Eigenvalue problems. Eigenvalue problems

Size: px
Start display at page:

Download "Eigenvalue problems. Eigenvalue problems"

Transcription

1 Determination of eigenvalues and eigenvectors Ax x, where A is an N N matrix, eigenvector x 0, and eigenvalues are in general complex numbers In physics: - Energy eigenvalues in a quantum mechanical system - Express wave function in terms of atom-lie orbitals p a p p - Minimize H E ( H pq Hq p ) with respect to a p : H pq E pq 0 q - In matrix form Ha Ea - Vibration modes in molecules and solids - Ku m 2 u where u contains the displacement vectors of all atoms 2 E and K is the dynamical matrix K pot ij x i x j Scientific computing III 2013: A simple example: CO 2 molecule: x x 1 2 x 3 m C - Equations of motion (in 1D): x 1 '' x m 1 x 2 O x 2 '' x m 2 x x C m 2 x 3 C x 3 '' x m 3 x 2 O - Assume all vibrate with the same frequency : trial solution x j x j0 cost, j 1 23( x j0 are the initial positions; initial velocities are zero) - Substitute these x j to equations of motion we get m C m C m C x 10 x 20 x 30 2 x 10 x 20 x 30 Scientific computing III 2013: 4. 2

2 - We want to find eigenvalues 2 and eigenvectors x 10 x 20 x T a a 0 30 of the matrix b 2b b where a , b 0 a a m C - Solution by Maxima: eigenvalues multiplicities eigenvectors - Eigenvalues - Eigenvectors 1 2 2b + a m C m 2 a O m 3 0 O x 1 2b x a x Scientific computing III 2013: Another vibration example: Cu trimer eval x y z x y z x y z Scientific computing III 2013: 4. 4

3 - Similar calculations for larger copper clusters than just a trimer (phonon density of states). Icosahedral Cu with 3871 atoms Scientific computing III 2013: All vibration modes of a atomic system can be found out by computing eigenvalues of the dynamical (Hessian) matrix A A ij 2 V x i x j - In potential energy minima all eigenvalues i of the dynamical matrix are positive. (I.e. A is positive definite.) - Vibration frequencies i i - If i 0 no vibration. (May be a result of poor energy minimization.) - Transition state theory: find saddle points in potential energy hypersurface - In saddle point all but one eigenvalue are positive. (Thin of a saddle point on a 2D surface: curvature in one direction is positive in another negative.) Scientific computing III 2013: 4. 6

4 Eigenvalues are those values of with which the equation A 1x 0 has a nonzero solution x. eigenvalues are the roots of the (characteristic) polynomial of N th degree deta 1 f A 0 - However, this is not a good method to solve s. - Many methods for determining eigenvalues utilize the fact that the eigenvalues are invariant in similarity transformations: A Z 1 AZ ( Z is a nonsingular matrix) - Eigenvectors of the transformed matrix are Z 1 x ( x are the eigenvectors of A) - By similarity transformations A is put into form that allows more or less easy determination of eigenvalues by e.g. various iterative methods. - In the best cases A can be diagonalized: X 1 AX D diag 1 2 N - For every matrix it is possible to form Schur factorization: Q * AQ T, where T is an upper triangular matrix with s on the diagonal - In many cases it is advisable to transform the matrix into e.g. tridiagonal or Hessenberg forms (upper triangular+one row below diagonal) before computations. - What methods to use depends also whether the matrix is symmetric or real. Scientific computing III 2013: Properties of the eigenvalues of a matrix depend on the type of the matrix: Matrix Upper or lower triangular Hermitian: A * A Positive definite: x * Ax 0x R N Positive semidefinite: x * Ax 0x R N Eigenvalues Diagonal elements of A Real Positive Non-negative - How to generate a positive definite matrix (e.g. when experimenting with Matlab)? If matrix B has all columns linearly independent then the following matrix A is positive definite 1 : A B T B. - Positive definiteness is an important concept in function minimization: the Hessian matrix of a multivariate function is positive definite at the minimum. - A useful property of a partitioned matrix is that its eigenvalues can be computed from its partitions: A A 11 A 12 p 0 A q, p + q n A A A 22 p q 1. See e.g. Golub-van Loan, section 4.2 Scientific computing III 2013: 4. 8

