Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen

Size: px
Start display at page:

Download "Modeling of S-N Bond Breaking in an Aromatic Sulfilimine. By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen"

Transcription

1 Modeling of S-N Bond Breaking in an Aromatic Sulfilimine By Jacob Brunsvold & Katrina Hanson Advisor: Stacey Stoffregen

2 Outline! Background Photochemical Reaction! Introduction to Photochemistry and Quantum Yield! Wet Chemistry Background! Similar Photochemical Reactions! Computational Analogs! Proposed Mechanism for Sulfoxide Deoxygenation! Computational Details for Modeling Sulfilimine Dissociation! Hartree-Fock Results! CASSCF Results! Summary of Results and Conclusions

3 Deoxygenation of Aromatic Sulfoxides O S hν hν S + O( 3 P) Φ < 0.01 Upon photolysis, dibenzothiophene-s-oxide (DBTO) deoxygenates with a low quantum yield. Chemical trapping studies were consistent with formation of O( 3 P), suggesting involvement of 3 DBTO. An understanding of the reaction mechanism is currently being sought. 2p x 2p y 2p z 2s Ground State Electron Configuration J. Org. Chem., 2004, 69 (24), pp

4 Photochemistry Energy Singlet Products Singlet Excitations (light absorbed) Second Excited Singlet (S 2 ) Rxn First Excited Singlet (S 1 ) Fluorescence (light emitted) Intersystem Crossing (ISC) (heat emitted) After the molecule has been excited to the first or second lowest excited singlet state via light absorption, there are many potential pathways. Second Lowest Energy Triplet Excited State (T 2 ) Phosphorescence (light emitted) Lowest Energy Triplet Excited State (T 1 ) Rxn Triplet Products Ground State S 0

5 Quantum Yield hν φ = # of observed events # of photons supplied J. Org. Chem., 2008, 73 (12), pp

6 Quantum Yield hν φ DBT + O3P formation = J. Org. Chem., 2008, 73 (12), pp

7 Which excited state is the Precursor to O( 3 P)? Atomic oxygen, the observed product, is a triplet in the ground state. Since the molecule under investigation excites from a single ground state to a singlet excited state, reactivity must be accompanied by intersystem crossing. Difficulty in explaining product formation occurs because intersystem crossing to the spectroscopic triplet yields an excited state that is lower in energy than the product. The energy required to break the S-O bond once the spectroscopic triplet has been reached exceeds the energy potential of the molecule. S 1 T 1 S 0 ISC to the spectroscopic triplet = no deoxygenation

8 Deoxygenation Observed with Higher Quantum Yields An increased quantum yield was observed with the introduction of one or more halogen substituents to the benzene ring. J. Org. Chem., 2004, 69 (24), pp

9 Deoxygenation Observed with Higher Quantum Yields Replacing the sulfur with a more massive selenium corresponded to an even greater increase in quantum yield. Heavy atoms increase the probability of intersystem crossing events, supporting further the belief that an ISC event is part of the mechanism. J. Org. Chem., 2008, 73 (12), pp

10 Computational Modeling of Sulfoxide Deoxygenation! Deoxygenation was computationally modeled to identify a reaction reasonable mechanism. O S Thiophene-S-oxide! Thiophene-S-oxide was chosen for computational analysis because of its likeness to the aromatic sulfoxides previously studied while maintaining minimal size, reducing computational expense and increasing efficiency.! The ground and lowest four excited states were optimized at fixed S-O bond lengths using CASSCF and MRMP2 calculations to mimic deoxygenation. J. Org. Chem., 2008, 73 (12), pp

11 Energy Surface of Thiophene Oxide Deoxygenation 1A = Second Singlet State 1A = First Singlet State 3A = Second Triplet State 3A = First Triplet State 1A = Ground State (singlet) Photochem. Photobiol. Sci., 2014, (13),

12 Proposed Mechanism of Thiophene Oxide Deoxygenation Excitation into a singlet state, followed by intersystem crossing into the 3A phantom state, provides accessibility to triplet atomic oxygen and thiophene. Photochem. Photobiol. Sci., 2014, (13),

13 Photochemistry Proposed Mechanism for Aromatic Sulfoxide and Selenoxide Deoxygenation Note that the triplet state depicted in the mechanism is T2, a phantom triplet state, not the spectroscopic (T1) state. As previously mentioned, the spectroscopic state is too low in energy to explain the breaking of the S-O bond and the consequent formation of the triplet product.

