(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

Size: px
Start display at page:

Download "(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?"

Transcription

1 MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the space of all students, with F being female students, and consider the event G of having a GPA of at least 3.0. Then P(G) represents the probability that a student (from all of Ω ) has a GPA of at least 3.0. But suppose we want to consider just female students. Then we use P(G F) to denote the probability that a female student has a GPA of at least 3.0. This conditional probability can be stated in several ways, such as (i) Given that a student is female, what is the probability of having a GPA of at least 3.0? (ii) What is the probability, among just females, of having a GPA of at least 3.0? We formally define this concept in the following way: Definition. Let D be an event with 0 and let C be another event. The conditional probability of C given D is defined by P(C D) P(C D) / P( D). (The second (given) set is the reduced sample space.) Example 1. Among all students, 60% are female (event F ), 70% have a GPA of at least 3.0 (event G ), and 48% are females with a GPA of at least 3.0. Let M F c be the males. Compute and explain P(G F), P(F G), P(M G), P(G c M), and P(M G c ). Solution. We first show all information on a Block diagram: G G c G G c F 48% 60% F 48% 12% 60% M M 22% 18% 40% 70% 100% 70% 30% 100% P(G F) P(G F) P(F ) % of females have a GPA of at least P( F G) P(F G) 48 P( M G) and P(M G) Among P(G) 70 P(G) 70 just those with a GPA of at least 3.0, 68.57% are female and 31.43% are male. P(G c M) P(Gc M) P(M) P(M G c ) P( M Gc ) P(G c ) % of males have a GPA under Among those with a GPA under 3.0, 60% are male.

2 Example 2. Flip a fair coin three times. What is the probability of (a) All Heads given that there is at least one Head? (b) Exactly 2 heads given that the first is a Head? Solution. Let X count the number of Heads. Then consider the sample space of all 8 outcomes, and just look at the reduced sample space. HHH HHT HTH THH HTT THT TTH TTT (a) Given that there is at least one Head, then we are reduced to 7 possibilities. Out of these 7, only 1 has all heads; thus, P(X 3 X 1) 1. Or, because {X 3} {X 1}, 7 we also could compute the value as P(X 3 X 1) P( X 3 X 1) P( X 1) P( X 3 ) P( X 1) 1 / 8 7 / (b) Let X 1 be the outcome of the first roll. Given that X 1 H, we are reduced to 4 possibilities: HHH HHT HTH HTT. Of these 4 outcomes, 2 of them have exactly 2 Heads. Thus, P(X 2 X 1 H) 2 4. Alternately, {X 2 X 1 H} {HHT, HTH}, so P(X 2 X 1 H) P( X 2 X 1 H) P( X 1 H) 2 / 8 1 / Multiplication Rule Given events A, B, with P(A) 0 and P(B) 0,we have P(B A) P( A B) P( A) and P(A B) P( A B). P( B) So we can write P(A B) as P(A B) P( A) P(B A) or P(A B) P( B) P( A B) In other words, what is the chance of both A and B happening? First we need A, then we need B given that A has happened: P(A) P(B A). (Or we need B and then we need A given that B has happened: P(B) P(A B). ) Note: When A and B are known to be independent, then P(A B) P( A) P(B). But iwhen there is dependence, then A affects B so that P(B) P(B A). So when we have dependent events, we need P(A B) P( A) P(B A).

3 P(A 1 A 2 A 3... A n ) More generally, we can write P( A 1 ) P( A 2 A 1 ) P( A 3 A 1 A 2 )... P(A n A 1 A 2... A n 1 ). Example 3. If drawing 5 cards in sequence, what is the probability of drawing a Heart, then a Spade, then a Spade, then a Club, then a Heart if drawing (a) with replacement and reshuffling? (b) without replacement? Solution. (a) With replacement and reshuffling, then each draw is independent and the probability of each suit on each draw is 1/4. Thus, P(H S S C H) P(H) P(S) P(S) P(C) P( H) (1 / 4) 5. (b) Without replacing cards, we have dependent draws, so we now must use the general multiplication rule: To start, there are 52 cards and 13 in each suit. But these numbers reduce by one as each card/suit is drawn. Thus, P(H S S C H) P(H) P(S H) P(S H S) P(C H S S) P( H H S S C) Sometimes information is given in terms of conditional probabilities: Example 4. Among WKU students, 40% smoke (event S ) and 65% drink (event D). But among smokers, 80% drink. Find the probabilities of (a) Smoking among just drinkers (b) Not smoking given that one doesn't drink (c) Doing both given that one does one or the other (d) Not doing either given that one doesn't do both. Solution. The information given is P(S) 0. 40, 0.65, and P(D S) To complete a Block diagram, we need P(S D) P(S) P(D S) which is really just taking 80% of the 40% of students who smoke: D D c D D c S S S c S c

