Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II

Size: px
Start display at page:

Download "Outline Conditional Probability The Law of Total Probability and Bayes Theorem Independent Events. Week 4 Classical Probability, Part II"

Transcription

1 Week 4 Classical Probability, Part II

2 Week 4 Objectives This week we continue covering topics from classical probability. The notion of conditional probability is presented first. Important results/tools related to conditional probabilities are the multiplication rule and tree diagrams; the Law of Total Probability and Bayes Theorem. These are presented and their usefulness in computing probabilities is illustrated. Finally the notion of independent events is introduced and its application in system reliability is discussed.

3 1 2 3

4 Updating Probabilities When the response variable is multivariate, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the other variable. A man s height helps update the probability that he weighs over 170lb. A person s education level helps update the probability of that person being in a certain income category. In this unit we will learn how to update probabilities when given other relevant information. The updated probabilities are called conditional probabilities.

5 Given partial information regarding the outcome of simple random selection amounts to simple random selection from a restricted population. If the outcome of rolling a die is known to be even, what is the probability it is a 2? Answer: The restricted population is {2, 4, 6}, so the probability of a 2 is 1/3. If the selected card from a deck is known to be a figure card, what is the probability it is a king? Hint: The restricted population consists of 12 cards, including the 4 kings.

6 A household is selected at random. Given the household has a cat what is the probability that it also has a dog? Use the probabilities shown in the figure in next page, where A = {household has a cat}, B = {household has a dog}. Hint: The challenge presented by this example is that it provides only the relative sizes of the subpopulations of interest, i.e., only probabilities instead of the actual sizes. To overcome this, think of the entire population of households as consisting of 100 households.

7 A-B A B B-A Figure: Probabilities for having a cat or a dog.

8 The Multiplication Rule The conditional probability of the event A given that event B has occurred is denoted by P(A B) and equals P(A B) = P(A B), provided P(B) > 0 P(B) The definition of P(A B) yields the formulas: P(A B) = P(A B)P(B) or P(A B) = P(B A)P(A) which which known as the multiplication rule. The rule extends to more than two events. A version with three events is: P(A B C) = P(A)P(B A)P(C A B)

9 Examples using the Multiplication Rule 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. What is the probability that a randomly selected seed came from supplier A and will germinate? Solution: Let A = {seed comes from supplier A} and G = {seed will germinate}. By the multiplication rule, P(A G) = P(G A)P(A) = = 0.2. Three players are dealt a card in succession. What is the probability that the 1st gets an ace, the 2nd gets a king, and the 3rd gets a queen? Answer: P(A B C) = P(A)P(B A)P(C A B) =

10 Of the customers entering a department store 30% are men and 70% are women. The probability a male shopper will spend more than $50 is 0.4, and the corresponding probability for a female shopper is 0.6. The probability that at least one of the items purchased is returned is 0.1 for male shoppers and 0.15 for female shoppers. Find the probability that the next customer to enter the department store is a woman who will spend more than $50 on items that will not be returned. Solution: With A = {next customer is female}, B = {customer spends >$50} and C = {no item is returned}, P(A B C) = P(A)P(B A)P(C A B) = =

11 Tree Diagrams The multiplication rule typically applies in situations where the events whose intersection we wish to compute are associated with different stages of an experiment. In the experiment in the department store example there are three stages: a) record the customer s gender, b) record how much the customer spends, and c) record whether any of the items purchased is returned. A tree diagram displays all outcomes of the experiments as sequences of branches leading from the start on the left to one of the end points on the right. The tree diagram for the department store experiment is shown next.

12 0.3 M > 50 < R R c R R c 0.7 W < 50 > R R c R R c Figure: Tree diagram for the department store experiment

13 More on tree diagrams By the general product rule, the department store experiment has = 8 different outcomes, which correspond to the 8 sequences of branches leading to the 8 end points on the right. The first group of branches list the probabilities of each outcome in the first stage. For example, 0.3 and 0.7 are the probabilities for the entering customer to be male and female, respectively. The remaining branches list conditional probabilities. The probability of each outcome is the product of the probabilities listed on the corresponding sequence of branches. Identify the sequences of branches for the outcome customer is female who spends >$50 on items that are not returned, and compute the probability of this outcome.

