E L E C T R O P H O S P H O R E S C E N C E

Size: px
Start display at page:

Download "E L E C T R O P H O S P H O R E S C E N C E"

Transcription

1 Organic LEDs part 4 E L E C T R O P H O S P H O R E S C E C E. OLED efficiency 2. Spin 3. Energy transfer 4. Organic phosphors 5. Singlet/triplet ratios 6. Phosphor sensitized fluorescence 7. Endothermic triplet energy transfer Lecture by Prof. Marc Baldo April, 2003 Organic Optoelectronics - Lecture 7

2 POWER EFFICIECY The eye s response is wavelength dependent. The unit of perceived optical power is defined as the lumen (lm). Power efficiency of LED s is therefore measured in lumens/watt. The maximum photopic response is: Φ ~ 20 lm (blue) Φ ~ 680 lm (green) Φ ~ 0 lm (red) Photopic response (lm/w) For an OLED of given color, we must maximize: Wavelength (nm) - quantum efficiency (η Q = photons out/electrons in) - electrical efficiency (V λ /V = photon energy/operating voltage) η P L = =Φ VI η Q V λ V Power efficiency = photopic response of eye x quantum efficiency x electrical efficiency 2

3 Quantum efficiency is the measure of a luminescent dye s performance. η Q = the number of photons emitted per electron injected. η = χη φ Q out PL φ PL is fundamental luminescence efficiency of organic material. η out is output coupling fraction reduced by absorption losses and wave guiding within the device and its substrate. χ is fraction of luminescent molecular excitations (defined by spin selection rules) typically ~ 25% remaining energy is wasted OLED glass Imposes a fundamental limit to OLED efficiencies 3

4 EXCITO SPI AD SYMMETRY Molecular excited states (or excitons) are typically mobile, with binding energy ~ ev, and spin S = 0, Molecular ground state (spatially symmetric under exchange of electrons) E Lowest unoccupied (LUMO) molecular orbital st excited state (spatially anti-symmetric (triplet) or spatially symmetric (singlet)) E S=0, singlet LUMO HOMO ψ ψ ψ ψ Highest occupied (HOMO) molecular orbital } S=, triplet S=0, singlet 4

5 Fluorescence and Phosphorescence Intersystem crossing (ISC) S T Fluorescence Triplet has lower energy because it is spatially antisymmetric under exchange of electrons. (e - -e - repulsion lower). Phosphorescence S 0 Molecular ground state Fluorescence: Decay from singlet allowed by symmetry: fast ( 9 s - ) and often efficient. Phosphorescence: Decay from triplet disallowed by symmetry: slow ( > s - ) and inefficient. 5

6 Efficient phosphorescence eed to mix singlet and triplet states: - make both singlet and triplet decay allowed. Use metal-organic complexes with heavy transition metals: Pt, Ir, etc... Ligand molecular orbital Spin orbit coupling mixes states: proportional to atomic number Type I phosphor Exciton localized on organic ligand exciton + - Pt Z 4 Type II phosphor Metal-ligand charge transfer exciton MLCT exciton + - Ir metal ligand PtOEP less mixing ~ 0µs triplet lifetime metal ligand most mixing ~ µs triplet lifetime 3 Ir(ppy) 3 6

7 Structure and operation of OLEDs - must transfer energy from host material to luminescent dopant. This determines the quantum efficiency of luminescence. A heterostructure OLED Light holes Hole transport layer Luminescent dopant molecules electrons Electron transport layer Cathode Transparent Anode Assume balanced currents: every hole combines with an electron Excitons form in host at interface. Ideally energy is transferred to luminescent molecules 7

8 Energy transfer (a) Förster energy transfer Long range (up to ~ 0Å) Donor * Acceptor Donor Acceptor * Donor Acceptor (dye ) Exciton non-radiatively transferred by dipole-dipole coupling if transitions are allowed (usually singlet-singlet). (b) Dexter energy transfer Donor Acceptor (dye ) Donor * Acceptor Donor Acceptor * Exciton hops from donor to acceptor. Short range ~ Å 8