4 Now we can compute the desired conditional probabilities: (a) P(S D) P(S D) P( D) (b) P(Sc D c ) P( Sc D c ) P(D c 27 ) (c) Because S D S D and P(S D) 0. 73, we have P(S D S D) P(S D) P(S D) (d) Now S c D c (S D) c ; thus, P(S c D c (S D) c ) P(Sc D c ) P((S D) c ) Special Cases (i) C and D are disjoint (ii) C is contained in D C D C D Ω Ω P(C D) P(C D) P( ) 0 P(C D) P(C D) P(C) Given D, there is then no chance of C. (iii) D is contained in C Ω P(C D) C D P(C D) 1 Given D, then C happens also. P(C D) P(D C) (iv) C and D are independent P(C D) P( D C) P(C) and P(C) P( D) P(C) P(C) P(C) C and D have no affect on each other.

5 Example 5. Among the population of senior citizens, 90% need glasses. Among those needing glasses, 75% need bifocals. (a) What percentage of senior citizens need bifocals? (b) If one doesn't need bifocals, what is the probability of not needing glasses? Solution. Let P(G) 0.90 be the probabilty of needing glasses and P(B G) 0.75 be the probabilty of needing bifocals given that one needs glasses. Because B G, we have P(B G) 0.75 P(B G) P(B) P(G) P(G) P(B) Hence, P(B G) P( B) B B c G G c Because B G, then G c B c. Thus, P(G c B c ) P(Gc B c ) P(B c ) P(Gc ) P(B c ) Example 6. Deal 5 cards. What is the probability of having at least 3 Hearts given that you have at least 2 hearts? Solution. Let X denote the number of Hearts. Then {X 3} {X 2}; hence, P(X 3 X 2) P(X 3 X 2) P(X 2) P(X 3) P( X 3) + P( X 4) + P( X 5) P( X 2) 1 P( X 0) P( X 1) C(13, 3)C(39,2) + C(13, 4)C(39,1) + C(13, 5)C(39, 0) C(52, 5) C(52, 5) C(13, 0)C(39,5) + C(13, 1)C(39, 4) C(52, 5) 241, ,

6 Example 7. Suppose 60% of students are female. Among the females, the probability of having an automobile is Among the males, the probability of not having an automobile is Among all, 40% of the autos are trucks. If one has a truck, there is an 80% chance of being male. (a) Among all students, what is the probability of having an automobile? (b) If one has an auto, then what is the probability of being male? (c) If one does not have an auto, then what is the probability of being female? (d) What percentage of the students have a truck? (e) If one does not have a truck, what is the probability that one does not have an automobile? (f) Overall, what percentage are male and have a truck? (g) Is having a truck independent of sex? Explain. Solution. We first use the information given to complete a block diagram: Let F be the females, M be the males, A be those having an auto, and T be those having a truck. Then P(F A) P(F ) P( A F ) P(M A c ) P(M) P( A c M) A A c F M (a) From the Block diagram, we obtain P(A) 0.69, which also comes from P(A) P(F) P(A F) + P(M) P(A M) (b) P(M A) P( M A) P( A) (c) P(F A c ) P(F Ac ) P( A c ) (d) Because 40% of the autos are trucks, we have P(T) , so 27.6% have a truck. This result also follows from 0.40 P(T A) P(T ) P( A) P(T) (e) Because T A, then A c T c. Thus, P(A c T c ) P( Ac ) P(T c )