14 The Law of Total Probability Let the events A 1, A 2..., A k form a partition of the sample space S (they are disjoint and their union is S), and let B denote an event whose probability we want to calculate. B A A A A If we know P(B A j ) and P(A j ) for all j = 1, 2,..., k, the Law of Total Probability states that P(B) = P(A 1 )P(B A 1 ) + + P(A k )P(B A k )

15 Examples using the Law of Total Probability 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. What is the probability that a randomly selected seed will germinate? Solution: Let A = {seed comes from supplier A}, B = {seed comes from supplier B} and G = {seed will germinate}. The events A and B form a partition of the sample space. By the Law of Total Probability P(G) = P(A)P(G A) + P(B)P(G B) = = 0.65.

16 Two players are dealt a card in succession. What is the probability that the 2nd gets a king? If the player with a king wins a prize, does it matter which player is the first? Answer: Set A 1 = {1st player gets a king}, A 2 = A c 1 and B = {2nd player gets a king}. The answer is P(B) = 4/52. It does not matter who goes first because the order does not change the probability of getting a king.

17 Consider rolling two dice repeatedly and recording their sum. Find the probability of B = {5 happens before 7}. Hint: Set A 1 ={sum of 1st roll is 5}, A 2 ={sum of 1st roll is 7}, A 3 = {sum of 1st roll is neither 5 nor 7}. Then P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) + P(B A 3 )P(A 3 ) = P(A 1 ) P(B)P(A 3 ). (Why?) Use the pmf for the sum of two die rolls (derived before and reshown bellow) to find P(A 1 ) and P(A 3 ), and solve for P(B). x p(x)

18 Two consecutive traffic lights have been synchronized to make a run of green lights more likely. In particular, if a driver finds the first light to be red, the second light will be green with probability 0.9, and if the first light is green the second will be green with probability 0.7. The probability of finding the first light green is 0.6. Find the probability of B = {a driver finds the 2nd traffic light green}. Solution. Let A = {a driver finds the 1st traffic light green}. Because A and A c constitute a partition of the sample space, by the Law of Total Probability P(B) = P(A)P(B A) + P(A c )P(B A c ) = = = 0.78.

19 In the context of the previous example, construct a tree diagram for the experiment which records whether or not a driver finds each of the two traffic lights green, and recalculate the probability of the event B. Solution. The tree diagram is shown in the next page. It has 2 2 = 4 outcomes. The event B is composite and consists of the two outcomes corresponding to the sequences of branches that end with a G. Thus, P(B) is the sum of the probabilities of these two outcomes, i.e., P(B) = = 0.78.

20 0.4 R R G 0.6 G R G Figure: Tree diagram for the traffic light experiment

21 Bayes Theorem Consider events B and A 1,..., A k as in the Law of Total Probability. Now, however, we ask a different question: Given that B has occurred, what is the probability that a particular A j has occurred? The answer is provided by the Bayes theorem: ( P(A j B) = P(A ) j B) P(A j )P(B A j ) = P(B) k j=1 P(A i)p(b A i ) where the parenthetic expression serves as the intermediate step needed for the proof of the theorem.

22 Examples using Bayes Theorem 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. Given that a randomly selected seed germinated, what is the probability that it came from supplier A? Answer: P(A G) = P(A)P(G A) P(A)P(G A) + P(B)P(G B) = = 0.31.

23 Two players are dealt a card in succession. Given that the 2nd player got an ace, what is the probability that the 1st got an ace? Solution: Set A 1 = {1st player gets an ace}, A 2 = A c 1 and B = {2nd player gets an ace}. By Bayes Theorem, P(A 1 B) = = P(A 1 )P(B A 1 ) P(A 1 )P(B A 1 ) + P(A 2 )P(B A 2 ) (4/52)(3/51) (4/52)(3/51) + (48/52)(4/51) = 3 51.