9 A red phosphor: Platinum octaethylporphyrin Triplet lifetime ~0ms Peak external quantum efficiency in Alq 3 ~ 4% Pt PtOEP Intensity (a.u.) 0 Emission spectrum Wavelength (nm) Device structure Mg:Ag cathode PtOEP in Alq 3 a-pd Indium tin oxide Quantum Efficiency (%) Luminance of 6% device (cd/m 2 ) % PtOEP 6% PtOEP 20% PtOEP efficiency roll-off due to triplet-triplet annihilation triplet triplet singlet ground state Loss proportional to square of triplet lifetime Current Density (ma/cm 2 ) 9

10 DOES PTOEP CAPTURE ALQ 3 TRIPLETS? Put fluorescent dye DCM2 in exciton formation zone..8 Ag PtOEP Ag.6 Mg/Ag Mg/Ag Intensity (arb. units) Å Alq 3 0Å DCM2/Alq 3 350Å a-pd 60Å CuPc ITO Glass Device Device 2 Alq 3 DCM2 500Å Alq 3 0Å PtOEP/Alq 3 0Å Alq 3 0Å DCM2/Alq 3 350Å a-pd 60Å CuPc ITO Glass Wavelength (nm)

11 The singlet/triplet ratio in Alq 3 Device emits from singlets only Device 2 emits from singlets and triplets Ag Mg/Ag 200Å Alq 3 Ag Mg/Ag 200Å Alq 3 400Å DCM2/Alq 3 400Å PtOEP/Alq 3 450Å a-pd 60Å CuPc ITO Glass 450Å a-pd 60Å CuPc ITO Glass Compare ratio of EL emission from devices to get singlet fraction. After correction for PL efficiency of DCM2 and PtOEP, get: χ=(22±3)%

12 IMPROVED PHOSPHORS Must reduce triplet lifetime to minimize T-T annihilation. Increase MLCT component of excited state. The first high efficiency green phosphor was iridium tris(2-phenylpyridine) Luminance (cd/m 2 ) Voltage (V) Power efficiency (lm/w) Ir Ir(ppy) 3 3 metal MLCT exciton Broad green emission at λ ~ 55 nm. Phosphorescent lifetime, τ ~ ms. + - ligand 2

13 TRIPLET-SIGLET EERGY TRASFER There are many more fluorescent than phosphorescent materials. Can we get high efficiency from a fluorescent dye? exciton formation exciton formation host S T? fluorescent dye S T eed to prevent exciting triplet state in fluorescent dye. Want mechanism for triplet-singlet energy transfer. 3

14 Phosphor sensitized fluorescence. Triplet-singlet hopping transfer is disallowed 2. Triplet-singlet Förster transfer permitted if triplet relaxation on donor is allowed i.e. triplet-singlet transfer is possible from a phosphorescent donor Predicted by Förster in 959 ( ) Observed by Ermolaev and Sveshnikova in 963 ( ) e.g. for triphenylamine as the donor and chrysoidine as the acceptor, in rigid media at 77K or 90K the interaction length is 52Å ( ) Förster, Th. Dicussions of the Faraday Society 27, 7-7 (959). ( ) Ermolaev, V.L. & Sveshnikova, E.B. Doklady Akademii auk SSSR 49, (963). 4

15 IMPLEMETATIO OF TRIPLET-SIGLET EERGY TRASFER host S phosphorescent sensitizer S ISC fluorescent dye S T T T Ir DCM2 absorbs in the green O CH 3 CBP Ir(ppy) 3 3 C C 5

16 DCM2 fluorescence sensitized by Ir(ppy) 3 External quantum efficiency (%) % DCM2 and 8% Ir(ppy) 3 in CBP ote: factor of 4 difference % DCM2 in CBP EL Intensity (arbitrary units) Ir(ppy) 3 DCM Current density (ma/cm 2 ) Wavelength (nm) Roll-off in efficiency is due to charge trapping on DCM2 molecules early complete energy transfer from Ir(ppy) 3 to DCM2 6

