PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY

Size: px
Start display at page:

Download "PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY"

Transcription

1 Friends, we continue the discussion with fundamentals of discrete probability in the second session of third chapter of our course in Discrete Mathematics. The conditional probability and Baye s theorem are intro duced in this session. As an application of the theory, information and mutual information also are introduced. Chapter 3.2 PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY Module INTRODUCTION TO DISCRETE PROBABILITY Anxiety to know future is just common to all of us. Impatience is another common thing. What will be the immediate consequence of these two? The answer is very simple. One would try to guess the possible outputs much before the completion of any process. Is there any scientific support for your guess? Of course the answer is YES. The entire probability theory comes for our help. There are many processes like tossing a coin, throwing a die, etc. In which there are only a finite number of possible outputs. If it is unable to predict the exact output before the completion of the process, then the process is called a random experiment. Each output of the random experiment is termed an outcome. The set of all possible outcomes is called the sample space. Any subset of the sample space is called an event. A collection of events is said to be exhaustive if their union is the sample space. Two events are said to be mutually exclusive (or disjoint) if their intersection is an empty set. For example, in the random experiment of throwing a die, the sample space is the set {, 2, 3, 4, 5, 6 }. The event of getting an odd number is the set {, 3, 5 }. The events of an odd number, a prime number, perfect squares and perfect number are exhaustive. These events are respectively {, 3, 5 }, { 2, 3, 5 }, {, 4 } and { 6 }. Their union is the sample space. The events of a prime number and perfect squares are mutually exclusive as there are no outcomes common in them. Events are actually sets. So all the set operations are applicable to them. Definition.. (Probability) The probability of an event is defined as Probability = number of outcomes in the event number of outcomes in the sample space

2 For any event, the complement also is an event. Probability of complement = probability of the event. Example.2. In the random experiment of throwing a fair die, there are six outcomes in the sample space. In the event of prime numbers, (which is the set {2, 3, 5}), there are three outcomes. Thus the probability of getting a prime number when a fair die is thrown is = 6 3 = 2 Example.3. In the random experiment of tossing three fair coins, the sample space is the set {(H,H,H), (H,H,T), (H,T,H), (H,T,T), (T,H,H), (T,H,T), (T,T,H), (T,T,T)} consisting of eight outcomes where H stands for a Head and T for a Tail. The probability of getting exactly one head is 3 8, since the set {(H,T,T), (T,H,T), (T,T,H)} is the corresponding event. Example.4. Consider the random experiment of forming three digit num bers using the digits 0,, 3, 5 and 6. There are = 00 outcomes. The event of getting an odd 60 number has = 60 outcomes and it s probability is 00 =0.6 Example.5. Consider the random experiment of tossing two fair dice. There are 36 outcomes in the sample space. The event of getting the sum of numbers on the dice as 8 or consists of 7 outcomes which are (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (5, 6) and (6, 5). 7 So it s probability is 36 Example.6. Digital data received from a remote site might fill up 0 to 32 buffers. Let the sample space be S = {0,, 2,, 32}, where the sample i denotes that i of the buffers are full. It is given that P (i) = 56! (33 i). Let A denote the event that at most 6 buffers are full and B denote the event that an odd number of buffers are full. Then A = {0,, 2,, 6} B = {, 3, 5,, 3} A B = {, 3, 5,, 5} and

3 6 p( A)= 56! i= (33 i)= ! = p(b)= 56! odd i= (33 i)= ! = p( A B)= 56! odd i= (33 i)= ! =0.357 The principle of inclusion and exclusion can be used to determine the number of outcomes in the union of events. The probability of the union could be obtained as P(A B) = P(A) + P(B) - P(A B). This is known as the addition theorem on probability. Example.7. Consider the random selection of a number from the first 30 natural numbers. Take A as the event of getting a multiple of 2 and B as the event of getting a multiple of 5. Then we can write the following events and the corresponding probabilities. A = {2,4,6,8,0,2,4,6,8,20,22,24,26,28,30} B = {5,0,5,20,25,30} and A B = {0,20,30}. Also P( A)= 5 30 P(B)= 6 30 P( A B)= 3 30 Now P( A)+P(B) P (A B)= =8 30 Here the event A B ={2,4,5,6,8,0,2,4,5,6,8,20,22,24,25,26,28,30} and its probability 8 is P(A B) = 30 Thus the addition theorem is verified.