24 Seventy percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator, whereas 10% of the aircraft not discovered have such a locator. Suppose a light aircraft has disappeared. (A tree diagram would help verify the below answers.) 1 What is the probability that it has an emergency locator and it will not be discovered? Answer: = 0.03 (use the multiplication rule). 2 What is the probability that it has an emergency locator? Answer: = 0.45 (use the Law of Total Probability). 3 If it has an emergency locator, what is the probability that it will not be discovered? Answer: 0.03/0.45 (use Bayes Theorem).

25 Probability of an Intersection The formula for the probability of A B yields P(A B) = P(A) + P(B) P(A B). A simpler formula is possible if A and B are independent: For independent events, P(A B) = P(A)P(B). The above formula also serves as the definition of independent events. The empty set is independent from any other event.

26 Independent events arise in connection with independent experiments or independent repetitions of the same experiment. Two experiments are independent if there is no mechanism through which the outcome of one experiment will influence the outcome of the other. A die is rolled twice. Are the two rolls independent? Two cards are drawn without replacement from a deck of cards. Are the two draws independent? In two independent repetitions of an experiment, any event associated with the first repetition will be independent of any event associated with the second repetition.

27 Toss a coin twice and set A 1 = {H in toss 1}, A 2 = {H in toss 2}. Find the probability of two heads. Solution. Since the two tosses are independent, P(A 1 A 2 ) = P(A 1 )P(A 2 ) = = 1 4. Alternatively, the independence of the events A 1 and A 2 can be shown from the fact that the 4 outcomes of two coin tosses are equally likely. Indeed, P(A 1 A 2 ) = 1 4 = = P(A 1)P(A 2 ), which implies that the two events are independent.

28 (Fair coin toss with an unfair coin) A coin results in H with probability p (e.g., p = 0.3). Flip this coin twice. If the outcome is (H,H) or (T,T) ignore the flips and flip again twice. Repeat until the outcome of the two flips is either (H,T) or (T,H). In the first case you say you got tails, and in the second case you say you got heads. Prove that these events of heads and tails are equally likely. Solution: Ignoring the outcomes (H,H) and (T,T), is equivalent to conditioning on the the event B = {(H, T ), (T, H)}. Thus, P((T, H) B) = = P((T, H) B) P(B) = P((T, H)) P(B) (1 p)p p(1 p) + (1 p)p = 0.5.

29 (Efron s Dice) Consider again Efron s dice, i.e., Die A: four 4s and two 0s; Die B: six 3s; Die C: four 2s and two 6s; Die D: three 5 s and three 1 s. Find the probabilities that A > B, B > C, C > D, and D > A using the properties of probability and the concept of independence. Solution (partial): Note that P(C > D) equals P(C = 2 and D = 1) + P(C = 6 and D = 5 or 1) = P(C = 2)P(D = 1) + P(C = 6)P(D = 5 or 1) = = 2 3.

30 Events can be independent even if they are do not arise in connection with independent experiments. A card is drawn at random from a deck of 52 cards. Show that the events A = {the card is a five} and B = {the card is a spade} are independent. If A and B are independent, then so are A c and B. If a card is drawn at random, the events A c = {the card is not a five} and B = {the card is a spade} are independent. The sample space S is independent from any other event.

31 If A and B are independent, we have P(A B) = P(A) and P(B A) = P(B). Conversely, any of the above relations implies that A and B are independent. Read Example 2.6-4, p. 92. Being independent should not be confused with being disjoint. In fact, if A and B are disjoint then they are not independent unless one, or both, of them equals the empty set.