17 OLED TRASIET RESPOSE Intensity (arbitrary units) 0 DCM2 Ir(ppy) 3 Examine transient response of different spectral components of OLED luminescence. atural lifetime of DCM2 only ~5ns Time (ns) Delayed DCM2 fluorescence confirms sensitizing action of Ir(ppy) 3 7

18 B L U E Problem: the most energetic charge transport hosts currently available have blue-green triplets. So to transfer energy to a blue phosphor, exciton transfer must be endothermic. F F 2 Ir O FIrpic (blue phosphor) Peak wavelength 470nm Triplet lifetime µs O Inentsity (arb. units) % FIrpic in CBP FIrpic in CHCl 3 FIrpic at 460nm Wavelength (nm) CIE y coordinate % FIrpic in CBP FIrpic in CHCl 3 FIrpic at 460nm CIE x coordinate (2.56±0.) ev CBP k F k R (2.62±0.) ev FIrpic Possible to get efficient endothermic transfer if decay of host triplet disallowed. k H k G CBP Host CBP triplet lifetime ~ s. 8

19 PL intensity (arbitrary units) (a)t=300k (b)t=200k (c)t=0k (d)t= 50K Transient response of endothermic transfer PL intensity (arbitrary units) Temperature (K) (b) (c) (a) (d) Time (µs) Efficiency of luminescence decreases below T=200K as energy transfer to phosphor is frozen out. Transient response is also consistent with endothermic transfer: At T=200K, apparent transient lifetime of FIrpic (includes endothermic transfer) >> natural lifetime (~µs) EL Intensity (arb. units) PL Intensity (arb. units) Firpic in CBP % Ir(ppy) 3 :TPD 0 20 Time (µs) 0 Ir(ppy) 3 in TPD T=292K τ = (5±2)µs τ = (80±)µs T=200K τ = (5±2)µs 6% Ir(ppy) 3 :TPD Time (µs) 9

20 COLOR PURITY CIE y coordinate FIrpic ppy 2 Ir(acac) btp 2 Ir(acac) PtOEP CIE x coordinate Organic materials have broad luminescent spectra. Overcome in red and blue by shifting toward non-visible wavelengths. 20

21 O L E D S U M M A R Y Peak power efficiency in green is 60 lm/w Peak quantum efficiency is 9% (corresponds to ~0% internal) Largest remaining problem is operating voltage J = µa/cm 2 J = ma/cm 2 phosphor host Φ (lm/w) η P (lm/w) η Q ext η Q int Vλ V η P (lm/w) η Q ext η Q int Vλ V ppy 2 Ir(acac) TAZ btpir(acac) CBP FIrpic CBP PtOEP CBP Table of phosphorescent device operating parameters 2

22 Intensity (arb. units) R E D Wavelength (nm) PHOSPHORESCET DEVICE PERFORMACE G R E E B L U E Intensity (arb. units) Wavelength (nm) Intensity (arb. units) Wavelength (nm) Quantum efficiency (%) CH 3 S O Ir O CH 3 2 btp 2 Ir(acac) btp 2 Ir(acac) in CBP Current density (ma/cm 2 ) Power efficiency (lm/w) Quantum efficiency (%) 0 CH 3 O Ir O CH 3 2 ppy 2 Ir(acac) Current density (ma/cm 2 ) Power efficiency (lm/w) Quantum efficiency (%) F F Ir O 2 FIrpic FIrpic in CBP O Power efficiency (lm/w) Current density (ma/cm 2 ) 22

23 PHOSPHORESCET STABILITY Courtesy Ray Kwong and UDC ormalized optical power cd/m 500 cd/m Time (hours) 50 cd/m 2 0 cd/m 2 Red: BtpIr(acac) in CBP ormalized optical power cd/m Time (hours) 500 cd/m 2 00 cd/m cd/m 2 Green: (ppy) 2 Ir(acac) in CBP Phosphors should improve OLED stability by rapidly removing triplet excitons and lowering drive current required. 23

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002).