5 Canonical forms of square matrices: Relation of the structure of the matrix to its eigenvalues and eigenvectors: (assume A and B are n n square matrices) - A and B are similar if there is a nonsingular matrix P such that A P 1 BP. - If A and B are similar then they have the same characteristic polynomials f A f B and, consequently, same eigenvalues and eigenvectors. - Schur normal form: A can be expressed as T U * AU ( A UTU * ) where U is a unitary 1 matrix and T is upper triangular and f A f T t 11 t 22 t nn, and the eigenvalues of A are the diagonal elements of T. - Principal axis theorem: If A is Hermitian 2, then 1) it has real n eigenvalues 1 2 n (not necessarily distinct) and It is easy to show that if matrix A is upper or lower triangular then its eigenvalues are simply the diagonal elements. This follows from the fact that the determinant of a triangular matrix T is simply n dett t ii 2) n corresponding eigenvectors u 1 u 2 u n that form an orthonormal basis in C n (or R n if A real) 3) there is a unitary matrix U such that U * AU D diag 1 2 n i 1 1. U 1 U *, for real matrices U 1 U T. U * is the conjugate transpose of U; i.e. U * ij u ji, where u is the complex conjugate of u. 2. A * A Scientific computing III 2013: Singular value decomposition (SVD): A (let it be a m n matrix) can be expressed in form A USV *, where U is a m m unitary martix V is a n n unitary matrix S is a diagonal m n matrix: 3 S diag 1 p 00, p minm n 0 p - The real positive numbers i are called the singular values of A. They are arranged such that 1 2 p 1 p ; If r is defined as 1 r r + 1 p 0 then one can show that r rana. Scientific computing III 2013: 4. 10

6 - Moreover, if we write the matrices U and V in terms of their column vectors: U u 1 u 2 u m, V v 1 v 2 v n, one can prove the following SVD expansion of the matrix A: A r i 1 i u i vt i. - The 2-norm and the Frobenius norms can be expressed in terms of the singular values: 2 A F p, p minmn A QR factorization is a common decomposition used in computing eigenvalues and eigenvectors. - An n n real matrix A can be written in form A QR, where Q is an orthogonal matrix ( Q T Q 1 ) and R is an upper triangular matrix. Scientific computing III 2013: All methods to determine eigenvalues are iterative (cf. find zeroes of a polynomial) Power method - Many more advanced methods are based on it. - Finds with the largest absolute value and the corresponding eigenvector. - Assume that A has eigenvalues N and linearly independent eigenvectors x 1 x N. - Further assume that i R, and x i R N ; i.e. both eigenvalues and vectors are real. - Basic algorithm: 1. Choose the initial vector 2. For 12 do z Aq 1 q z z end 1 q * Aq! this eeps the eigenvector estimate normalized to one! eigenvalue estimate - It easy to show that 1 1 and q x 1 when : q 0 Initial vector q 0 a 1 x 1 + a 2 x a N x N. If a 1 0 A N N N q 0 a i A x i a i a i x i a 1 i x i x a i 1 i 1 1 i 1 i 2 Because i 1 0 i 1 N when q approaches the eigenvector corresponding to 1. Scientific computing III 2013: 4. 12