14 Generation of Other Reactive Intermediates hν hν hν The same dissociation photochemistry is seen with aromatic sulfilimines and sulfonium ylides.

15 Molecule Under Investigation H N S 1H-1λ4-thiophen-1-imine The molecule above was chosen for computational analysis because of its likeness to the aromatic sulifilmines previously studied and will be used to ascertain whether a mechanism similar to that proposed for thiophene-s-oxide is reasonable for sulfilimines.

16 Computational Details! Programs : GAMESS and MacMolPlt! 6-31G(d,p) basis set! Cs symmetry maintained! Hessians confirmations output file

17 Energy Minimization of a Structure Energy Iteration

18 S-N Bond Constraints 1.58 Å 1.88 Å 3.58 Å

19 180 HF/6-31 G (d,p) Optimizations of NH-Thiophene Hartree-Fock Relative Energy Plot Energy Relative to Ground State (kcal/mol) NH-thiophene Ground State NH-thiophene Triplet Excited State S-N Bond Length (Angstroms)

20 CASSCF Calculations! Geometry NH-thiophene re-optimized using CASSCF method! Coordinates and orbitals of HF optimization were the starting point for the CASSCF calculations.! The initial optimization missing the C-Sσ* orbital! Orbitals reordered to include the missing orbital! Last calculation had all expected orbitals! Bond constrained calculations pending! Generating potential energy plot

21 Active Space N-S σ N-H σ C-S σ A C-S σ A S-LP N-LP N-LP C-C π A C-C π A N-S σ* N-H σ* C-S σ* A C-S σ* A C-C π* A C-C π* A The orbitals selected for the active space were included because they are expected to experience the most change during the bond breaking process.

22 Active Space Virtual Orbitals Active Space Active Space All electron configurations are examined for the orbitals in the active space. Those in the core are considered to be fully occupied, while those in the virtual orbitals are considered to be empty. Core Orbitals

23 CASSCF Optimizations of NH-Thiophene CASSCF Relative Energy Plot 5 Energy Relative to Ground State (kcal/mol) S-N Bond length (Angstroms) NH-thiophene Gound State

24 Summary of Results! Optimized ground state and one triplet excited state of NH-thiophene at HF/6-31G(d,p)! Using coordinates from HF calculations as starting point to generate the potential energy surface for NH-Thiophene at CASSCF/6-31G(d,p)! Will identify several of the lowest excited states and generate the potential energy curve using higher levels of computational theory and larger basis sets! Will compare results for sulfilimine dissociation with model of sulfoxide deoxygenation

25 Acknowledgements! Advisor: Dr. Stacey Stoffregen! Dr. McLaughlin! Funding: National Science Foundation! Midwest Undergraduate Computational Chemistry Cluster! The University of Wisconsin- River Falls Chemistry Department

Modeling of S N Bond Breaking of an Aroma4c Sulfilimine. By Jacob Brunsvold Advisor: Dr Stacey Stoffregen

Modeling of S N Bond Breaking of an Aroma4c Sulfilimine. By Jacob Brunsvold Advisor: Dr Stacey Stoffregen Modeling of S N Bond Breaking of an Aroma4c Sulfilimine By Jacob Brunsvold Advisor: Dr Stacey Stoffregen Deoxygena)on of Aroma)c Sulfoxides O S hν S + O( 3 P) Φ < 0.01 upon photolysis, dibenzothiophene

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization

Advanced Organic Chemistry Chm 512/412 Spring Handout I Photochemistry Part 1. Photophysical Processes Quenching Alkene cis-trans Isomerization Advanced rganic Chemistry Chm 512/412 Spring 2010 Handout I Photochemistry Part 1 Photophysical Processes Quenching Alkene cis-trans Isomerization Importance of Photochemistry/Photophysics rganic Synthesis

More information

1. Photoreduction of Benzophenone in 2-Propanol

1. Photoreduction of Benzophenone in 2-Propanol 1. Photoreduction of Benzophenone in 2-Propanol Topic: photochemistry, photophysics, kinetics, physical-organic chemistry Level: undergraduate physical chemistry Time: 2 x 2 hours (separated by ~24 hours)