Organic LEDs part 8. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002). Organic LEDs part 8 Exciton Dynamics in Disordered Organic Thin Films Quantum Dot LEDs Handout on QD-LEDs: Coe et al., ature 420, 800 (2002). @ MIT April 29, 2003 Organic Optoelectronics - Lecture 20b

More information

Organic LEDs part 6. Exciton Recombination Region in Organic LEDs. Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

Organic LEDs part 6. Exciton Recombination Region in Organic LEDs. Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999). Organic LEDs part 6 Exciton Recombination Region in Organic LEDs White OLED Flexible OLEDs Solvation Effect Solid State Solvation Handout: Bulovic, et al., Chem. Phys. Lett. 287, 455 (1998); 308, 317 (1999).

More information

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel

OLEDs and PLEDs Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel OLEDs and PLEDs 28.5.2014 Nele Schumacher Incoherent Lightsources - Prof. Thomas Jüstel Contents 1. History 2. Working principle 4. Preparation of multilayer devices 5. Advantages and disadvantages 6.

More information

Organic LEDs part 7. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002).

Organic LEDs part 7. Exciton Dynamics in Disordered Organic Thin Films. Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002). Organic LEDs part 7 Solvation Effect - Review Solid State Solvation Exciton Dynamics in Disordered Organic Thin Films Quantum Dot LEDs Handout on QD-LEDs: Coe et al., ature 420, 800 (2002). @ MIT April

More information

Surface Plasmon Enhanced Light Emitting Devices

Surface Plasmon Enhanced Light Emitting Devices Surface Plasmon Enhanced Light Emitting Devices Alexander Mikhailovsky, Jacek Ostrowski, Hadjar Benmansour, and Guillermo Bazan + Department of Chemistry and Biochemistry, University of California Santa

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

Making OLEDs efficient

Making OLEDs efficient Making OLEDs efficient cathode anode light-emitting layer η = γ EL r ηpl k st External Efficiency Outcoupling Internal efficiency of LEDs η = γ EL r ηpl k st γ = excitons formed per charge flowing in the

More information

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes

Introduction. Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University. Organic light-emitting diodes rganic light-emitting diodes Introduction Fang-Chung Chen Department of Photonics and Display Institute National Chiao Tung University rganic light-emitting diodes --The emerging technology LED Displays

More information

Triplet state diffusion in organometallic and organic semiconductors

Triplet state diffusion in organometallic and organic semiconductors Triplet state diffusion in organometallic and organic semiconductors Prof. Anna Köhler Experimental Physik II University of Bayreuth Germany From materials properties To device applications Organic semiconductors

More information

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the

Supplementary Figure 1. Potential energy, volume, and molecular distribution of the 1 2 3 4 5 6 7 8 Supplementary Figure 1. Potential energy, volume, and molecular distribution of the organic substrates prepared by MD simulation. (a) Change of the density and total potential energy of

More information

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D. The 4th U.S.-Korea NanoForum April 26-27, 2007, Honolulu, USA Improvement of Device Efficiency in Conjugated Polymer/Fullerene NanoComposite Solar Cells School of Semiconductor & Chemical Engineering *

More information

Light Extraction in OLED with Corrugated Substrates Franky So

Light Extraction in OLED with Corrugated Substrates Franky So Light Extraction in OLED with Corrugated Substrates Franky So Department of Materials Science and Engineering North Carolina State University Raleigh, NC 27695-7907 1 Where Did the Light Go? Modes Distribution

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Cyclometallated iridium-carbazole complexes for OLED applications

Cyclometallated iridium-carbazole complexes for OLED applications Durham E-Theses Cyclometallated iridium-carbazole complexes for OLED applications Moore, Tom How to cite: Moore, Tom (2008) Cyclometallated iridium-carbazole complexes for OLED applications, Durham theses,

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

Electrophosphorescence for Solid- State Lighting

Electrophosphorescence for Solid- State Lighting Electrophosphorescence for Solid- State Lighting Mark Thompson Department of Chemistry University of Southern California Hole/electron recombination gives singlet and triplet excitons hole electron + or

More information

How does a polymer LED OPERATE?