7 - Convergence of the power method depends on the ratio If A has eigenvalues i then A 1 1 has eigenvalues i. ( Ax i i x i A 1 Ax i i A 1 x i x i i A 1 x i Using the power method the smallest eigenvalue can be computed (inverse iteration). - This can be combined with shift: A 1 A 1 1 now we can determine the eigenvalue , where is the ' ' eigenvalue of A that is closest to (inverse iteration with shift). - By applying the method with different values of all eigenvalues can in principle be determined. - There are many ways to remove the effects of already determined eigenvalues from matrix A * - E.g. by doing the transformation A A 1 x 1 x 1 the largest eigenvalue zeroed and the power method can be applied to determine the second largest one (deflation). - A generalization of the power method is orthogonal iteration where a basis corresponding to m n largest eigenvalues is generated. Scientific computing III 2013: QR method is based on the previous method and also uses the QR factorization to determine all eigenvalues. - Usually matrix A is similarity transformed to so called Hessenberg or tridiagonal form before the QR algorithm is applied. - This must be done by similarity transformations in order to preserve the eigenvalues of the original matrix. - Matrix A is a Hessenberg matrix if a ij 0, for all i j + 1 i.e. upper triangular except for a single nonzero subdiagonal. (Note that if the matrix is symmetric its Hessenberg form is tridiagonal.) - Applying the QR method to this matrix is much cheaper than to a general matrix. - This preliminary reduction is done by the Householder transformation or by Givens rotation. - Householder matrices Pare orthogonal P 1 2 uu* , u 2, and the transformation is of the form à P n 2 P n 1 P 1 AP T 1 PT n 1 PT n 2. P 1 P 2 * P 1 * P 2 00xxx 00xxx Scientific computing III 2013: 4. 14

8 - In the QR algorithm a sequence of matrices A i, Q i, R i is formed in the following fashion: 0. A 1 A 1. Do the QR factorization: A i Q i R i. 2. Compute the new iterate: A i + 1 R i Q i (i.e. A i Q i Ai Q i T Q i Ai Q i ) 3. i i Go to 1. - As a limit this iteration produces an upper triangular matrix A i. - And remember: the eigenvalues of the original matrix A are the diagonal elements. - For proof see e.g. Golub-van Loan, Chapter 7. - The iteration can be written as A i Q T i QT i 1 Q T 0 AQ 1 Q i 1 Q i. - Because all Q i are orthogonal then the above transformation is a similarity transformation and A i has the same eigenvalues as the original matrix A. - When eigenvalues are nown, eigenvectors can be obtained by e.g. inverse iteration with shift. Scientific computing III 2013: LAPACK uses the QR method for eigenvalues and vectors DGEEV - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors SYNOPSIS SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) CHARACTER JOBVL, JOBVR INTEGER INFO, LDA, LDVL, LDVR, LWORK, N DOUBLE PRECISION A(LDA,*), VL(LDVL,*), VR(LDVR,*), WI(*), WORK(*), WR(*) - Matlab and Octave have function eig: EIG Eigenvalues and eigenvectors. E EIG(X) is a vector containing the eigenvalues of a square matrix X. [V,D] EIG(X) produces a diagonal matrix D of eigenvalues and a full matrix V whose columns are the corresponding eigenvectors so that X*V V*D. Scientific computing III 2013: 4. 16

9 - Example code using DGEEV (complex version of the routine):! program eigenvalue integer,parameter :: r8 real(r):: A(3,3), DUMMY(3,3), WORK(9) real(r) :: br(3),bi(3) integer i, o A(1,1)3.1; A(1,2)1.3; A(1,3)-5.7 A(2,1)1.0; A(2,2)-6.9; A(2,3)5.8 A(3,1)3.4; A(3,2)7.2; A(3,3)-8.8 call DGEEV( N, N,3,A,3,br,bi,DUMMY,1,DUMMY,9,WORK,9,o) if (o0) then do i1, 3 write(*,*) br(i),bi(i) enddo else write (*,*) "An error occured" endif end program eigenvalue - Output: f90> ifort -o eigendouble eigendouble.f90 -llapac f90>./eigendouble E+000 Matlab: A >> [v,d]eig(a) v i i i i d i i Scientific computing III 2013: Examples of execution times for calculating eigenvalues of large matrices using LAPACK: Test AMD LAPACK and BLAS implementations in libacml.a Program: dynmat_eigen.f90 Calculates all eigenvalues of a symmetric matrix (relaxat dynamical matrix, to be precise) using LAPACK routine dsyev. A) LAPACK and BLAS in libacml.a used. B) LAPACK and BLAS compiled from sources downloaded from netlib. Compilation on ametisti and sepeli: A) pathf90 -static -O3 -ipa -fno-math-errno -m64 -marchopteron -o dynmat_eigen_acml dynmat_eigen.f90 -L/home/auronen/acml -lacml B) pathf90 -static -O3 -ipa -fno-math-errno -m64 -marchopteron -o dynmat_eigen_default dynmat_eigen.f90 lapac.f blas.f dlamch.f Run: A)./dynmat_eigen_acml ${Nat} < dm_ico${nat}.dat > ev_ico${nat}.data B)./dynmat_eigen_default ${Nat} < dm_ico${nat}.dat > ev_ico${nat}.dat Results from sepeli (AMD Opteron): CPU time (s) Nat Matrix size A B A/B x x x Home computer (AMD Athlon): (liblapac compiled from f90 sources at CPU time (s) Nat Matrix size A B A/B x x x Scientific computing III 2013: 4. 18