32 Independence of Multiple Events Definition The events A 1,..., A n are mutually independent if P(A i1 A i2... A ik ) = P(A i1 )P(A i2 )... P(A ik ) for any sub-collection A i1,..., A ik of k events chosen from A 1,..., A n All conditions in the definition are needed because, for example, the equality P(A B C) = P(A)P(B)P(C) does not imply that A, B, C are independent. This is demonstrated in the following example.

33 Consider rolling a die and define the events A = {1, 2, 3}, B = {3, 4, 5}, C = {1, 2, 3, 4}. Verify that P(A B C) = P(A)P(B)P(C), but that A, B are not independent (and thus A, B, C are not mutually independent). Solution: First, since A B C = {3}, it follows that P(A B C) = 1 6 = P(A)P(B)P(C) = Next, A B = {3}, so P(A B) = 1 6 P(A)P(B) =

34 Independence is often assumed as it facilitates the computation of probabilities. At 25 o C, 20% of a type of diodes have efficiency below 0.3mW/mA. Five such diodes are selected at random. Find: (a) Only the 2nd diode has efficiency below 0.3 at 25 o C. (b) Exactly one has efficiency below 0.3 at 25 o C. (c) Exactly two has efficiency below 0.3 at 25 o C. Solution: (a) (0.2)(0.8 4 ) = (Why?) (b) = (Why?) (c) ( 5 2) = (Why?) What is the probability of two heads in 5 flips of a coin?

35 The three components of the series system shown in the figure fail with probabilities p 1 = 0.1, p 2 = 0.15 and p 3 = 0.2, respectively, independently of each other. What is the probability the system will fail? Figure: Components connected in series Answer: Assume the components fail independently. Then, P(system fails) = 1 P(system does not fail) = =

36 The three components of the parallel system shown in figure function with probabilities p 1 = 0.9, p 2 = 0.85 and p 3 = 0.8, respectively, independently of each other. What is the probability the system functions? Answer: Assume the components function independently. Then, P(system functions) = 1 P(system does not function) = =

37 1 2 3 Figure: Components connected in parallel

38 Read Example 2.6-9, p. 95

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 3 Probability Contents 1. Events, Sample Spaces, and Probability 2. Unions and Intersections 3. Complementary Events 4. The Additive Rule and Mutually Exclusive

More information

STAT 516: Basic Probability and its Applications

STAT 516: Basic Probability and its Applications Lecture 3: Conditional Probability and Independence Prof. Michael September 29, 2015 Motivating Example Experiment ξ consists of rolling a fair die twice; A = { the first roll is 6 } amd B = { the sum

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Topic 2 Probability. Basic probability Conditional probability and independence Bayes rule Basic reliability

Topic 2 Probability. Basic probability Conditional probability and independence Bayes rule Basic reliability Topic 2 Probability Basic probability Conditional probability and independence Bayes rule Basic reliability Random process: a process whose outcome can not be predicted with certainty Examples: rolling

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter One Jesse Crawford Department of Mathematics Tarleton State University (Tarleton State University) Chapter One Notes 1 / 71 Outline 1 A Sketch of Probability and

More information

Chapter 2 PROBABILITY SAMPLE SPACE

Chapter 2 PROBABILITY SAMPLE SPACE Chapter 2 PROBABILITY Key words: Sample space, sample point, tree diagram, events, complement, union and intersection of an event, mutually exclusive events; Counting techniques: multiplication rule, permutation,

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples:

Determining Probabilities. Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Determining Probabilities Product Rule for Ordered Pairs/k-Tuples: Proposition If the first element of object of an ordered pair can be

More information

Discrete Random Variables (1) Solutions

Discrete Random Variables (1) Solutions STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 06 Néhémy Lim Discrete Random Variables ( Solutions Problem. The probability mass function p X of some discrete real-valued random variable X is given

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

Chapter 7 Wednesday, May 26th

Chapter 7 Wednesday, May 26th Chapter 7 Wednesday, May 26 th Random event A random event is an event that the outcome is unpredictable. Example: There are 45 students in this class. What is the probability that if I select one student,