4 Module 2 CONDITIONAL PROBABILITY The occurence of certain events can make changes in the probability of other events. For instance, in a cricket match, the captain who had won the toss may opt batting first. But if there was rain in the previous night or a snow fall in the morning, instead, he may opt fielding. So the event that the captain opts batting first depends upon the event that there was rain/snow fall. These types of situations are studied in conditional probability. Definition 2.. (Conditional probability) : The event A under the condition that another event B has already been happened is called the conditional event. It is denoted by A/B (read as A given B). The probability of such an event is called the conditional probability and is denoted by It is defined as P (A/B) = P( A B) P( A /B)= P (B) Example 2.2. Consider the following data. Discipline Boys Girls T otal Arts Science T otal Let A be the event that a student selected is a boy and B the event that a student selected studies a science subject. Then P( A)= 0 70 P( A)= P( A B)= Here, the probability that a science student called is a boy will be the conditional probability

5 P (A/B) = = Definition 2.3. (Independent Events) : If P (A/B) = P (A), then we say that A is independent of B. For independent events A and B, we have P (A B) = P (A) P (B), which is used as the condition to check the independence of the events. It is easy to prove the following for two independent events A and B.. A c and B c are independent events. 2. A and B c are independent events. 3. A c and B are independent events. Sometimes, finding the probability of the complementary event will be simpler than that of the event. For this we use the equality the probability of an event = probability of the complementary event. Example 2.4. Consider the case that power to a room comes from three different lines which are named as A, B and C. Let these lines be live in 80%, 90 % and 95% of the cases. It is required to find the probability that there will be light in the room on certain night. Here if A, B and C represent the events that there will be power in the lines and A c, B c and C c respectively represent the complementary events, then P(A c ) = 0.2, P(B c ) = 0. and P(C c ) = The required probability is that of the event A B C. It is the probability of the complement of A c B c C c. Now P(A c B c C c ) = P(A c ) P(B c ) P(C c ) = = So the required probability is 0.00 = or 99.9 %.

6 Example 2.5. Consider A as the event of drawing a red card from a well shuffled pack of cards and B as the event of drawing a number card. It is P( A)= = 36, P(B) 2 52 = 9 3, P ( A B)= 8 52 = 9 26 Now P( A) X P (B)= 2 X 9 3 = 9 26 Here P(A B) = P(A) P(B). So A and B are independent events. Module 3 BAYE S THEOREM Let E, E2,,En be mutually exclusive and exhaustive events and let A be any event. Then the Baye s theorem states that P(E i / A)= P(E i/ A). P( E i ) n = P(E i / A ). P(E i ) = P( A E i) n i= P ( A E i ) The conditional probability and Baye s theorem have a variety of applications in many reallife situations. As an example, consider the following situation. Let there be three surgeons named A, B and C in a hospital who are available respectively on 2, 3 and 2 days a week. Any patient admitted in the hospital will be attended by one of them. The success rates, (the probability that a patient is recovered after treatment), of these surgeons are respectively 0.8, 0.9 and A patient was admitted in critical state for surgery and died after the treatment. We can find the probability that the patient was attended by the surgeon C. Let us denote the events that the surgeons attend a patient respectively as A, B and C. Let the event that a patient dies after treatment be denoted as D.

7 Then from the given facts it follows that P(A) = 2 7, P(B) = 3 7 and P(C) = 2 7. Also, P(D/A) = 0.8 = 0.2, P(D/B) = 0.9 = 0. and P(D/C) = 0.95 = It is required to find P(C/D). Here the events E, E2 and E3 mentioned in Baye s theorem are respectively A, B and C. Also, D is the event mentioned as A in the theorem. So, P(D /C ) X P(C) P(C / D)= P( D/ A )X P( A)+P (D/ B) X P(B)+P(D /C )X P(C ) 0.05 X X X X 2 7 = 8 Module - 4 INFORMATION AND MUTUAL INFORMATION Usually messages/statements convey information. If a statement asserts the occurrence of an event which is very much likely to happen, we say that the statement contains only a small amount of information. On the other hand, if a statement asserts the occurrence of an event which is very rare, then we say that the statement contains a large amount of information. In other words, if an event is highly specific, its probability will be small and the amount of information will be larger. If the event is vaguely told, then its probability will be large and so the amount of information will be small. For example, the amount of information conveyed by the statement it is going to rain soon when told in the months of July and March are widely different. In July, rain is very