10 Below is shown the CPU time usage of an ab inito code SIESTA for a silicon system. - Solution is performed by so called direct diagonalization; i.e. calculating eigenvalues. Simulations by E. Holmström Scientific computing III 2013: Summary: - If you want all eigenvalues of a matrix that fits into your computers memory the QR method is a good choice. - I.e. use LAPACK or Matlab/Octave - For computing only a few eigenvalues there are efficient methods that are also suitable for large sparse matrices. - Chec out e.g. J. Haataja et al., Numeeriset menetelmät äytännössä, CSC, If you now the appoximate values of the eigenvalues then the power method with shift and inversion is a good method to improve the approximations. Scientific computing III 2013: 4. 20

Orthogonal iteration to QR

Orthogonal iteration to QR Notes for 2016-03-09 Orthogonal iteration to QR The QR iteration is the workhorse for solving the nonsymmetric eigenvalue problem. Unfortunately, while the iteration itself is simple to write, the derivation

More information

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4

EIGENVALUE PROBLEMS. EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS EIGENVALUE PROBLEMS p. 1/4 EIGENVALUE PROBLEMS p. 2/4 Eigenvalues and eigenvectors Let A C n n. Suppose Ax = λx, x 0, then x is a (right) eigenvector of A, corresponding to the eigenvalue

More information

Eigenvalue Problems and Singular Value Decomposition

Eigenvalue Problems and Singular Value Decomposition Eigenvalue Problems and Singular Value Decomposition Sanzheng Qiao Department of Computing and Software McMaster University August, 2012 Outline 1 Eigenvalue Problems 2 Singular Value Decomposition 3 Software

More information

13-2 Text: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL Eigen2

13-2 Text: 28-30; AB: 1.3.3, 3.2.3, 3.4.2, 3.5, 3.6.2; GvL Eigen2 The QR algorithm The most common method for solving small (dense) eigenvalue problems. The basic algorithm: QR without shifts 1. Until Convergence Do: 2. Compute the QR factorization A = QR 3. Set A :=

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Chapter 6 Eigenvalues and eigenvectors An eigenvalue of a square matrix represents the linear operator as a scaling of the associated eigenvector, and the action of certain matrices on general vectors

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Solving large scale eigenvalue problems

Solving large scale eigenvalue problems arge scale eigenvalue problems, Lecture 4, March 14, 2018 1/41 Lecture 4, March 14, 2018: The QR algorithm http://people.inf.ethz.ch/arbenz/ewp/ Peter Arbenz Computer Science Department, ETH Zürich E-mail:

More information

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices

Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Section 4.5 Eigenvalues of Symmetric Tridiagonal Matrices Key Terms Symmetric matrix Tridiagonal matrix Orthogonal matrix QR-factorization Rotation matrices (plane rotations) Eigenvalues We will now complete

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

LAPACK Introduction. Zhaojun Bai University of California/Davis. James Demmel University of California/Berkeley

LAPACK Introduction. Zhaojun Bai University of California/Davis. James Demmel University of California/Berkeley 93 LAPACK Zhaojun Bai University of California/Davis James Demmel University of California/Berkeley Jack Dongarra University of Tennessee Julien Langou University of Colorado Denver Jenny Wang University

More information

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm References: Trefethen & Bau textbook Eigenvalue problem: given a matrix A, find

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

Solving large scale eigenvalue problems

Solving large scale eigenvalue problems arge scale eigenvalue problems, Lecture 5, March 23, 2016 1/30 Lecture 5, March 23, 2016: The QR algorithm II http://people.inf.ethz.ch/arbenz/ewp/ Peter Arbenz Computer Science Department, ETH Zürich

More information

Notes on Eigenvalues, Singular Values and QR

Notes on Eigenvalues, Singular Values and QR Notes on Eigenvalues, Singular Values and QR Michael Overton, Numerical Computing, Spring 2017 March 30, 2017 1 Eigenvalues Everyone who has studied linear algebra knows the definition: given a square

More information

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated.