How does a polymer LED OPERATE? How does a polymer LED OPERATE? Now that we have covered many basic issues we can try and put together a few concepts as they appear in a working device. We start with an LED:. Charge injection a. Hole

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

ELECTROLUMINESCENCE OF POLYMERS

ELECTROLUMINESCENCE OF POLYMERS Universität Potsdam Institute of Physics and Astronomy Advanced Physics Lab Course May 2015 M7 ELECTROLUMINESCENCE OF POLYMERS I. INTRODUCTION The recombination of holes and electrons in a luminescent

More information

Last Updated: April 22, 2012 at 7:49pm

Last Updated: April 22, 2012 at 7:49pm Page 1 Electronic Properties of d 6 π Coordination Compounds The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for both solar

More information

Phosphorescent materials for application to organic light emitting devices*

Phosphorescent materials for application to organic light emitting devices* Pure Appl. Chem., Vol. 71, No. 11, pp. 2095±2106, 1999. Printed in Great Britain. q 1999 IUPAC Phosphorescent materials for application to organic light emitting devices* M. A. Baldo 1, M. E. Thompson

More information

On the Properties and Design of Organic Light-Emitting Devices

On the Properties and Design of Organic Light-Emitting Devices On the Properties and Design of Organic Light-Emitting Devices A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Nicholas C. Erickson IN PARTIAL FULFILLMENT

More information

Organic Electroluminescent Displays

Organic Electroluminescent Displays Organic Electroluminescent Displays Richard Friend Cambridge Display Technology Cambridge, UK Recent Reviews: ( both can be downloaded from: www.cdtltd.co.uk ) R. H. Friend, et al., Nature 397, 121 (1999).

More information

Excited States in Organic Light-Emitting Diodes

Excited States in Organic Light-Emitting Diodes Excited States in Organic Light-Emitting Diodes The metal-to-ligand charge transfer (MLCT) excited states of d 6 π coordination compounds have emerged as the most efficient for solar harvesting and sensitization

More information

Device performance and carrier dynamics in blue mixing host organic light-emitting devices

Device performance and carrier dynamics in blue mixing host organic light-emitting devices evice performance and carrier dynamics in blue mixing host organic light-emitting devices Jiun-Haw Lee *a, S. W Liu b, hih-hung Teng a, Jian-Hong Lin a, Tian-hiun Lin a and.. Yang a a Graduate Institute

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTIG IFORMATIO [1,2,4]Triazolo[1,5-a]pyridine-based Host Materials for Green Phosphorescent and Delayed-Fluorescence OLEDs with Low Efficiency Roll-off Wenxuan Song, a Yi Chen, a Qihao Xu, a Haichuan

More information

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics

Structure Property Relationships of. Organic Light-Emitting Diodes. Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Structure Property Relationships of Organic Light-Emitting Diodes Michael Kochanek May 19, 2006 MS&E 542 Flexible Electronics Introduction Many of today s solid-state inorganic microelectronic devices

More information

Review Article Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

Review Article Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes Advances in Materials Science and Engineering Volume 212, Article ID 794674, 14 pages doi:1.1155/212/794674 Review Article Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

More information

g, 2.5 mol%) were placed in a sealed tube and then N-methylpyrrolidone (NMP) (1.00 ml)

g, 2.5 mol%) were placed in a sealed tube and then N-methylpyrrolidone (NMP) (1.00 ml) Supporting Information Molecular Design of Highly Efficient Thermally Activated Delayed Fluorescence Hosts for Blue Phosphorescent and Fluorescent Organic Light-Emitting Diodes Chih-Chun Lin,, Min-Jie

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise)