8 much likely to occur and so the amount of information is small whereas in March, rain is not likely to occur and so the amount of information is large. Definition 4.. If p is the probability of the occurrence of an event, then the information contained in a statement asserting the occurrence of the event is log p = log p. Here the logarithm is taken with base as 2. Note 4.2. Consider any event with probability p, which is always a number less than or equal to. So, log p will be non-positive or log p will be a non negative number. Moreover, when p is small, the amount of information will be large and when p is large, the amount of information will be small. Suppose that we receive from the computer as output a binary digit which is either 0 or with equal probability of occurrence. If it is told that the output is surely, then the amount of information received is log =. 2 For the output 0 also the same will be the amount of information. We may take the unit for the amount of information as a bit. Now if we receive 32 binary digits from a computer as output and if all the 2 32 possibilities are equally likely, then the information we receive is log = 32 bits In the following example, it is shown how an information is processed from the given data. Example 4.3. Consider the problem of examining the likelihood that there will be a -hour examination when the teacher is scheduled to go out of the town. Let S = {x, x2, x3, x4 } be the sample space, where x : teacher is out of town and examination is given x2 : teacher is out of town and examination is not given x3 : teacher is in town and examination is given x4 : teacher is in town and examination is not given Let p(x ) =, 2 p(x2 ) = 6, p(x3 ) = 3 6 and p(x4 ) = 4. Let A denote the event that an examination is given, and B the event that the teacher is

9 out of town. Note that p(a ) = = 6 and P(A / B ) = = 8 9 The information needed to determine that an examination will be given is log p(a) = log 6 = log + log 6 = = 0.54 bits and the information provided by the fact that the teacher is out of town on the fact that an examination will be given is I(A, B) = log + log = log + log 6 + log 8 log 9 = = 0.37 bits. Let C denote the event that the teacher is in town. since P(A/C) = = we have I(A, C) = log 6 + log 3 7

10 = log + log 6 + log 3 log 7 = = 0.69 bits. The fact that the teacher is in town makes it less likely that an examination will be given. Consequently, the mutual information provided by the presence of the teacher on the occurrence of an examination is a negative quantity. Exercises The following questions are provided for you to practise.. What is the number of different outcomes when four fair dies are rolled? 2. A student randomly marks the answers True or False in an examination consisting of 0 questions. What is the probability that the answers are alternatively different? 3. When four boys and two girls are seated around a table, what is the probability that the two girls will not sit together? 4. When three digit numbers are formed using the digits, 2, 4, 5, 6 and 7, what is the probability that a number randomly selected is a multiple of 4? 5. Let p be the probability that a man aged 60 will die within one year. If there are 0 such men, what is the probability that at least one will die within one year? References The following books are recommended as reference.. Elements of Discrete Mathematics, C.L.Liu., Tata McGraw-Hill Publishing Company Ltds. 2nd edition 3 2. Miller & Freund s Probability and statistics for Engineers, 5th edition, Richard a Johnson, Prentice Hall India Private Limited, 200. Hope you have followed this session. We will continue our discussion with Relations and Functions in the next chapter. Till then Good Bye.

11

Mathematics. ( : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2

Mathematics. (  : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2 ( : Focus on free Education) Exercise 16.2 Question 1: A die is rolled. Let E be the event die shows 4 and F be the event die shows even number. Are E and F mutually exclusive? Answer 1: When a die is

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

Events A and B are said to be independent if the occurrence of A does not affect the probability of B.

Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Independent Events Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Probability experiment of flipping a coin and rolling a dice. Sample Space: {(H,

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 2: Conditional probability Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

2. Conditional Probability

2. Conditional Probability ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019 2. Conditional Probability Andrej Bogdanov Coins game Toss 3 coins. You win if at least two come out heads. S = { HHH, HHT, HTH, HTT, THH,

More information

324 Stat Lecture Notes (1) Probability

324 Stat Lecture Notes (1) Probability 324 Stat Lecture Notes 1 robability Chapter 2 of the book pg 35-71 1 Definitions: Sample Space: Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol S Notes:

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

Conditional Probability

Conditional Probability Conditional Probability Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B

More information

Probability Pearson Education, Inc. Slide

Probability Pearson Education, Inc. Slide Probability The study of probability is concerned with random phenomena. Even though we cannot be certain whether a given result will occur, we often can obtain a good measure of its likelihood, or probability.