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated. Math 504, Homework 5 Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated 1 Find the eigenvalues and the associated eigenspaces

More information

Lecture 2: Numerical linear algebra

Lecture 2: Numerical linear algebra Lecture 2: Numerical linear algebra QR factorization Eigenvalue decomposition Singular value decomposition Conditioning of a problem Floating point arithmetic and stability of an algorithm Linear algebra

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Linear algebra & Numerical Analysis

Linear algebra & Numerical Analysis Linear algebra & Numerical Analysis Eigenvalues and Eigenvectors Marta Jarošová http://homel.vsb.cz/~dom033/ Outline Methods computing all eigenvalues Characteristic polynomial Jacobi method for symmetric

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11)

Lecture 10: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) Lecture 1: Eigenvectors and eigenvalues (Numerical Recipes, Chapter 11) The eigenvalue problem, Ax= λ x, occurs in many, many contexts: classical mechanics, quantum mechanics, optics 22 Eigenvectors and

More information

Eigenvalue and Eigenvector Problems

Eigenvalue and Eigenvector Problems Eigenvalue and Eigenvector Problems An attempt to introduce eigenproblems Radu Trîmbiţaş Babeş-Bolyai University April 8, 2009 Radu Trîmbiţaş ( Babeş-Bolyai University) Eigenvalue and Eigenvector Problems

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 1 Eigenvalues and Eigenvectors Among problems in numerical linear algebra, the determination of the eigenvalues and eigenvectors of matrices is second in importance only to the solution of linear

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

Homework 2 Foundations of Computational Math 2 Spring 2019

Homework 2 Foundations of Computational Math 2 Spring 2019 Homework 2 Foundations of Computational Math 2 Spring 2019 Problem 2.1 (2.1.a) Suppose (v 1,λ 1 )and(v 2,λ 2 ) are eigenpairs for a matrix A C n n. Show that if λ 1 λ 2 then v 1 and v 2 are linearly independent.

More information

The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English.

The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English. Chapter 4 EIGENVALUE PROBLEM The German word eigen is cognate with the Old English word āgen, which became owen in Middle English and own in modern English. 4.1 Mathematics 4.2 Reduction to Upper Hessenberg

More information

NAG Toolbox for Matlab nag_lapack_dggev (f08wa)

NAG Toolbox for Matlab nag_lapack_dggev (f08wa) NAG Toolbox for Matlab nag_lapack_dggev () 1 Purpose nag_lapack_dggev () computes for a pair of n by n real nonsymmetric matrices ða; BÞ the generalized eigenvalues and, optionally, the left and/or right

More information

Orthogonal iteration revisited

Orthogonal iteration revisited Week 10 11: Friday, Oct 30 and Monday, Nov 2 Orthogonal iteration revisited Last time, we described a generalization of the power methods to compute invariant subspaces. That is, starting from some initial

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m

We will discuss matrix diagonalization algorithms in Numerical Recipes in the context of the eigenvalue problem in quantum mechanics, m A n = λ m Eigensystems We will discuss matrix diagonalization algorithms in umerical Recipes in the context of the eigenvalue problem in quantum mechanics, A n = λ n n, (1) where A is a real, symmetric Hamiltonian

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Matrix Eigensystem Tutorial For Parallel Computation

Matrix Eigensystem Tutorial For Parallel Computation Matrix Eigensystem Tutorial For Parallel Computation High Performance Computing Center (HPC) http://www.hpc.unm.edu 5/21/2003 1 Topic Outline Slide Main purpose of this tutorial 5 The assumptions made

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Applied Numerical Linear Algebra. Lecture 8

