plasma of a Stratified DC Glow Discharge in Noble Gases A. V. Fedoseev 1, G. I. Sukhinin 1,2, A. R. Abdirakhmanov

More information

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES

IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES IMPURITY ANALYSIS AND MODELING OF DIII-D RADIATIVE MANTLE DISCHARGES J. Mandrekas, W.M. Stacey Georgia Institute of Technology M. Murakami, M.R. Wade ORNL G. L. Jackson General Atomics Presented at the

More information

3. Gas Detectors General introduction

3. Gas Detectors General introduction 3. Gas Detectors 3.1. General introduction principle ionizing particle creates primary and secondary charges via energy loss by ionization (Bethe Bloch, chapter 2) N0 electrons and ions charges drift in

More information

PIC-MCC simulations for complex plasmas

PIC-MCC simulations for complex plasmas GRADUATE SUMMER INSTITUTE "Complex Plasmas August 4, 008 PIC-MCC simulations for complex plasmas Irina Schweigert Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk Outline GRADUATE SUMMER

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

CONTROL OF UNIFORMITY IN CAPACITIVELY COUPLED PLASMAS CONSIDERING EDGE EFFECTS*

CONTROL OF UNIFORMITY IN CAPACITIVELY COUPLED PLASMAS CONSIDERING EDGE EFFECTS* CONTROL OF UNIFORMITY IN CAPACITIVELY COUPLED PLASMAS CONSIDERING EDGE EFFECTS* Junqing Lu and Mark J. Kushner Department of Electrical and Computer Engineering at Urbana-Champaign mjk@uiuc.edu, jqlu@uiuc.edu

More information

Electron Current Extraction and Interaction of RF mdbd Arrays

Electron Current Extraction and Interaction of RF mdbd Arrays Electron Current Extraction and Interaction of RF mdbd Arrays Jun-Chieh Wang a), Napoleon Leoni b), Henryk Birecki b), Omer Gila b), and Mark J. Kushner a) a), Ann Arbor, MI 48109 USA mkush@umich.edu,

More information

Sergey O. Tverdokhlebov

Sergey O. Tverdokhlebov IEPC-93-232 2140 Study of Double-Stage Anode Layer Thruster Using Inert Gases Sergey O. Tverdokhlebov Central Research Institute of Machine Building Kaliningrad (Moscow Region), Russia Abstract Pt - total

More information

The fast model for ionic wind simulation

The fast model for ionic wind simulation Andrey Samusenko, Yury Stishkov, Polina Zhidkova The fast model for ionic wind simulation Research and Educational Center Electrophysics Saint Petersburg State University Faculty of Physics Ionic wind

More information

Plasma Formation in the Near Anode Region in Hall Thrusters

Plasma Formation in the Near Anode Region in Hall Thrusters 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 10-13 July 2005, Tucson, Arizona AIAA 2005-4059 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit AIAA-2005-4059 Plasma Formation

More information

Generic Detector. Layers of Detector Systems around Collision Point

Generic Detector. Layers of Detector Systems around Collision Point Generic Detector Layers of Detector Systems around Collision Point Tracking Detectors Observe particle trajectories in space with as little disturbance as possible 2 use a thin ( gm. cm ) detector Scintillators

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory CENTRAL PEAKING OF MAGNETIZED GAS DISCHARGES Francis F. Chen and Davide Curreli LTP-1210 Oct. 2012 Electrical Engineering Department Los Angeles, California

More information

The electron diffusion into the channel of stationary plasma thruster

The electron diffusion into the channel of stationary plasma thruster The electron diffusion into the channel of stationary plasma thruster IEPC-215-397 Presented at Joint Conference of 3th International Symposium on Space Technology and Science 34th International Electric

More information

Electron Transport Coefficients in a Helium Xenon Mixture

Electron Transport Coefficients in a Helium Xenon Mixture ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2014, Vol. 41, No. 10, pp. 285 291. c Allerton Press, Inc., 2014. Original Russian Text c S.A. Mayorov, 2014, published in Kratkie Soobshcheniya

More information

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen HAN Qing ( ), WANG Jing ( ), ZHANG Lianzhu ( ) College of Physics Science and Information Engineering, Hebei Normal University,

More information

MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST*

MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST* MICRODISCHARGES AS SOURCES OF PHOTONS, RADICALS AND THRUST* Ramesh Arakoni a) and Mark J. Kushner b) a) Dept. Aerospace Engineering b) Dept. Electrical and Computer Engineering Urbana, IL 61801 USA mjk@uiuc.edu

More information

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Joint IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes

More information

Low Temperature Plasma Technology Laboratory

Low Temperature Plasma Technology Laboratory Low Temperature Plasma Technology Laboratory Equilibrium theory for plasma discharges of finite length Francis F. Chen and Davide Curreli LTP-6 June, Electrical Engineering Department Los Angeles, California

More information

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure

Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Study of a Micro Hollow Cathode Discharge at medium argon gas pressure Claudia LAZZARONI Antoine ROUSSEAU Pascal CHABERT LPP Ecole Polytechnique, Palaiseau, FRANCE Nader SADEGHI LSP Grenoble, FRANCE I-V

More information

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method

Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Plasma Science and Technology, Vol.14, No.9, Sep. 2012 Multidimensional Numerical Simulation of Glow Discharge by Using the N-BEE-Time Splitting Method Benyssaad KRALOUA, Ali HENNAD Electrical Engineering

More information

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar

Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar Numerical Simulation of Townsend Discharge, Paschen Breakdown and Dielectric Barrier Discharges Napoleon Leoni, Bhooshan Paradkar HP Laboratories HPL-2009-234 Keyword(s): Townsend Discharge, Paschen Breakdown,

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

arxiv: v1 [physics.plasm-ph] 10 Nov 2014

arxiv: v1 [physics.plasm-ph] 10 Nov 2014 arxiv:1411.2464v1 [physics.plasm-ph] 10 Nov 2014 Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas A. Derzsi 1, I. Korolov

More information

Some Reflections on Gas Discharges and PAGD Pulses

Some Reflections on Gas Discharges and PAGD Pulses Some Reflections on Gas Discharges and PAGD Pulses By William A. Tiller A typical graph relating the voltage difference, V a, between parallel planar electrodes and the discharge current, i, in a gas discharge

More information

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources

Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Multi-fluid Simulation Models for Inductively Coupled Plasma Sources Madhusudhan Kundrapu, Seth A. Veitzer, Peter H. Stoltz, Kristian R.C. Beckwith Tech-X Corporation, Boulder, CO, USA and Jonathan Smith

More information

Waves and Instabilities in Dusty Plasmas

Waves and Instabilities in Dusty Plasmas 15 th Topical Conference on RF Power in Plasmas May 20 22, 2003 Jackson Hole, Wyoming Waves and Instabilities in Dusty Plasmas Bob Merlino University of Iowa Outline What is a dusty plasma? Where are dusty

More information

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification

ARGON EXCIMER LAMP. A. Sobottka, L. Prager, L. Drößler, M. Lenk. Leibniz Institute of Surface Modification ARGON EXCIMER LAMP A. Sobottka, L. Prager, L. Drößler, M. Lenk 1 Introduction Ar-Zufuhr Excimer-Plasma Inertisierung Polymerfolie Sintermetall Inertisierung Post curing [1] EP 1050395 A2 2 Introduction

More information

MIREA. Moscow, Russia

MIREA. Moscow, Russia 2245 IEPC-93-247 MAIN FEATURES OF PHYSICAL PROCESSES IN STATIONARY PLASMA THRUSTERS A.I. Bugrova, A.V. Desiatskov, V.K. Kharchevnikov, A.I. Morozov Abstract MIREA Moscow, Russia Introduction The paper

More information

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT Romanian Reports in Phisics, Vol. 56, No., P. 71-76, 004 CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT A. R. PETRE 1, M. BÃZÃVAN 1, V. COVLEA 1, V.V. COVLEA 1, ISABELLA IOANA OPREA, H. ANDREI

More information

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction

Gas Electron Multiplier detectors with high reliability and stability. Abstract. Introduction Gas Electron Multiplier detectors with high reliability and stability B.M.Ovchinnikov 1, V.V.Parusov 1 and Yu.B.Ovchinnikov 2 1 Institute for Nuclear Research of Russian Academy of Sciences, Moscow, Russia

More information

Experimental evaluation of nonlinear collision effect on the beam slowing-down process

Experimental evaluation of nonlinear collision effect on the beam slowing-down process P-2 Experimental evaluation of nonlinear collision effect on the beam slowing-down process H. Nuga R. Seki,2 S. Kamio M. Osakabe,2 M. Yokoyama,2 M. Isobe,2 K. Ogawa,2 National Institute for Fusion Science,

More information

Fundamentals of Plasma Physics Transport in weakly ionized plasmas

Fundamentals of Plasma Physics Transport in weakly ionized plasmas Fundamentals of Plasma Physics Transport in weakly ionized plasmas APPLAuSE Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Luís L Alves (based on Vasco Guerra s original slides) 1 As perguntas