More information

Lecture 4. Selected material from: Ch. 6 Probability

Lecture 4. Selected material from: Ch. 6 Probability Lecture 4 Selected material from: Ch. 6 Probability Example: Music preferences F M Suppose you want to know what types of CD s males and females are more likely to buy. The CD s are classified as Classical,

More information

3 PROBABILITY TOPICS

3 PROBABILITY TOPICS Chapter 3 Probability Topics 135 3 PROBABILITY TOPICS Figure 3.1 Meteor showers are rare, but the probability of them occurring can be calculated. (credit: Navicore/flickr) Introduction It is often necessary

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e

Chapter 5 : Probability. Exercise Sheet. SHilal. 1 P a g e 1 P a g e experiment ( observing / measuring ) outcomes = results sample space = set of all outcomes events = subset of outcomes If we collect all outcomes we are forming a sample space If we collect some

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

CHAPTER 3 PROBABILITY: EVENTS AND PROBABILITIES

CHAPTER 3 PROBABILITY: EVENTS AND PROBABILITIES CHAPTER 3 PROBABILITY: EVENTS AND PROBABILITIES PROBABILITY: A probability is a number between 0 and 1, inclusive, that states the long-run relative frequency, likelihood, or chance that an outcome will

More information

Probability & Random Variables

Probability & Random Variables & Random Variables Probability Probability theory is the branch of math that deals with random events, processes, and variables What does randomness mean to you? How would you define probability in your

More information

Introduction and basic definitions

Introduction and basic definitions Chapter 1 Introduction and basic definitions 1.1 Sample space, events, elementary probability Exercise 1.1 Prove that P( ) = 0. Solution of Exercise 1.1 : Events S (where S is the sample space) and are

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

Basic Concepts of Probability

Basic Concepts of Probability Probability Probability theory is the branch of math that deals with unpredictable or random events Probability is used to describe how likely a particular outcome is in a random event the probability

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X.

4. Suppose that we roll two die and let X be equal to the maximum of the two rolls. Find P (X {1, 3, 5}) and draw the PMF for X. Math 10B with Professor Stankova Worksheet, Midterm #2; Wednesday, 3/21/2018 GSI name: Roy Zhao 1 Problems 1.1 Bayes Theorem 1. Suppose a test is 99% accurate and 1% of people have a disease. What is the

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Basic Concepts of Probability

Basic Concepts of Probability Probability Probability theory is the branch of math that deals with random events Probability is used to describe how likely a particular outcome is in a random event the probability of obtaining heads

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

CHAPTER 3 PROBABILITY TOPICS

CHAPTER 3 PROBABILITY TOPICS CHAPTER 3 PROBABILITY TOPICS 1. Terminology In this chapter, we are interested in the probability of a particular event occurring when we conduct an experiment. The sample space of an experiment is the

More information

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD

LECTURE NOTES by DR. J.S.V.R. KRISHNA PRASAD .0 Introduction: The theory of probability has its origin in the games of chance related to gambling such as tossing of a coin, throwing of a die, drawing cards from a pack of cards etc. Jerame Cardon,

More information

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail}

The enumeration of all possible outcomes of an experiment is called the sample space, denoted S. E.g.: S={head, tail} Random Experiment In random experiments, the result is unpredictable, unknown prior to its conduct, and can be one of several choices. Examples: The Experiment of tossing a coin (head, tail) The Experiment

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 4: Sequential experiments Andrew McGregor University of Massachusetts Last Compiled: February 2, 2017 Outline 1 Recap 2 Sequential Experiments 3 Total Probability

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

4. Conditional Probability

4. Conditional Probability 1 of 13 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 4. Conditional Probability Definitions and Interpretations The Basic Definition As usual, we start with a random experiment

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias

Announcements. Lecture 5: Probability. Dangling threads from last week: Mean vs. median. Dangling threads from last week: Sampling bias Recap Announcements Lecture 5: Statistics 101 Mine Çetinkaya-Rundel September 13, 2011 HW1 due TA hours Thursday - Sunday 4pm - 9pm at Old Chem 211A If you added the class last week please make sure to

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019

Week 2. Section Texas A& M University. Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Week 2 Section 1.2-1.4 Texas A& M University Department of Mathematics Texas A& M University, College Station 22 January-24 January 2019 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week2 1

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment.