Applied Numerical Linear Algebra. Lecture 8 Applied Numerical Linear Algebra. Lecture 8 1/ 45 Perturbation Theory for the Least Squares Problem When A is not square, we define its condition number with respect to the 2-norm to be k 2 (A) σ max (A)/σ

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Singular Value Decompsition

Singular Value Decompsition Singular Value Decompsition Massoud Malek One of the most useful results from linear algebra, is a matrix decomposition known as the singular value decomposition It has many useful applications in almost

More information

EIGENVALUE PROBLEMS (EVP)

EIGENVALUE PROBLEMS (EVP) EIGENVALUE PROBLEMS (EVP) (Golub & Van Loan: Chaps 7-8; Watkins: Chaps 5-7) X.-W Chang and C. C. Paige PART I. EVP THEORY EIGENVALUES AND EIGENVECTORS Let A C n n. Suppose Ax = λx with x 0, then x is a

More information

Cheat Sheet for MATH461

Cheat Sheet for MATH461 Cheat Sheet for MATH46 Here is the stuff you really need to remember for the exams Linear systems Ax = b Problem: We consider a linear system of m equations for n unknowns x,,x n : For a given matrix A

More information

LinGloss. A glossary of linear algebra

LinGloss. A glossary of linear algebra LinGloss A glossary of linear algebra Contents: Decompositions Types of Matrices Theorems Other objects? Quasi-triangular A matrix A is quasi-triangular iff it is a triangular matrix except its diagonal

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information

Synopsis of Numerical Linear Algebra

Synopsis of Numerical Linear Algebra Synopsis of Numerical Linear Algebra Eric de Sturler Department of Mathematics, Virginia Tech sturler@vt.edu http://www.math.vt.edu/people/sturler Iterative Methods for Linear Systems: Basics to Research

More information

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers..

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers.. EIGENVALUE PROBLEMS Background on eigenvalues/ eigenvectors / decompositions Perturbation analysis, condition numbers.. Power method The QR algorithm Practical QR algorithms: use of Hessenberg form and

More information

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background

Lecture notes on Quantum Computing. Chapter 1 Mathematical Background Lecture notes on Quantum Computing Chapter 1 Mathematical Background Vector states of a quantum system with n physical states are represented by unique vectors in C n, the set of n 1 column vectors 1 For

More information

The QR Algorithm. Chapter The basic QR algorithm

The QR Algorithm. Chapter The basic QR algorithm Chapter 3 The QR Algorithm The QR algorithm computes a Schur decomposition of a matrix. It is certainly one of the most important algorithm in eigenvalue computations. However, it is applied to dense (or:

More information

Lecture # 11 The Power Method for Eigenvalues Part II. The power method find the largest (in magnitude) eigenvalue of. A R n n.

Lecture # 11 The Power Method for Eigenvalues Part II. The power method find the largest (in magnitude) eigenvalue of. A R n n. Lecture # 11 The Power Method for Eigenvalues Part II The power method find the largest (in magnitude) eigenvalue of It makes two assumptions. 1. A is diagonalizable. That is, A R n n. A = XΛX 1 for some

More information

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis

Eigenvalue Problems. Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalue Problems Eigenvalue problems occur in many areas of science and engineering, such as structural analysis Eigenvalues also important in analyzing numerical methods Theory and algorithms apply

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 4 Eigenvalue Problems Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Orthogonal iteration to QR

Orthogonal iteration to QR Week 10: Wednesday and Friday, Oct 24 and 26 Orthogonal iteration to QR On Monday, we went through a somewhat roundabout algbraic path from orthogonal subspace iteration to the QR iteration. Let me start

More information

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm

Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Computing Eigenvalues and/or Eigenvectors;Part 2, The Power method and QR-algorithm Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 19, 2010 Today

More information

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

More information

This can be accomplished by left matrix multiplication as follows: I

This can be accomplished by left matrix multiplication as follows: I 1 Numerical Linear Algebra 11 The LU Factorization Recall from linear algebra that Gaussian elimination is a method for solving linear systems of the form Ax = b, where A R m n and bran(a) In this method