More information

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma

A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma A comparison of emissive probe techniques for electric potential measurements in a Hall thruster plasma J. P. Sheehan*, Y. Raitses**, N. Hershkowitz*, I. Kaganovich**, and N. J. Fisch** *University of

More information

Long-Time ab initio Simulation of Sharply-Expanding Nonideal Plasmas

Long-Time ab initio Simulation of Sharply-Expanding Nonideal Plasmas International Workshop: Beyond Molecular Dynamics: Long Time Atomic-Scale Simulations 26-29 March 2012 Max Planck Institute for the Physics of Complex Systems, Dresden, Germany Long-Time ab initio Simulation

More information

Simulation of the cathode surface damages in a HOPFED during ion bombardment

Simulation of the cathode surface damages in a HOPFED during ion bombardment Simulation of the cathode surface damages in a HOPFED during ion bombardment Hongping Zhao, Wei Lei, a Xiaobing Zhang, Xiaohua Li, and Qilong Wang Department of Electronic Engineering, Southeast University,

More information

Regenerative Soot-II: Emission o f carbon clusters from sooting plasma

Regenerative Soot-II: Emission o f carbon clusters from sooting plasma Regenerative Soot-II: Emission o f carbon clusters from sooting plasma Shoaib Ahmad National Centre for Physics, Quaid-i-Azam University Campus, Shahdara Valley, Islamabad, 44000, Pakistan Email: sahmad.ncp@gmail.com

More information

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency

Diffusion equation, flux, diffusion coefficient scaling. Diffusion in fully ionized plasma vs. weakly ionized plasma. n => Coulomb collision frequency Last Time Diffusion in plasma: the main reason why we need to control it (i.e. using magnetic field) Diffusion equation, flux, diffusion coefficient scaling o o t nx,t Dn D2 nx,t o D ~ L 2 T Diffusion

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS D. Shane Stafford and Mark J. Kushner Department of Electrical and Computer Engineering Urbana, IL 61801 http://uigelz.ece.uiuc.edu

More information

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity

Etching Issues - Anisotropy. Dry Etching. Dry Etching Overview. Etching Issues - Selectivity Etching Issues - Anisotropy Dry Etching Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960 Isotropic etchants etch at the same rate in every direction mask

More information

ELECTRIC FIELD ON THE DIAGRAM OF PHASE TRANSITIONS IN CRYOGENIC DUSTY PLASMAS *

ELECTRIC FIELD ON THE DIAGRAM OF PHASE TRANSITIONS IN CRYOGENIC DUSTY PLASMAS * Romanian Reports in Physics, Vol. 67, No. 3, P. 1040 1048, 2015 ELECTRIC FIELD ON THE DIAGRAM OF PHASE TRANSITIONS IN CRYOGENIC DUSTY PLASMAS * D.N. POLYAKOV, V.V. SHUMOVA, L.M. VASILYAK Joint Institute

More information

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68 Lecture 6 Plasmas Chapters 10 &16 Wolf and Tauber 1/68 Announcements Homework: Homework will be returned to you on Thursday (12 th October). Solutions will be also posted online on Thursday (12 th October)

More information

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA Outline 1. Ionisation 2. Plasma definition 3. Plasma properties 4. Plasma classification 5. Energy transfer in non-equilibrium plasma 6.

More information

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge Vol:5, No:8, 211 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif International

More information

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS

D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS D- Charge Exchange Ionizer for the JINR Polarized Ion Source POLARIS V.P. Ershov, V.V.Fimushkin, G.I.Gai, L.V.Kutuzova, Yu.K.Pilipenko, V.P.Vadeev, A.I.Valevich Λ and A.S. Belov Λ Joint Institute for Nuclear

More information

Multicomponent diffusion in gases and plasma mixtures

Multicomponent diffusion in gases and plasma mixtures High Temperatures ^ High Pressures, 2002, volume 34, pages 109 ^ 116 15 ECTP Proceedings pages 1337 ^ 1344 DOI:10.1068/htwu73 Multicomponent diffusion in gases and plasma mixtures Irina A Sokolova Institute

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments.

Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma Experiments. 53rd Annual Meeting of the APS Division of Plasma Physics BI2.00005 Monday November 14, 2011 Linear and Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in DC-Glow-Discharge Dusty Plasma

More information

The ideal Maxwellian plasma

The ideal Maxwellian plasma The ideal Maxwellian plasma Dr. L. Conde Departamento de Física Aplicada. E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid Plasmas are,... The plasma state of matter may be defined as a

More information

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE

EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE EXPERIMENTS CHARACTERIZING THE X-RAY EMISSION FROM A SOLID-STATE CATHODE USING A HIGH-CURRENT GLOW DISCHARGE A.B. KARABUT AND S.A. KOLOMEYCHENKO FSUE SIA LUCH 24 Zheleznodorozhnaja Street, Podolsk, Moscow

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department

Nonlinear Diffusion in Magnetized Discharges. Francis F. Chen. Electrical Engineering Department Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical Engineering Department PPG-1579 January, 1998 Revised April, 1998 Nonlinear Diffusion in Magnetized Discharges Francis F. Chen Electrical

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY

EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA EXPERIMENTAL STUDY OF SHOCK WAVE INTERACTING PLANE GAS-PLASMA BOUNDARY Znamenskaya I.A., Koroteev D.А., Popov N.A. Moscow State

More information

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL Olli Tarvainen 11th International Conference on Heavy Ion Accelerator Technology Venice, Italy 8-12 June 29 Outline JYFL

More information

Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+

Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+ Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+ Vladimir Kim, Garry Popov, Vyacheslav Kozlov, Alexander Skrylnikov, Dmitry Grdlichko Research Institute

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

Lecture 6: High Voltage Gas Switches

Lecture 6: High Voltage Gas Switches Lecture 6: High Voltage Gas Switches Switching is a central problem in high voltage pulse generation. We need fast switches to generate pulses, but in our case, they must also hold off high voltages before

More information

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device Presented at the COMSOL Conference 2009 Milan Numerical Modelling of a Free-Burning Arc in Argon A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device J.M. Bauchire, E. Langlois-Bertrand,

More information

Semiconductor Physics

Semiconductor Physics Semiconductor Physics Motivation Is it possible that there might be current flowing in a conductor (or a semiconductor) even when there is no potential difference supplied across its ends? Look at the

More information

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS *

EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * EFFECT OF PRESSURE AND ELECTRODE SEPARATION ON PLASMA UNIFORMITY IN DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA TOOLS * Yang Yang a) and Mark J. Kushner b) a) Department of Electrical and Computer Engineering

More information

Residual resistance simulation of an air spark gap switch.

Residual resistance simulation of an air spark gap switch. Residual resistance simulation of an air spark gap switch. V. V. Tikhomirov, S.E. Siahlo February 27, 2015 arxiv:1502.07499v1 [physics.acc-ph] 26 Feb 2015 Research Institute for Nuclear Problems, Belarusian

More information

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure*

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Pure Appl. Chem., Vol. 74, No. 3, pp. 337 347, 2002. 2002 IUPAC Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Charles H. Kruger, Christophe O. Laux, Lan Yu, Denis M. Packan,

More information

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

SPUTTER-WIND HEATING IN IONIZED METAL PVD+ SPUTTER-WIND HEATING IN IONIZED METAL PVD+ Junqing Lu* and Mark Kushner** *Department of Mechanical and Industrial Engineering **Department of Electrical and Computer Engineering University of Illinois

More information

The outline. 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity. 2) gaseous ionization chambers

The outline. 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity. 2) gaseous ionization chambers The outline 1) Detector parameters: efficiency, geometrical acceptance, dead-time, resolution, linearity 2) gaseous ionization chambers 3) proportional counters- ionization measurement 4) silicon detectors

More information

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator EX/P- Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator Á. Cappa, F. Castejón, T. Estrada, J.M. Fontdecaba, M. Liniers and E. Ascasíbar Laboratorio Nacional de Fusión CIEMAT,

More information

Proportional Counters

Proportional Counters Proportional Counters 3 1 Introduction 3 2 Before we can look at individual radiation processes, we need to understand how the radiation is detected: Non-imaging detectors Detectors capable of detecting

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Virtual Cathode in a Spherical Inertial Electrostatic Confinement

Virtual Cathode in a Spherical Inertial Electrostatic Confinement JP0055056 Virtual Cathode in a Spherical Inertial Electrostatic Confinement Hiromu Momota and George H. Miley Dept. Nuclear Engineering, University of Illinois at Urbana-Champaign, 214 Nuclear Engineering

More information

Development of stationary plasma thruster SPT-230 with discharge power of kw

Development of stationary plasma thruster SPT-230 with discharge power of kw Development of stationary plasma thruster SPT-230 with discharge power of 10...15 kw IEPC-2017-548 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF Ion Energy Distributions in Pulsed Plasmas with Synchronous DC Bias: Effect of Noble Gas W. Zhu, H. Shin, V. M. Donnelly and D. J. Economou Plasma Processing Laboratory University of Houston Acknowledgements:

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Dusty plasma as a unique object of plasma physics