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Section 7.2 Sec$on Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli Trials and the Binomial Distribution Random Variables

More information

Business Statistics MBA Pokhara University

Business Statistics MBA Pokhara University Business Statistics MBA Pokhara University Chapter 3 Basic Probability Concept and Application Bijay Lal Pradhan, Ph.D. Review I. What s in last lecture? Descriptive Statistics Numerical Measures. Chapter

More information

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW

PROBABILITY CHAPTER LEARNING OBJECTIVES UNIT OVERVIEW CHAPTER 16 PROBABILITY LEARNING OBJECTIVES Concept of probability is used in accounting and finance to understand the likelihood of occurrence or non-occurrence of a variable. It helps in developing financial

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) Section 7.3: Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events

More information

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Probability: Terminology and Examples Class 2, 18.05 Jeremy Orloff and Jonathan Bloom 1. Know the definitions of sample space, event and probability function. 2. Be able to organize a

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Statistics Statistical Process Control & Control Charting

Statistics Statistical Process Control & Control Charting Statistics Statistical Process Control & Control Charting Cayman Systems International 1/22/98 1 Recommended Statistical Course Attendance Basic Business Office, Staff, & Management Advanced Business Selected

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru Venkateswara Rao, Ph.D. STA 2023 Fall 2016 Venkat Mu ALL THE CONTENT IN THESE SOLUTIONS PRESENTED IN BLUE AND BLACK

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru, Venkateswara Rao STA 2023 Spring 2016 1 1. A committee of 5 persons is to be formed from 6 men and 4 women. What

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Probability. VCE Maths Methods - Unit 2 - Probability

Probability. VCE Maths Methods - Unit 2 - Probability Probability Probability Tree diagrams La ice diagrams Venn diagrams Karnough maps Probability tables Union & intersection rules Conditional probability Markov chains 1 Probability Probability is the mathematics

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones Math 141 to and Statistics Albyn Jones Mathematics Department Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 September 3, 2014 Motivation How likely is an eruption at Mount Rainier in

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 7-11 Topics 2.1 RANDOM VARIABLE 2.2 INDUCED PROBABILITY MEASURE 2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES 2.4 TYPES OF RANDOM VARIABLES: DISCRETE,

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

Bayes Rule for probability

Bayes Rule for probability Bayes Rule for probability P A B P A P B A PAP B A P AP B A An generalization of Bayes Rule Let A, A 2,, A k denote a set of events such that S A A2 Ak and Ai Aj for all i and j. Then P A i B P Ai P B

More information

Quantitative Methods for Decision Making

Quantitative Methods for Decision Making January 14, 2012 Lecture 3 Probability Theory Definition Mutually exclusive events: Two events A and B are mutually exclusive if A B = φ Definition Special Addition Rule: Let A and B be two mutually exclusive

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

6. For any event E, which is associated to an experiment, we have 0 P( 7. If E 1

6. For any event E, which is associated to an experiment, we have 0 P( 7. If E 1 CHAPTER PROBABILITY Points to Remember :. An activity which gives a result is called an experiment.. An experiment which can be repeated a number of times under the same set of conditions, and the outcomes

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Statistics for Engineers

Statistics for Engineers Statistics for Engineers Antony Lewis http://cosmologist.info/teaching/stat/ Starter question Have you previously done any statistics? 1. Yes 2. No 54% 46% 1 2 BOOKS Chatfield C, 1989. Statistics for

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV An example: Assume we toss a coin 3 times and record the outcomes. Let X i be a random variable defined by { 1, if the i th outcome is Head; X i = 0, if the i th outcome is Tail; Let X be the random variable

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS

Recap. The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY INFERENTIAL STATISTICS Recap. Probability (section 1.1) The study of randomness and uncertainty Chances, odds, likelihood, expected, probably, on average,... PROBABILITY Population Sample INFERENTIAL STATISTICS Today. Formulation