More information

G1110 & 852G1 Numerical Linear Algebra

G1110 & 852G1 Numerical Linear Algebra The University of Sussex Department of Mathematics G & 85G Numerical Linear Algebra Lecture Notes Autumn Term Kerstin Hesse (w aw S w a w w (w aw H(wa = (w aw + w Figure : Geometric explanation of the

More information

Orthonormal Transformations and Least Squares

Orthonormal Transformations and Least Squares Orthonormal Transformations and Least Squares Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo October 30, 2009 Applications of Qx with Q T Q = I 1. solving

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

ECS130 Scientific Computing Handout E February 13, 2017

ECS130 Scientific Computing Handout E February 13, 2017 ECS130 Scientific Computing Handout E February 13, 2017 1. The Power Method (a) Pseudocode: Power Iteration Given an initial vector u 0, t i+1 = Au i u i+1 = t i+1 / t i+1 2 (approximate eigenvector) θ

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

Decomposition. bq (m n) R b (n n) r 11 r 1n

Decomposition. bq (m n) R b (n n) r 11 r 1n The QR Decomposition Lab Objective: The QR decomposition is a fundamentally important matrix factorization. It is straightforward to implement, is numerically stable, and provides the basis of several

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

11.0 Introduction. An N N matrix A is said to have an eigenvector x and corresponding eigenvalue λ if. A x = λx (11.0.1)

11.0 Introduction. An N N matrix A is said to have an eigenvector x and corresponding eigenvalue λ if. A x = λx (11.0.1) Chapter 11. 11.0 Introduction Eigensystems An N N matrix A is said to have an eigenvector x and corresponding eigenvalue λ if A x = λx (11.0.1) Obviously any multiple of an eigenvector x will also be an

More information

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms

forms Christopher Engström November 14, 2014 MAA704: Matrix factorization and canonical forms Matrix properties Matrix factorization Canonical forms Christopher Engström November 14, 2014 Hermitian LU QR echelon Contents of todays lecture Some interesting / useful / important of matrices Hermitian LU QR echelon Rewriting a as a product of several matrices.

More information

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas

Dimensionality Reduction: PCA. Nicholas Ruozzi University of Texas at Dallas Dimensionality Reduction: PCA Nicholas Ruozzi University of Texas at Dallas Eigenvalues λ is an eigenvalue of a matrix A R n n if the linear system Ax = λx has at least one non-zero solution If Ax = λx

More information

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method

Solution of eigenvalue problems. Subspace iteration, The symmetric Lanczos algorithm. Harmonic Ritz values, Jacobi-Davidson s method Solution of eigenvalue problems Introduction motivation Projection methods for eigenvalue problems Subspace iteration, The symmetric Lanczos algorithm Nonsymmetric Lanczos procedure; Implicit restarts

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

The QR Decomposition

The QR Decomposition The QR Decomposition We have seen one major decomposition of a matrix which is A = LU (and its variants) or more generally PA = LU for a permutation matrix P. This was valid for a square matrix and aided

More information

MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006

MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006 MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006 Sherod Eubanks HOMEWORK 2 2.1 : 2, 5, 9, 12 2.3 : 3, 6 2.4 : 2, 4, 5, 9, 11 Section 2.1: Unitary Matrices Problem 2 If λ σ(u) and U M n is unitary, show that

More information

Matrices, Moments and Quadrature, cont d

Matrices, Moments and Quadrature, cont d Jim Lambers CME 335 Spring Quarter 2010-11 Lecture 4 Notes Matrices, Moments and Quadrature, cont d Estimation of the Regularization Parameter Consider the least squares problem of finding x such that

More information

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) Chapter 5 The Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) 5.1 Basics of SVD 5.1.1 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J Olver 8 Numerical Computation of Eigenvalues In this part, we discuss some practical methods for computing eigenvalues and eigenvectors of matrices Needless to

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Fast Hessenberg QR Iteration for Companion Matrices

Fast Hessenberg QR Iteration for Companion Matrices Fast Hessenberg QR Iteration for Companion Matrices David Bindel Ming Gu David Garmire James Demmel Shivkumar Chandrasekaran Fast Hessenberg QR Iteration for Companion Matrices p.1/20 Motivation: Polynomial