Dusty plasma as a unique object of plasma physics Journal of Physics: Conference Series PAPER OPEN ACCESS Dusty plasma as a unique object of plasma physics To cite this article: G E Norman and A V Timofeev 2016 J. Phys.: Conf. Ser. 774 012170 View the

More information

Experiments with Thin Electron Beam at GOL-3

Experiments with Thin Electron Beam at GOL-3 8 th International Conference on Open Magnetic Systems for Plasma Confinement July 8, 21, Novosibirsk, Russia Experiments with Thin Electron Beam at GOL-3 V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin,

More information

Abstract. Nomenclature

Abstract. Nomenclature EPC-95-61 - 440 - ELECTRON DSTRBUTON FUNCTON N ACCELERATOR WTH CLOSED ELECTRON DRFT V.. BARLNOV, Yu. S, NAZARENKO. V. A PETROSOV.. VASN. Yu. M. YASHNOV Abstract t has been found in consequence of researches

More information

PlaS-40 Development Status: New Results

PlaS-40 Development Status: New Results PlaS-40 Development Status: New Results IEPC-2015-99/ISTS-2015-b-9 Presented at Joint Conference of 30 th International Symposium on Space Technology and Science 34 th International Electric Propulsion

More information

Modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans Modification of thin films and nanoparticles Johannes Berndt, GREMI,Orléans Low temperature plasmas not fully ionized Ionization degree 10-6 10-4 far away from thermodynamic equlilibrium T electron >>

More information

Chapter VI: Cold plasma generation

Chapter VI: Cold plasma generation Introduction This photo shows the electrical discharge inside a highpressure mercury vapor lamp (Philips HO 50) just after ignition (Hg + Ar) Chapter VI: Cold plasma generation Anode Positive column Cathode

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

INTEGRAL AND SPECTRAL CHARACTERISTICS OF ATON STATIONARY PLASMA THRUSTER OPERATING ON KRYPTON AND XENON

INTEGRAL AND SPECTRAL CHARACTERISTICS OF ATON STATIONARY PLASMA THRUSTER OPERATING ON KRYPTON AND XENON 1 INTEGRAL AND SPECTRAL CHARACTERISTICS OF ATON STATIONARY PLASMA THRUSTER OPERATING ON KRYPTON AND XENON A.I.Bugrova, A.I.Morozov *, A.S.Lipatov, A.M.Bishaev, V.K.Kharchevnikov, M.V.Kozintseva. Moscow

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

FEBIAD ion source development at ISOLDE: efficiency improvement for all the elements

FEBIAD ion source development at ISOLDE: efficiency improvement for all the elements FEBIAD ion source development at ISOLDE: eiciency improvement or all the elements L.Penescu, R.Catherall, J.Lettry, T.Stora CERN, AB-ATB-IF (ISOLDE) ISOLDE Workshop, 17-19 November 2008 Ionization eiciency

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Electron Trapping in High-Current Ion Beam Pipes

Electron Trapping in High-Current Ion Beam Pipes SLAC-PUB-8367 March 2000 Electron Trapping in High-Current Ion Beam Pipes W. B. Herrmannsfeldt Contributed to 13th Internation Symposium on Heavy Ion Inertial Fusion, 3/13/2000-3/17/2000, San Diego, CA,

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

Global modeling of HiPIMS systems: transition from homogeneous to self organized discharges

Global modeling of HiPIMS systems: transition from homogeneous to self organized discharges RUHR-UNIVERSITÄT BOCHUM Global modeling of HiPIMS systems: transition from homogeneous to self organized discharges S. Gallian 1, J. Trieschmann 1, T. Mussenbrock 1, W. N. G. Hitchon 2 and R. P. Brinkmann

More information

Electrical Discharges Characterization of Planar Sputtering System

Electrical Discharges Characterization of Planar Sputtering System International Journal of Recent Research and Review, Vol. V, March 213 ISSN 2277 8322 Electrical Discharges Characterization of Planar Sputtering System Bahaa T. Chaid 1, Nathera Abass Ali Al-Tememee 2,

More information

A DUSTY PLASMA PRIMER

A DUSTY PLASMA PRIMER A DUSTY PLASMA PRIMER What is a dusty plasma, where are dusty plasmas, and why do we study them Robert L. Merlino Department of Physics and Astronomy The University of Iowa, Iowa City IA, 52242 email:

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High current density beamlets from RF Argon source for heavy ion fusion applications Permalink https://escholarship.org/uc/item/6zh6c50m

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma Kallol Bera a, Shahid Rauf a and Ken Collins a a Applied Materials, Inc. 974 E. Arques Ave., M/S 81517, Sunnyvale, CA 9485, USA

More information