Assumed knowledge. Chemistry 2. Learning outcomes. Electronic spectroscopy of polyatomic molecules. Franck-Condon Principle (reprise) Chemistry 2 Lecture 11 Electronic spectroscopy of polyatomic molecules Assumed knowledge For bound excited states, transitions to the individual vibrational levels of the excited state are observed with

More information

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 218 Electronic Supplementary Information Iridium(III) phosphors with bis(diphenylphorothioyl)amide

More information

1 Triplet Emitters for Organic Light - Emitting Diodes: Basic Properties

1 Triplet Emitters for Organic Light - Emitting Diodes: Basic Properties 1 1 Triplet Emitters for Organic Light - Emitting Diodes: Basic Properties Hartmut Yersin * and Walter J. Finkenzeller 1.1 Introduction Within the past decade, organo - transition metal compounds consisting

More information

arxiv: v1 [cond-mat.mtrl-sci] 14 Feb 2013

arxiv: v1 [cond-mat.mtrl-sci] 14 Feb 2013 White organic light-emitting diodes: Status and perspective Sebastian Reineke Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue,

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

4 Single molecule FRET

4 Single molecule FRET 4 Single molecule FRET FRET basics Energie Dipole-dipole interaction Teil I SM Fluo, Kap. 4 FRET FRET basics transfer rate (from Fermis Golden Rule) k t = 1 0 1 r 6 apple 2 9 ln(10) n 4 N A 128 5 Z d f

More information

Tuning the colour and efficiency in OLEDs by using amorphous or. Electronic Supplementary Information

Tuning the colour and efficiency in OLEDs by using amorphous or. Electronic Supplementary Information This journal is The Royal Society of Chemistry 23 Tuning the colour and efficiency in OLEDs by using amorphous or polycrystalline emitting layers. P. Brulatti, V. Fattori, S. Muzzioli, S. Stagni, P. P.

More information

Supporting Information

Supporting Information Supporting Information Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution- Processed Multilayered Organic Light-Emitting

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/ OLEDs Basic principles, technology and applications Sébastien FORGET Laboratoire de Physique des Lasers Université Paris Nord P13 www-lpl.univ-paris13.fr:8088/lumen/ Paris Nord University (Paris 13) This

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

Problem 1. Anthracene and a chiral derivative of anthracene

Problem 1. Anthracene and a chiral derivative of anthracene Molecular Photophysics 330 Physical rganic Chemistry 6C50 Thursday November 5 004, 4.00-7.00 h This exam consists of four problems that have an equal weight in the final score Most problems are composed

More information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of 1 Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of coordination compounds of transition metals involve transitions

More information

PHOTOCHEMISTRY NOTES - 1 -

PHOTOCHEMISTRY NOTES - 1 - - 1 - PHOTOCHEMISTRY NOTES 1 st Law (Grotthus-Draper Law) Only absorbed radiation produces chemical change. Exception inelastic scattering of X- or γ-rays (electronic Raman effect). 2 nd Law (Star-Einstein

More information

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas Fotoquímica Aula 5 e 6 Transferência de Energia e Transferência de Elétron Prof. Amilcar Machulek Junior IQ/USP - CEPEMA Caminhos de espécies fotoexcitadas 1 Diagrama de Jablonski S 2 Relaxation (τ < 1ps)

More information

Charge separation in molecular donor acceptor heterojunctions

Charge separation in molecular donor acceptor heterojunctions Institute of Physics 13 July 2009 Charge separation in molecular donor acceptor heterojunctions Jenny Nelson, James Kirkpatrick, Jarvist Frost, Panagiotis Keivanidis, Clare Dyer-Smith, Jessica Benson-Smith

More information

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence

Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Spiro-Configured Bifluorenes: Highly Efficient Emitter for UV Organic Light-Emitting Device and Host Material for Red Electrophosphorescence Ken-Tsung Wong,* a Yuan-Li Liao, a Yu-Ting Lin, b Hai-Ching

More information

Chapter 6: Light-Emitting Diodes

Chapter 6: Light-Emitting Diodes Chapter 6: Light-Emitting Diodes Photoluminescence and electroluminescence Basic transitions Luminescence efficiency Light-emitting diodes Internal quantum efficiency External quantum efficiency Device

More information

Plastic Electronics. Joaquim Puigdollers.