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light) Photochemistry Introduction ENERGY Heat Electricity Electromagnetic irradiation (light) Vision: Triggered by a photochemical reaction Is red in the dark? The answer must be NO - Since what we see as colour

More information

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper)

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper) Molecular Luminescence Absorption Instrumentation light source I 0 sample I detector light source Rotating mirror (beam chopper) motor b sample I detector reference I 0 UV absorption spectrum lg ε A =

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Organic Molecules, Photoredox, and. Catalysis

Organic Molecules, Photoredox, and. Catalysis Organic Molecules, Photoredox, and Catalysis 1 What is Photoredox Catalysis 2 Transition Metal vs Organic Photoredox Transition Metal Catalysts Organic Catalyst Reprinted (2017) with permission from (Wangelin,

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Generation of light Light sources

Generation of light Light sources Generation of light Light sources Black-body radiation Luminescence Luminescence Laser Repetition Types of energy states in atoms and molecules are independent (not coupled) Energy states are non-continuous,

More information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of 1 Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of coordination compounds of transition metals involve transitions

More information

Problem 1. Anthracene and a chiral derivative of anthracene

Problem 1. Anthracene and a chiral derivative of anthracene Molecular Photophysics 330 Physical rganic Chemistry 6C50 Thursday November 5 004, 4.00-7.00 h This exam consists of four problems that have an equal weight in the final score Most problems are composed

More information

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis)

Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) Optical Spectroscopy 1 1. Absorption spectroscopy (UV/vis) 2 2. Circular dichroism (optical activity) CD / ORD 3 3. Fluorescence spectroscopy and energy transfer Electromagnetic Spectrum Electronic Molecular

More information

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G Q1: Display all the MOs for N2 in your report and classify each one of them as bonding, antibonding or non-bonding, and say whether the symmetry of the orbital is σ or π. Sketch a molecular orbital diagram

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Sergei D. Plechovich, Sergei V. Zelentsov, Dmitry A. Fomichev, Dmitry V. Ovsyannikov, Nikolai V. Kryukov.

Sergei D. Plechovich, Sergei V. Zelentsov, Dmitry A. Fomichev, Dmitry V. Ovsyannikov, Nikolai V. Kryukov. The mechanism of the photochemical oxidation of substrates of different nature by nitro compounds Sergei D. Plechovich, Sergei V. Zelentsov, Dmitry A. Fomichev, Dmitry V. Ovsyannikov, Nikolai V. Kryukov

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Authors: Jay A. Kroll 1,2,#, Benjamin N. Frandsen 3,#, Henrik G. Kjaergaard 3,*, and Veronica Vaida 1,2,*

More information

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of

6.8 The HOMO and LUMO Concept of Electronic Transitions The Selection Rules for Electronic Transitions Physical Properties of Contents Part I Pericyclic Reactions 1 General Aspects of Pericyclic Reactions... 3 1.1 Introduction... 3 1.2 Molecular Orbitals and Their Symmetry Properties.... 4 1.3 Classification of Pericyclic Reactions...

More information

1051-2nd Chem Exam_ (A)

1051-2nd Chem Exam_ (A) 1051-2nd Chem Exam_1051207(A) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In which of the molecules below is the carbon-carbon distance the

More information

1051-2nd Chem Exam_ (B)

1051-2nd Chem Exam_ (B) 1051-2nd Chem Exam_1051207(B) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) have the lowest first ionization energies of the groups listed. A)

More information

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions I. General Features of Electronic spectroscopy. A. Visible and ultraviolet photons excite electronic state transitions. ε photon = 120 to 1200

More information

one ν im: transition state saddle point

one ν im: transition state saddle point Hypothetical Potential Energy Surface Ethane conformations Hartree-Fock theory, basis set stationary points all ν s >0: minimum eclipsed one ν im: transition state saddle point multiple ν im: hilltop 1

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Singlet. Fluorescence Spectroscopy * LUMO

Singlet. Fluorescence Spectroscopy * LUMO Fluorescence Spectroscopy Light can be absorbed and re-emitted by matter luminescence (photo-luminescence). There are two types of luminescence, in this discussion: fluorescence and phosphorescence. A