7 (f) Overall, what percentage are male and have a truck? P(M T ) P(T) P( M T) , so 22.08% of the students are males with a truck. (g) Is having a truck independent of sex? No; we have P(M T ) , but P(M) P( T ) , so having a truck is dependent on the sex of the student. P(T M) Also note that P(T) while P(T M) Thus, P(M) 0.40 males are more likely to have a truck than a generic student in the whole population. As shown in Part (g), conditional probabilities can be used to check for independence. The formal definition of A and B being independent is that P(A B) P( A) P(B). But intuitively, it should be the case that A and B are independent provided they have no affect on each other; that is, it should be the case that P(B A) P(B) and P(A B) P(A). We prove this next: Proposition 5. Suppose events A and B are independent with P(A) 0 and P(B) 0. Then: (a) P(A B) P(A) and P(B A) P(B). (b) If P(A B) P( A) or P(B A) P(B), then A and B must be dependent. Proof. (a) By independence, we know P(A B) P( A) P(B). Thus P(A B) P( A B) P( B) P(A) P(B) P(B) P( A), and P(B A) P(B A) P( A) P(B) P(A) P(A) P(B). Part (b) is simply the contrapositive of (a) whicj is logically equivalent. Note: We always have P(A) + P( A c ) 1. It is also true that P(A B) + P( A c B) 1; however, in general, P(A B) + P( A B c ) 1.

8 Exercises 1. Among adults in Kentucky, 40% smoke, 55% drink, and 59% smoke or drink. (a) Show all information on a block diagram. (b) Compute the probability of (i) Not smoking given that one doesn't drink (ii) Doing exactly one of smoking or drinking given that one either smokes or drinks. (c) Among drinkers, what percentage smoke? (d) Among non-smokers, what percentage don't drink? (e) Determine if drinking is independent of smoking among adults in KY. (f) Compared to the general population of adults in KY, determine if a smoker is more likely, less likely, or equally likely to be a drinker. (g) Compared to the general population of adults in KY, determine if a non-drinker is more likely, less likely, or equally likely to be a smoker. 2. A class of 20 students has 12 Females and 8 males. Six students are chosen at random all at once. (a) What is the probability that there are at least 4 females chosen? (b) Given that there are at least 4 females chosen, what is the probability that all are female? 3. In a large apartment complex, tenants are allowed to have one pet per apartment. Among all apartments, 75% have a pet. If one has a pet, there is a 60% chance that it is a dog. (a) What percentage of these apartments have a dog? (b) What is the probability of not having a pet given that one doesn't have a dog? (c) Show all information on a block diagram. 4. Let A and B be events with P(B) 0. Prove that P(A B) + P( A c B) Let A and B be events with 0 < P(A) < 1: (a) Suppose P(B A) P(B). Prove that A and B are independent. (b) Prove that A and B are independent if and only if P(B A) P(B A c ).

9 6. Draw two cards at random from a shuffled deck, in order, without replacement. Compute the probability of drawing (a) Two spades (b) A Spade, then a Club (c) A spade, then a Queen (d) No Spades (e) Exactly one Spade. (Hint: Consider two cases.) 7. Consider the numbers 1, 2, 3, 4, 5, 6 placed in a hat. You and an opponent draw a single number at random one at a time without replacement with you drawing first. The winner is the person who draws the 6. (a) What is the probability that you win? (b) If instead you roll a single die until one of you rolls the 6, then what is the probability that you win if you roll first?

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Mathematics. ( : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2

Mathematics. (  : Focus on free Education) (Chapter 16) (Probability) (Class XI) Exercise 16.2 ( : Focus on free Education) Exercise 16.2 Question 1: A die is rolled. Let E be the event die shows 4 and F be the event die shows even number. Are E and F mutually exclusive? Answer 1: When a die is

More information

STAT 430/510 Probability

STAT 430/510 Probability STAT 430/510 Probability Hui Nie Lecture 3 May 28th, 2009 Review We have discussed counting techniques in Chapter 1. Introduce the concept of the probability of an event. Compute probabilities in certain

More information

Lecture 1 : The Mathematical Theory of Probability

Lecture 1 : The Mathematical Theory of Probability Lecture 1 : The Mathematical Theory of Probability 0/ 30 1. Introduction Today we will do 2.1 and 2.2. We will skip Chapter 1. We all have an intuitive notion of probability. Let s see. What is the probability

More information

First Digit Tally Marks Final Count

First Digit Tally Marks Final Count Benford Test () Imagine that you are a forensic accountant, presented with the two data sets on this sheet of paper (front and back). Which of the two sets should be investigated further? Why? () () ()

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 2: Conditional probability Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/ psarkar/teaching

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

The Geometric Distribution

The Geometric Distribution MATH 382 The Geometric Distribution Dr. Neal, WKU Suppose we have a fixed probability p of having a success on any single attempt, where p > 0. We continue to make independent attempts until we succeed.