Plastic Electronics. Joaquim Puigdollers. Plastic Electronics Joaquim Puigdollers Joaquim.puigdollers@upc.edu Nobel Prize Chemistry 2000 Origins Technological Interest First products.. MONOCROMATIC PHILIPS Today Future Technological interest Low

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 5: Organic Light-Emitting Devices and Emerging Technologies Lecture 5.2: Design Considerations for OLEDs Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture

More information

Organic semiconductor heterointerfaces containing bathocuproine

Organic semiconductor heterointerfaces containing bathocuproine JOURNAL OF APPLIED PHYSICS VOLUME 86, NUMBER 8 15 OCTOBER 1999 Organic semiconductor heterointerfaces containing bathocuproine I. G. Hill a) and A. Kahn Department of Electrical Engineering, Princeton

More information

Modeling Electronic and Excitonic Processes in OLED Devices

Modeling Electronic and Excitonic Processes in OLED Devices Modeling Electronic and Excitonic Processes in OLED Devices Beat Ruhstaller 1,2 1 Fluxim AG, Switzerland 2 Zurich Univ. of Applied Sciences, Inst. of Computational Physics, Switzerland TADF Summer School

More information

Charge Carrier Transport and Injection across Organic Heterojunctions

Charge Carrier Transport and Injection across Organic Heterojunctions Charge Carrier Transport and Injection across Organic Heterojunctions By Sai Wing Tsang A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

7 Conjugated Polymers

7 Conjugated Polymers 7 Conjugated Polymers The large majority of polymers, first of all the broadly used commodity materials polyethylene, polypropylene, poly(ethylene terephthalate) or polystyrene, have similar electrical

More information

Supplementary material: Nature Nanotechnology NNANO D

Supplementary material: Nature Nanotechnology NNANO D Supplementary material: Nature Nanotechnology NNANO-06070281D Coercivities of the Co and Ni layers in the nanowire spin valves In the tri-layered structures used in this work, it is unfortunately not possible

More information

Exciton transport in organic nanostructures

Exciton transport in organic nanostructures Exciton transport in organic nanostructures Tarik Abdelmoula, Department of Physics, Imperial College London A thesis presented for the degree of Doctor of Philosophy of Imperial College London September

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Design of organic TADF molecules. The role of E(S 1 -T 1 ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism.

Design of organic TADF molecules. The role of E(S 1 -T 1 ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism. Design of organic TADF molecules. The role of E(S -T ): From fluorescence to TADF and beyond - towards the fourth generation OLED mechanism. H. Yersin, L. Mataranga-Popa, R. Czerwieniec University of Regensburg,

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

Small Molecule Organic Optoelectronic Devices. Nathan Bakken

Small Molecule Organic Optoelectronic Devices. Nathan Bakken Small Molecule Organic Optoelectronic Devices by Nathan Bakken A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved January 2017 by the Graduate

More information

Management of singlet and triplet excitons for efficient white organic light-emitting devices

Management of singlet and triplet excitons for efficient white organic light-emitting devices Vol 440 13 April 2006 doi:10.1038/nature04645 Management of singlet and triplet excitons for efficient white organic light-emitting devices Yiru Sun 1, Noel C. Giebink 1, Hiroshi Kanno 1, Biwu Ma 2, Mark

More information

Week 6: Ch. 8 Scintillation Counters

Week 6: Ch. 8 Scintillation Counters Week 6: Ch. 8 cintillation Counters Proportional Counters Principles of cintillation Counters -- organic materials --- light production -- inorganic materials --- light production -- light output, collection

More information

High contrast tandem organic light emitting devices

High contrast tandem organic light emitting devices Edith Cowan University Research Online ECU Publications 2012 2012 High contrast tandem organic light emitting devices Baofu Ding Edith Cowan University Xiao-Yuan Hou Kamal Alameh Edith Cowan University