More information

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds:

In the fourth problem set, you derived the MO diagrams for two complexes containing Cr-Cr bonds: Problem 1 (2 points) Part 1 a. Consider the following V III complexes: V(H2O)6 3+, VF6 3-, and VCl6 3-. The table below contains the energies corresponding to the two lowest spin-allowed d-d transitions

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise) Chemistry 2 Lecture 11 Electronic spectroscopy of polyatomic molecules Assumed knowledge For bound excited states, transitions to the individual vibrational levels of the excited state are observed with

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Roland Lindh Dept. of Chemistry Ångström The Theoretical Chemistry Programme

More information

Uppsala University. Degree Project E 30 credits

Uppsala University. Degree Project E 30 credits Uppsala University Department of Chemistry Ångström Degree Project E 30 credits Ab Initio Characterization of Conical Intersections Related to Chemiluminescence in Methylated 1,2-Dioxetanes June, 2017

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Chapter 11. Basics in spin-orbit couplings

Chapter 11. Basics in spin-orbit couplings 1- The Jablonski diagram (or the state diagram of diamagnetic molecules) 2- Various natures of excited states and basics in molecular orbitals 3- Vibronic coupling and the Franck-Condon term 4- Excited

More information

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36

CHEM Chapter 6. Basic Quantum Chemistry (Homework). WL36 CHEM 1411. Chapter 6. Basic Quantum Chemistry (Homework). WL36 1. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect. A) True B) False 2. A

More information

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing Chem 263 ct. 6, 2009 lectrophilic Substitution of Substituted Benzenes Resonance ffect Inductive ffect C=C, π system Single bonds, σ Strong Weak e - donating Activate Activate ortho and para directing

More information

SCH4U1 Atomic & Molecular Structure Test Review

SCH4U1 Atomic & Molecular Structure Test Review SCH4U1 Atomic & Molecular Structure Test Review 1. Which object(s) would you use to describe the shape of the 2p orbital? a. a dumb-bell b. a circle c. a sphere d. two perpendicular dumb-bells e. a doughnut

More information

O(3P) + C2H4 Potential Energy Surface: Study at the Multireference Level

O(3P) + C2H4 Potential Energy Surface: Study at the Multireference Level Chemistry Publications Chemistry 10-2009 O(3P) + C2H4 Potential Energy Surface: Study at the Multireference Level Aaron C. West Iowa State University, westac@iastate.edu Joshua S. Kretchmer University

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

Chapter 20: Identification of Compounds

Chapter 20: Identification of Compounds Chemists are frequently faced with the problem of identifying unknown compounds. Environmental scientists may have to identify pollutants in soils and water, synthetic chemists may want to confirm that

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products:

Exam (6 pts) Show which starting materials are used to produce the following Diels-Alder products: Exam 1 Name CHEM 212 1. (18 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

Figure 1: Transition State, Saddle Point, Reaction Pathway

Figure 1: Transition State, Saddle Point, Reaction Pathway Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Potential Energy Surfaces

More information

Singlet Oxygen. Laura Calvo Parra Denmark Group Meeting February 21, 2017

Singlet Oxygen. Laura Calvo Parra Denmark Group Meeting February 21, 2017 Singlet Oxygen Laura Calvo Parra Denmark Group Meeting February 21, 2017 Presentation Outline I. Introduction II. Electronic transitions III. Photosensitizers IV. Schenk-Ene reaction V. [4+2] and [2+2]

More information

Theoretical UV/VIS Spectroscopy

Theoretical UV/VIS Spectroscopy Theoretical UV/VIS Spectroscopy Why is a Ruby Red When Chromium Oxide is Green? How Does a Ruby Laser Work? Goals of this Exercise: - Calculation of the energy of electronically excited states - Understanding

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

General Considerations 1

General Considerations 1 General Considerations 1 Absorption or emission of electromagnetic radiation results in a permanent energy transfer from the emitting object or to the absorbing medium. This permanent energy transfer can

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Day 1 all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.