More information

CHAPTER - 16 PROBABILITY Random Experiment : If an experiment has more than one possible out come and it is not possible to predict the outcome in advance then experiment is called random experiment. Sample

More information

2. Conditional Probability

2. Conditional Probability ENGG 2430 / ESTR 2004: Probability and Statistics Spring 2019 2. Conditional Probability Andrej Bogdanov Coins game Toss 3 coins. You win if at least two come out heads. S = { HHH, HHT, HTH, HTT, THH,

More information

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space?

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space? Math 166 Exam 1 Review Sections L.1-L.2, 1.1-1.7 Note: This review is more heavily weighted on the new material this week: Sections 1.5-1.7. For more practice problems on previous material, take a look

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Events A and B are said to be independent if the occurrence of A does not affect the probability of B.

Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Independent Events Events A and B are said to be independent if the occurrence of A does not affect the probability of B. Probability experiment of flipping a coin and rolling a dice. Sample Space: {(H,

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Quantitative Methods for Decision Making

Quantitative Methods for Decision Making January 14, 2012 Lecture 3 Probability Theory Definition Mutually exclusive events: Two events A and B are mutually exclusive if A B = φ Definition Special Addition Rule: Let A and B be two mutually exclusive

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

324 Stat Lecture Notes (1) Probability

324 Stat Lecture Notes (1) Probability 324 Stat Lecture Notes 1 robability Chapter 2 of the book pg 35-71 1 Definitions: Sample Space: Is the set of all possible outcomes of a statistical experiment, which is denoted by the symbol S Notes:

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Statistical methods in recognition. Why is classification a problem?

Statistical methods in recognition. Why is classification a problem? Statistical methods in recognition Basic steps in classifier design collect training images choose a classification model estimate parameters of classification model from training images evaluate model

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Probability Distributions for Discrete RV

Probability Distributions for Discrete RV An example: Assume we toss a coin 3 times and record the outcomes. Let X i be a random variable defined by { 1, if the i th outcome is Head; X i = 0, if the i th outcome is Tail; Let X be the random variable

More information

Expected Value. Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212

Expected Value. Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 Expected Value Lecture A Tiefenbruck MWF 9-9:50am Center 212 Lecture B Jones MWF 2-2:50pm Center 214 Lecture C Tiefenbruck MWF 11-11:50am Center 212 http://cseweb.ucsd.edu/classes/wi16/cse21-abc/ March

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

Conditional Probability

Conditional Probability Conditional Probability Conditional Probability The Law of Total Probability Let A 1, A 2,..., A k be mutually exclusive and exhaustive events. Then for any other event B, P(B) = P(B A 1 ) P(A 1 ) + P(B

More information

= A. Example 2. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {4, 6, 7, 9, 10}, and B = {2, 6, 8, 9}. Draw the sets on a Venn diagram.

= A. Example 2. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {4, 6, 7, 9, 10}, and B = {2, 6, 8, 9}. Draw the sets on a Venn diagram. MATH 109 Sets A mathematical set is a well-defined collection of objects A for which we can determine precisely whether or not any object belongs to A. Objects in a set are formally called elements of

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

General Info. Grading

General Info. Grading Syllabus & Policies General Info Lecture 1: Introduction, Set Theory, and Boolean Algebra Classroom: Perkins 2-072 Time: Mon - Fri, 2:00-3:15 pm Wed, 3:30-4:30 pm Sta 111 Colin Rundel May 13, 2014 Professor:

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics September 12, 2017 CS 361: Probability & Statistics Correlation Summary of what we proved We wanted a way of predicting y from x We chose to think in standard coordinates and to use a linear predictor

More information

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II Week 4 Classical Probability, Part II Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 7-11 Topics 2.1 RANDOM VARIABLE 2.2 INDUCED PROBABILITY MEASURE 2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES 2.4 TYPES OF RANDOM VARIABLES: DISCRETE,

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones Math 141 to and Statistics Albyn Jones Mathematics Department Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 September 3, 2014 Motivation How likely is an eruption at Mount Rainier in

More information

Key Concepts. Key Concepts. Event Relations. Event Relations

Key Concepts. Key Concepts. Event Relations. Event Relations Probability and Probability Distributions Event Relations S B B Event Relations The intersection of two events, and B, is the event that both and B occur when the experient is perfored. We write B. S Event

More information

Law of Total Probability and Bayes Rule

Law of Total Probability and Bayes Rule MATH 382 Law of Total Probability and Bayes Rule Dr Neal, WKU Law of Total Probability: Suppose events A 1, A 2,, A n form a partition of Ω That is, the events are mutually disjoint and their union is