More information

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u

be a Householder matrix. Then prove the followings H = I 2 uut Hu = (I 2 uu u T u )u = u 2 uut u MATH 434/534 Theoretical Assignment 7 Solution Chapter 7 (71) Let H = I 2uuT Hu = u (ii) Hv = v if = 0 be a Householder matrix Then prove the followings H = I 2 uut Hu = (I 2 uu )u = u 2 uut u = u 2u =

More information

Direct methods for symmetric eigenvalue problems

Direct methods for symmetric eigenvalue problems Direct methods for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 4, 2008 1 Theoretical background Posing the question Perturbation theory

More information

ELE/MCE 503 Linear Algebra Facts Fall 2018

ELE/MCE 503 Linear Algebra Facts Fall 2018 ELE/MCE 503 Linear Algebra Facts Fall 2018 Fact N.1 A set of vectors is linearly independent if and only if none of the vectors in the set can be written as a linear combination of the others. Fact N.2

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Linear Algebra for Machine Learning. Sargur N. Srihari

Linear Algebra for Machine Learning. Sargur N. Srihari Linear Algebra for Machine Learning Sargur N. srihari@cedar.buffalo.edu 1 Overview Linear Algebra is based on continuous math rather than discrete math Computer scientists have little experience with it

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

From Matrix to Tensor. Charles F. Van Loan

From Matrix to Tensor. Charles F. Van Loan From Matrix to Tensor Charles F. Van Loan Department of Computer Science January 28, 2016 From Matrix to Tensor From Tensor To Matrix 1 / 68 What is a Tensor? Instead of just A(i, j) it s A(i, j, k) or

More information

5 Selected Topics in Numerical Linear Algebra

5 Selected Topics in Numerical Linear Algebra 5 Selected Topics in Numerical Linear Algebra In this chapter we will be concerned mostly with orthogonal factorizations of rectangular m n matrices A The section numbers in the notes do not align with

More information

1 Linear Algebra Problems

1 Linear Algebra Problems Linear Algebra Problems. Let A be the conjugate transpose of the complex matrix A; i.e., A = A t : A is said to be Hermitian if A = A; real symmetric if A is real and A t = A; skew-hermitian if A = A and

More information

Numerical Methods I Singular Value Decomposition

Numerical Methods I Singular Value Decomposition Numerical Methods I Singular Value Decomposition Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 9th, 2014 A. Donev (Courant Institute)

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

Review of some mathematical tools

Review of some mathematical tools MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical

More information

Lecture 12 Eigenvalue Problem. Review of Eigenvalues Some properties Power method Shift method Inverse power method Deflation QR Method

Lecture 12 Eigenvalue Problem. Review of Eigenvalues Some properties Power method Shift method Inverse power method Deflation QR Method Lecture Eigenvalue Problem Review of Eigenvalues Some properties Power method Shift method Inverse power method Deflation QR Method Eigenvalue Eigenvalue ( A I) If det( A I) (trivial solution) To obtain

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR QR-decomposition The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which In Matlab A = QR [Q,R]=qr(A); Note. The QR-decomposition is unique

More information

Introduction to Numerical Linear Algebra II

Introduction to Numerical Linear Algebra II Introduction to Numerical Linear Algebra II Petros Drineas These slides were prepared by Ilse Ipsen for the 2015 Gene Golub SIAM Summer School on RandNLA 1 / 49 Overview We will cover this material in

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then

CHARACTERIZATIONS. is pd/psd. Possible for all pd/psd matrices! Generating a pd/psd matrix: Choose any B Mn, then LECTURE 6: POSITIVE DEFINITE MATRICES Definition: A Hermitian matrix A Mn is positive definite (pd) if x Ax > 0 x C n,x 0 A is positive semidefinite (psd) if x Ax 0. Definition: A Mn is negative (semi)definite

More information

MAA507, Power method, QR-method and sparse matrix representation.

MAA507, Power method, QR-method and sparse matrix representation. ,, and representation. February 11, 2014 Lecture 7: Overview, Today we will look at:.. If time: A look at representation and fill in. Why do we need numerical s? I think everyone have seen how time consuming

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information