More information

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch

Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Introduction to Chemical Kinetics AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2017 Goals for today: Loose ends from last lecture Overview of Chemical Kinetics

More information

MULTIPLE EQUIVALENT STRUCTURES: RESONANCE

MULTIPLE EQUIVALENT STRUCTURES: RESONANCE MULTIPLE EQUIVALENT STRUCTURES: RESONANCE There is a rather large class of molecules for which one has no difficulty writing Lewis structures; in fact, we can write more than one valid structure for a

More information

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Physical Chemistry Lab II Name: KEY CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible. Constants: c = 3.00 10 8 m/s h = 6.63 10-34 J s 1 Hartree = 4.36 10-18

More information

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal Study of Ozone in Tribhuvan University, Kathmandu, Nepal Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal 1 Country of the Mt Everest 2 View of the Mt Everest 3 4 5

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College

Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination. Joseph Scanlon Ripon College Formation and Reactivity of Nitrenes with Silver Catalysts for C-H H Bond Amination Prasoon Saurabh, Kelcey Anderson, Joseph Scanlon Ripon College Why we want C-N C N bonds More chemically reactive than

More information

This is called a singlet or spin singlet, because the so called multiplicity, or number of possible orientations of the total spin, which is

This is called a singlet or spin singlet, because the so called multiplicity, or number of possible orientations of the total spin, which is 9. Open shell systems The derivation of Hartree-Fock equations (Chapter 7) was done for a special case of a closed shell systems. Closed shell means that each MO is occupied by two electrons with the opposite

More information

Fluorescence Excitation and Emission Fundamentals

Fluorescence Excitation and Emission Fundamentals Fluorescence Excitation and Emission Fundamentals Fluorescence is a member of the ubiquitous luminescence family of processes in which susceptible molecules emit light from electronically excited states

More information

E L E C T R O P H O S P H O R E S C E N C E

E L E C T R O P H O S P H O R E S C E N C E Organic LEDs part 4 E L E C T R O P H O S P H O R E S C E C E. OLED efficiency 2. Spin 3. Energy transfer 4. Organic phosphors 5. Singlet/triplet ratios 6. Phosphor sensitized fluorescence 7. Endothermic

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Chem 263 Oct. 12, 2010

Chem 263 Oct. 12, 2010 Chem 263 ct. 12, 2010 Alkyl Side Chain xidation Reaction If the carbon directly attached to the aromatic ring has > 1 hydrogen attached to it, it can be oxidized to the corresponding carboxylic acid with

More information

π* orbitals do not Molecular Orbitals for Homonuclear Diatomics

π* orbitals do not Molecular Orbitals for Homonuclear Diatomics Molecular Orbitals for Homonuclear Diatomics CHEM 2060 Lecture 26: MO theory contd L26-1 Molecular orbitals can be formed pictorially by looking at the way in which atomic orbitals overlap. Let s look

More information

16. Reactions of the Radical Pairs. The I P Step of the Paradigm

16. Reactions of the Radical Pairs. The I P Step of the Paradigm 16. Reactions of the Radical Pairs. The I P Step of the Paradigm Let us consider the product forming step in the general photochemical paradigm, i.e., the I P process shown in Figure 1. From the discussion

More information

5.4. Electronic structure of water

5.4. Electronic structure of water 5.4. Electronic structure of water Water belongs to C 2v point group, we have discussed the corresponding character table. Here it is again: C 2v E C 2 σ v (yz) σ v (xz) A 1 1 1 1 1 A 2 1 1-1 -1 B 1 1-1

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy. What determines the UV-Vis (i.e., electronic transitions) band appearance? Usually described by HOMO LUMO electron jump LUMO

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Lecture-17. Electron Transfer in Proteins I

Lecture-17. Electron Transfer in Proteins I Lecture-17 Electron Transfer in Proteins I The sun is main source of energy on the earth. The sun is consumed by the plant and cyanobacteria via photosynthesis process. In this process CO2 is fixed to

More information

Photodegradation of Sufonylurea Herbicides in Aqueous Solutions under Natural Sunlight

Photodegradation of Sufonylurea Herbicides in Aqueous Solutions under Natural Sunlight Photodegradation of ufonylurea Herbicides in Aqueous olutions under atural unlight John V. Headley 1, Jing-Long Du 1,2, Kerry M. Peru 1, Dena W. McMartin 2, Jane Elliot 1 and Allan J. Cessna 1 1 ational