More information

Business Statistics MBA Pokhara University

Business Statistics MBA Pokhara University Business Statistics MBA Pokhara University Chapter 3 Basic Probability Concept and Application Bijay Lal Pradhan, Ph.D. Review I. What s in last lecture? Descriptive Statistics Numerical Measures. Chapter

More information

CSC Discrete Math I, Spring Discrete Probability

CSC Discrete Math I, Spring Discrete Probability CSC 125 - Discrete Math I, Spring 2017 Discrete Probability Probability of an Event Pierre-Simon Laplace s classical theory of probability: Definition of terms: An experiment is a procedure that yields

More information

Applied Statistics I

Applied Statistics I Applied Statistics I Liang Zhang Department of Mathematics, University of Utah June 17, 2008 Liang Zhang (UofU) Applied Statistics I June 17, 2008 1 / 22 Random Variables Definition A dicrete random variable

More information

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G.

CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability. Outline. Terminology and background. Arthur G. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 7 Probability Arthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright Arthur G. Werschulz, 2017.

More information

Conditional Probability and Bayes Theorem (2.4) Independence (2.5)

Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Conditional Probability and Bayes Theorem (2.4) Independence (2.5) Prof. Tesler Math 186 Winter 2019 Prof. Tesler Conditional Probability and Bayes Theorem Math 186 / Winter 2019 1 / 38 Scenario: Flip

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

Discrete random variables and probability distributions

Discrete random variables and probability distributions Discrete random variables and probability distributions random variable is a mapping from the sample space to real numbers. notation: X, Y, Z,... Example: Ask a student whether she/he works part time or

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

STAT 516: Basic Probability and its Applications

STAT 516: Basic Probability and its Applications Lecture 3: Conditional Probability and Independence Prof. Michael September 29, 2015 Motivating Example Experiment ξ consists of rolling a fair die twice; A = { the first roll is 6 } amd B = { the sum

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

Probability Pearson Education, Inc. Slide

Probability Pearson Education, Inc. Slide Probability The study of probability is concerned with random phenomena. Even though we cannot be certain whether a given result will occur, we often can obtain a good measure of its likelihood, or probability.

More information

Math Exam 1 Review. NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2.

Math Exam 1 Review. NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2. Math 166 Fall 2008 c Heather Ramsey Page 1 Math 166 - Exam 1 Review NOTE: For reviews of the other sections on Exam 1, refer to the first page of WIR #1 and #2. Section 1.5 - Rules for Probability Elementary

More information

Probability (10A) Young Won Lim 6/12/17

Probability (10A) Young Won Lim 6/12/17 Probability (10A) Copyright (c) 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Bayes Rule for probability

Bayes Rule for probability Bayes Rule for probability P A B P A P B A PAP B A P AP B A An generalization of Bayes Rule Let A, A 2,, A k denote a set of events such that S A A2 Ak and Ai Aj for all i and j. Then P A i B P Ai P B

More information

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, Jeremy Orloff and Jonathan Bloom 1 Learning Goals Probability: Terminology and Examples Class 2, 18.05 Jeremy Orloff and Jonathan Bloom 1. Know the definitions of sample space, event and probability function. 2. Be able to organize a

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability

Sec$on Summary. Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Section 7.2 Sec$on Summary Assigning Probabilities Probabilities of Complements and Unions of Events Conditional Probability Independence Bernoulli Trials and the Binomial Distribution Random Variables

More information

What is a random variable

What is a random variable OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE MATH 256 Probability and Random Processes 04 Random Variables Fall 20 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY Friends, we continue the discussion with fundamentals of discrete probability in the second session of third chapter of our course in Discrete Mathematics. The conditional probability and Baye s theorem

More information

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553 Test 2 Review: Solutions 1) The following outcomes have at least one Head: HHH, HHT, HTH, HTT, THH, THT, TTH Thus, P(at least one head) = 7/8 2) The following outcomes have a sum of 9: (6,3), (5,4), (4,5),

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 4 review exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the constraints into linear equations by using slack variables. ) Maximize

More information

Notes for Math 324, Part 12

Notes for Math 324, Part 12 72 Notes for Math 324, Part 12 Chapter 12 Definition and main properties of probability 12.1 Sample space, events We run an experiment which can have several outcomes. The set consisting by all possible

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Example: Two dice are tossed. What is the probability that the sum is 8? This is an easy exercise: we have a sample space

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of?