More information

First Digit Tally Marks Final Count

First Digit Tally Marks Final Count Benford Test () Imagine that you are a forensic accountant, presented with the two data sets on this sheet of paper (front and back). Which of the two sets should be investigated further? Why? () () ()

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Steve Smith Tuition: Maths Notes

Steve Smith Tuition: Maths Notes Maths Notes : Discrete Random Variables Version. Steve Smith Tuition: Maths Notes e iπ + = 0 a + b = c z n+ = z n + c V E + F = Discrete Random Variables Contents Intro The Distribution of Probabilities

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

Term Definition Example Random Phenomena

Term Definition Example Random Phenomena UNIT VI STUDY GUIDE Probabilities Course Learning Outcomes for Unit VI Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Demonstrate

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 17, 2008 Liang Zhang (UofU) Applied Statistics I June 17, 2008 1 / 22 Random Variables Definition A dicrete random variable

More information

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178 EE 178 Lecture Notes 0 Course Introduction About EE178 About Probability Course Goals Course Topics Lecture Notes EE 178: Course Introduction Page 0 1 EE 178 EE 178 provides an introduction to probabilistic

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Part (A): Review of Probability [Statistics I revision]

Part (A): Review of Probability [Statistics I revision] Part (A): Review of Probability [Statistics I revision] 1 Definition of Probability 1.1 Experiment An experiment is any procedure whose outcome is uncertain ffl toss a coin ffl throw a die ffl buy a lottery

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

STATISTICS HIGHER SECONDARY - SECOND YEAR. A Publication under Government of Tamilnadu Distribution of Free Textbook Programme )NOT FOR SALE(

STATISTICS HIGHER SECONDARY - SECOND YEAR. A Publication under Government of Tamilnadu Distribution of Free Textbook Programme )NOT FOR SALE( STATISTICS HIGHER SECONDARY - SECOND YEAR A Publication under Government of Tamilnadu Distribution of Free Textbook Programme )NOT FOR SALE( Untouchability is a sin Untouchability is a crime Untouchability

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Discrete Probability

Discrete Probability Discrete Probability Counting Permutations Combinations r- Combinations r- Combinations with repetition Allowed Pascal s Formula Binomial Theorem Conditional Probability Baye s Formula Independent Events

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

OCR Statistics 1 Probability. Section 1: Introducing probability

OCR Statistics 1 Probability. Section 1: Introducing probability OCR Statistics Probability Section : Introducing probability Notes and Examples These notes contain subsections on Notation Sample space diagrams The complement of an event Mutually exclusive events Probability

More information

Topic 3: Introduction to Probability

Topic 3: Introduction to Probability Topic 3: Introduction to Probability 1 Contents 1. Introduction 2. Simple Definitions 3. Types of Probability 4. Theorems of Probability 5. Probabilities under conditions of statistically independent events

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities

ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Experiments, Models, and Probabilities Dr. Jing Yang jingyang@uark.edu OUTLINE 2 Applications

More information

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space)

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space) NLP: Probability Dan Garrette dhg@cs.utexas.edu December 27, 2013 1 Basics E : event space (sample space) We will be dealing with sets of discrete events. Example 1: Coin Trial: flipping a coin Two possible

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

27 Binary Arithmetic: An Application to Programming

27 Binary Arithmetic: An Application to Programming 27 Binary Arithmetic: An Application to Programming In the previous section we looked at the binomial distribution. The binomial distribution is essentially the mathematics of repeatedly flipping a coin

More information

Chapter. Probability

Chapter. Probability Chapter 3 Probability Section 3.1 Basic Concepts of Probability Section 3.1 Objectives Identify the sample space of a probability experiment Identify simple events Use the Fundamental Counting Principle

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun

ECE 340 Probabilistic Methods in Engineering M/W 3-4:15. Lecture 2: Random Experiments. Prof. Vince Calhoun ECE 340 Probabilistic Methods in Engineering M/W 3-4:15 Lecture 2: Random Experiments Prof. Vince Calhoun Reading This class: Section 2.1-2.2 Next class: Section 2.3-2.4 Homework: Assignment 1: From the

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

Key Concepts. Key Concepts. Event Relations. Event Relations

Key Concepts. Key Concepts. Event Relations. Event Relations Probability and Probability Distributions Event Relations S B B Event Relations The intersection of two events, and B, is the event that both and B occur when the experient is perfored. We write B. S Event

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information