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY

CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY CHAPTER 2 SPECTROSCOPY AND PHOTOCHEMISTRY Photochemical processes play a key role in the chemistry of the Earth s atmosphere. Most important atmospheric reactions begin with molecular photodissiciation,

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

Organic Photochemistry and Pericyclic Reactions Prof. N.D. Pradeep Singh Department of Chemistry Indian Institute of Technology Kharagpur

Organic Photochemistry and Pericyclic Reactions Prof. N.D. Pradeep Singh Department of Chemistry Indian Institute of Technology Kharagpur Organic Photochemistry and Pericyclic Reactions Prof. N.D. Pradeep Singh Department of Chemistry Indian Institute of Technology Kharagpur Lecture No. #01 Introduction to Organic Photochemistry (Refer Slide

More information

Sulfur and Selenium Ylide Bond Enthalpies

Sulfur and Selenium Ylide Bond Enthalpies Sulfur and Selenium Ylide Bond Enthalpies Stacey A. Stoffregen, Ryan D. McCulla, Robert Wilson, Samuel Cercone, Jennifer Miller, and William S. Jenks* Department of Chemistry, Iowa State UniVersity, Ames,

More information

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted.

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted. Chem 4502 Quantum Mechanics & Spectroscopy (Jason Goodpaster) Exam 4 Review Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chm September 2010

Chm September 2010 Inorganic Exam 1 Chm 451 21 September 2010 Name: Instructions. Always show your work where required for full credit. 1. (5 pts) The first ionization energies for the 2 nd row elements generally increase

More information

'GEOi-C GIST Exam-^0> A-GSE-P-DIB Serial No. CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200

'GEOi-C GIST Exam-^0> A-GSE-P-DIB Serial No. CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200 Serial No. 'GEOi-C GIST Exam-^0> 11148 A-GSE-P-DIB CHEMISTRY Paper II Time Allowed': Three Hours Maximum Marks : 200 INSTRUCTIONS Please read each o f the following instructions carefully before attempting

More information

Valence electron- Energy sublevel- Transition element- Period 10. Electronegativity- Alkaline earth metal- 11. Ion- Halogen- 12.

Valence electron- Energy sublevel- Transition element- Period 10. Electronegativity- Alkaline earth metal- 11. Ion- Halogen- 12. Mrs. Hilliard 1. Valence electron 2. Period 3. Alkaline earth metal 4. Halogen 5. Metalloid 6. Hund s Rule 7. Representative element 8. Energy sublevel 9. Transition element 10. Electronegativity 11. Ion

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

Differential Reactivity of Upper Triplet States Produces Wavelength-Dependent Two-Photon Photosensitization Using Rose Bengal

Differential Reactivity of Upper Triplet States Produces Wavelength-Dependent Two-Photon Photosensitization Using Rose Bengal J. Phys. Chem. B 1999, 103, 3737-3741 3737 Differential Reactivity of Upper Triplet States Produces Wavelength-Dependent Two-Photon Photosensitization Using Rose Bengal Christopher R. Lambert, Irene E.

More information

A Computer Study of Molecular Electronic Structure

A Computer Study of Molecular Electronic Structure A Computer Study of Molecular Electronic Structure The following exercises are designed to give you a brief introduction to some of the types of information that are now readily accessible from electronic

More information

Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside

Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside Light-Activated Chemical Probing of Nucleobase Solvent Accessibility Inside Cells Chao Feng 1,$, Dalen Chan 1,$, Jojo Joseph 2, Mikko Muuronen 3, William H. Coldren 2, Nan Dai 4, Ivan R. Corrêa Jr. 4,

More information

TDDFT as a tool in biophysics

TDDFT as a tool in biophysics TDDFT as a tool in biophysics The primary event in vision Robert Send Universität Karlsruhe 09.09.08 Robert Send TDDFT as a tool in biophysics 09.09.08 1 / 28 Outline 1 Human vision 2 The methods 3 The

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

Fluorescence and Phosphorescence of Erythrosin

Fluorescence and Phosphorescence of Erythrosin Fluorescence and Phosphorescence of Erythrosin Purpose The fluorescence, delayed fluorescence and phosphorescence of erythrosin immobilized in polymethylmethacrylate (PMMA) will be observed. Lifetimes

More information