6.2 Introduction to Probability. The Deal. Possible outcomes: STAT1010 Intro to probability. Definitions. Terms: What are the chances of? 6.2 Introduction to Probability Terms: What are the chances of?! Personal probability (subjective) " Based on feeling or opinion. " Gut reaction.! Empirical probability (evidence based) " Based on experience

More information

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is

Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is Chapter 13, Probability from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used under a

More information

Homework 4 Solution, due July 23

Homework 4 Solution, due July 23 Homework 4 Solution, due July 23 Random Variables Problem 1. Let X be the random number on a die: from 1 to. (i) What is the distribution of X? (ii) Calculate EX. (iii) Calculate EX 2. (iv) Calculate Var

More information

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru, Venkateswara Rao STA 2023 Spring 2016 1 1. A committee of 5 persons is to be formed from 6 men and 4 women. What

More information

Probability. VCE Maths Methods - Unit 2 - Probability

Probability. VCE Maths Methods - Unit 2 - Probability Probability Probability Tree diagrams La ice diagrams Venn diagrams Karnough maps Probability tables Union & intersection rules Conditional probability Markov chains 1 Probability Probability is the mathematics

More information

Term Definition Example Random Phenomena

Term Definition Example Random Phenomena UNIT VI STUDY GUIDE Probabilities Course Learning Outcomes for Unit VI Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Demonstrate

More information

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin

Random Variables. Statistics 110. Summer Copyright c 2006 by Mark E. Irwin Random Variables Statistics 110 Summer 2006 Copyright c 2006 by Mark E. Irwin Random Variables A Random Variable (RV) is a response of a random phenomenon which is numeric. Examples: 1. Roll a die twice

More information

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny a nickel are flipped. You win $ if either

More information

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru Venkateswara Rao, Ph.D. STA 2023 Fall 2016 Venkat Mu ALL THE CONTENT IN THESE SOLUTIONS PRESENTED IN BLUE AND BLACK

More information

Math 243 Section 3.1 Introduction to Probability Lab

Math 243 Section 3.1 Introduction to Probability Lab Math 243 Section 3.1 Introduction to Probability Lab Overview Why Study Probability? Outcomes, Events, Sample Space, Trials Probabilities and Complements (not) Theoretical vs. Empirical Probability The

More information

TA Qinru Shi: Based on poll result, the first Programming Boot Camp will be: this Sunday 5 Feb, 7-8pm Gates 114.

TA Qinru Shi: Based on poll result, the first Programming Boot Camp will be: this Sunday 5 Feb, 7-8pm Gates 114. TA Qinru Shi: Based on poll result, the first Programming Boot Camp will be: this Sunday 5 Feb, 7-8pm Gates 114. Prob Set 1: to be posted tomorrow. due in roughly a week Finite probability space S 1) a

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

CS206 Review Sheet 3 October 24, 2018

CS206 Review Sheet 3 October 24, 2018 CS206 Review Sheet 3 October 24, 2018 After ourintense focusoncounting, wecontinue withthestudyofsomemoreofthebasic notions from Probability (though counting will remain in our thoughts). An important

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

AP Statistics Ch 6 Probability: The Study of Randomness

AP Statistics Ch 6 Probability: The Study of Randomness Ch 6.1 The Idea of Probability Chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run. We call a phenomenon random if individual outcomes are uncertain

More information

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space)

NLP: Probability. 1 Basics. Dan Garrette December 27, E : event space (sample space) NLP: Probability Dan Garrette dhg@cs.utexas.edu December 27, 2013 1 Basics E : event space (sample space) We will be dealing with sets of discrete events. Example 1: Coin Trial: flipping a coin Two possible

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

Chapter 1 Probability Models

Chapter 1 Probability Models Chapter 1 Probability Models CHAPTER OUTLINE Section 1 Probability: A Measure of Uncertainty Section 2 Probability Models Section 3 Properties of Probability Models Section 4 Uniform Probability on Finite

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178 EE 178 Lecture Notes 0 Course Introduction About EE178 About Probability Course Goals Course Topics Lecture Notes EE 178: Course Introduction Page 0 1 EE 178 EE 178 provides an introduction to probabilistic

More information

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks

Outline. 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Outline 1. Define likelihood 2. Interpretations of likelihoods 3. Likelihood plots 4. Maximum likelihood 5. Likelihood ratio benchmarks Likelihood A common and fruitful approach to statistics is to assume

More information