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment. Chapter 7 Probability 7.1 xperiments, Sample Spaces and vents Start with some definitions we will need in our study of probability. An XPRIMN is an activity with an observable result. ossing coins, rolling

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory

Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory Stat 225 Week 1, 8/20/12-8/24/12, Notes: Set Theory The Fall 2012 Stat 225 T.A.s September 7, 2012 The material in this handout is intended to cover general set theory topics. Information includes (but

More information

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru Venkateswara Rao, Ph.D. STA 2023 Fall 2016 Venkat Mu ALL THE CONTENT IN THESE SOLUTIONS PRESENTED IN BLUE AND BLACK

More information

AP Statistics Ch 6 Probability: The Study of Randomness

AP Statistics Ch 6 Probability: The Study of Randomness Ch 6.1 The Idea of Probability Chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run. We call a phenomenon random if individual outcomes are uncertain

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS

STA 2023 EXAM-2 Practice Problems. Ven Mudunuru. From Chapters 4, 5, & Partly 6. With SOLUTIONS STA 2023 EXAM-2 Practice Problems From Chapters 4, 5, & Partly 6 With SOLUTIONS Mudunuru, Venkateswara Rao STA 2023 Spring 2016 1 1. A committee of 5 persons is to be formed from 6 men and 4 women. What

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Conditional probability

Conditional probability CHAPTER 4 Conditional probability 4.1. Introduction Suppose there are 200 men, of which 100 are smokers, and 100 women, of which 20 are smokers. What is the probability that a person chosen at random will

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Topic 5: Probability. 5.4 Combined Events and Conditional Probability Paper 1

Topic 5: Probability. 5.4 Combined Events and Conditional Probability Paper 1 Topic 5: Probability Standard Level 5.4 Combined Events and Conditional Probability Paper 1 1. In a group of 16 students, 12 take art and 8 take music. One student takes neither art nor music. The Venn

More information

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.)

Notes 1 Autumn Sample space, events. S is the number of elements in the set S.) MAS 108 Probability I Notes 1 Autumn 2005 Sample space, events The general setting is: We perform an experiment which can have a number of different outcomes. The sample space is the set of all possible

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails.

Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails. Example: Suppose we toss a quarter and observe whether it falls heads or tails, recording the result as 1 for heads and 0 for tails. (In Mathematical language, the result of our toss is a random variable,

More information

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM

TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM TOPIC 12 PROBABILITY SCHEMATIC DIAGRAM Topic Concepts Degree of Importance References NCERT Book Vol. II Probability (i) Conditional Probability *** Article 1.2 and 1.2.1 Solved Examples 1 to 6 Q. Nos

More information

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178

EE 178 Lecture Notes 0 Course Introduction. About EE178. About Probability. Course Goals. Course Topics. Lecture Notes EE 178 EE 178 Lecture Notes 0 Course Introduction About EE178 About Probability Course Goals Course Topics Lecture Notes EE 178: Course Introduction Page 0 1 EE 178 EE 178 provides an introduction to probabilistic

More information

Probability and Sample space

Probability and Sample space Probability and Sample space We call a phenomenon random if individual outcomes are uncertain but there is a regular distribution of outcomes in a large number of repetitions. The probability of any outcome

More information

PROBABILITY.

PROBABILITY. PROBABILITY PROBABILITY(Basic Terminology) Random Experiment: If in each trial of an experiment conducted under identical conditions, the outcome is not unique, but may be any one of the possible outcomes,

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events

Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Lecture 8: Conditional probability I: definition, independence, the tree method, sampling, chain rule for independent events Discrete Structures II (Summer 2018) Rutgers University Instructor: Abhishek

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Conditional Probability. CS231 Dianna Xu

Conditional Probability. CS231 Dianna Xu Conditional Probability CS231 Dianna Xu 1 Boy or Girl? A couple has two children, one of them is a girl. What is the probability that the other one is also a girl? Assuming 50/50 chances of conceiving

More information

Lecture 2: Probability, conditional probability, and independence

Lecture 2: Probability, conditional probability, and independence Lecture 2: Probability, conditional probability, and independence Theorem 1.2.6. Let S = {s 1,s 2,...} and F be all subsets of S. Let p 1,p 2,... be nonnegative numbers that sum to 1. The following defines

More information

Chapter 3 Conditional Probability and Independence. Wen-Guey Tzeng Computer Science Department National Chiao Tung University

Chapter 3 Conditional Probability and Independence. Wen-Guey Tzeng Computer Science Department National Chiao Tung University Chapter 3 Conditional Probability and Independence Wen-Guey Tzeng Computer Science Department National Chiao Tung University Conditional probability P(A B) = the probability of event A given the occurrence

More information

Probability, Conditional Probability and Bayes Rule IE231 - Lecture Notes 3 Mar 6, 2018

Probability, Conditional Probability and Bayes Rule IE231 - Lecture Notes 3 Mar 6, 2018 Probability, Conditional Probability and Bayes Rule IE31 - Lecture Notes 3 Mar 6, 018 #Introduction Let s recall some probability concepts. Probability is the quantification of uncertainty. For instance

More information

Probability Notes (A) , Fall 2010

Probability Notes (A) , Fall 2010 Probability Notes (A) 18.310, Fall 2010 We are going to be spending around four lectures on probability theory this year. These notes cover approximately the first three lectures on it. Probability theory

More information

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch

Monty Hall Puzzle. Draw a tree diagram of possible choices (a possibility tree ) One for each strategy switch or no-switch Monty Hall Puzzle Example: You are asked to select one of the three doors to open. There is a large prize behind one of the doors and if you select that door, you win the prize. After you select a door,

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

Homework 2. P(A 1 A 2 B) = P((A 1 A 2 ) B) P(B) From the distributive property of unions and intersections we have

Homework 2. P(A 1 A 2 B) = P((A 1 A 2 ) B) P(B) From the distributive property of unions and intersections we have Homework 2 Readings: Sections 2.1, 2.2, 2.4, 2.5 A note: in Section 2.2, we have not talked yet about arbitrary sample spaces and the axioms of probability, instead we have focused on the case of a finite

More information

Topic 3: Introduction to Probability

Topic 3: Introduction to Probability Topic 3: Introduction to Probability 1 Contents 1. Introduction 2. Simple Definitions 3. Types of Probability 4. Theorems of Probability 5. Probabilities under conditions of statistically independent events

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

Today we ll discuss ways to learn how to think about events that are influenced by chance.

Today we ll discuss ways to learn how to think about events that are influenced by chance. Overview Today we ll discuss ways to learn how to think about events that are influenced by chance. Basic probability: cards, coins and dice Definitions and rules: mutually exclusive events and independent

More information

Probabilistic models

Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became the definitive formulation

More information

Basic Statistics and Probability Chapter 3: Probability

Basic Statistics and Probability Chapter 3: Probability Basic Statistics and Probability Chapter 3: Probability Events, Sample Spaces and Probability Unions and Intersections Complementary Events Additive Rule. Mutually Exclusive Events Conditional Probability

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Chapter 4: Experiment, outcomes, and sample space

DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS QM 120. Chapter 4: Experiment, outcomes, and sample space DEPARTMENT OF QUANTITATIVE METHODS & INFORMATION SYSTEMS Introduction to Business Statistics QM 120 Chapter 4 Spring 2008 Dr. Mohammad Zainal Chapter 4: Experiment, outcomes, and sample space 2 Probability

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information