More information

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper)

Molecular Luminescence. Absorption Instrumentation. UV absorption spectrum. lg ε. A = εbc. monochromator. light source. Rotating mirror (beam chopper) Molecular Luminescence Absorption Instrumentation light source I 0 sample I detector light source Rotating mirror (beam chopper) motor b sample I detector reference I 0 UV absorption spectrum lg ε A =

More information

Excited State Processes

Excited State Processes Excited State Processes Photophysics Fluorescence (singlet state emission) Phosphorescence (triplet state emission) Internal conversion (transition to singlet gr. state) Intersystem crossing (transition

More information

Energy Transfer Upconversion Processes

Energy Transfer Upconversion Processes 1. Up-conversion Processes Energy Transfer Upconversion Processes Seth D. Melgaard NLO Final Project The usual fluorescence behavior follows Stokes law, where exciting photons are of higher energy than

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

Development of 8-Hydroxyquinoline Metal Based Organic Light- Emitting Diodes. Xiaodong Feng

Development of 8-Hydroxyquinoline Metal Based Organic Light- Emitting Diodes. Xiaodong Feng Development of 8-Hydroxyquinoline Metal Based Organic Light- Emitting Diodes By Xiaodong Feng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department

More information

Organic Photonic Materials

Organic Photonic Materials rganic Photonic Materials onlinear ptics Materials rganic Light Emitting Diode (LED) onlinear optics The interaction of electromagnetic fields with various media to produce new electromagnetic fields altered

More information

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington

Glow-Sticks are Forbidden. Zachary G Wolfe. Department of Physics and Physical Oceanography. University of North Carolina Wilmington Glow-Sticks are Forbidden Zachary G Wolfe Department of Physics and Physical Oceanography University of North Carolina Wilmington Abstract: Physics students learn early that certain electronic transitions

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Metal-Containing Functional Materials for OLEDs and Solar Cells

Metal-Containing Functional Materials for OLEDs and Solar Cells Metal-Containing Functional Materials for OLEDs and olar Cells Prof. Wai-Yeung Wong (Raymond) Department of Chemistry Centre for Advanced Luminescence Materials Hong Kong Baptist University Chemistry Enriching

More information

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005 Organic Device Simulation Using Silvaco Software Silvaco Taiwan September 2005 Organic Devices Simulation: Contents Introduction Silvaco TCAD Simulator Theory Models OTFT Simulation v.s Measurement OLED

More information

Survival Strategy: Photosynthesis

Survival Strategy: Photosynthesis Energy and Electron Transfer Survival Strategy: Photosynthesis Light Energy Harvested by Plants 6 CO 2 + 6 H 2 O + light energy C 6 H 12 O 6 + 6 O 2 Importance of Photosynthesis Provides energy for plants

More information

Chap. 12 Photochemistry

Chap. 12 Photochemistry Chap. 12 Photochemistry Photochemical processes Jablonski diagram 2nd singlet excited state 3rd triplet excited state 1st singlet excited state 2nd triplet excited state 1st triplet excited state Ground

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

Generation of light Light sources

Generation of light Light sources Generation of light Light sources Black-body radiation Luminescence Luminescence Laser Repetition Types of energy states in atoms and molecules are independent (not coupled) Energy states are non-continuous,

More information

Introduction to Organic Solar Cells

Introduction to Organic Solar Cells Introduction to Organic Solar Cells Dr Chris Fell Solar Group Leader CSIRO Energy Technology, Newcastle, Australia Organic semiconductors Conductivity in polyacetylene 1970s Nobel Prize Alan J. Heeger

More information

Operational lifetimes of organic light-emitting diodes dominated by Förster

Operational lifetimes of organic light-emitting diodes dominated by Förster Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer Hirohiko Fukagawa *, Takahisa Shimizu, Yukiko Iwasaki, and Toshihiro Yamamoto Japan Broadcasting Corporation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fast and long-range triplet exciton diffusion in metal organic frameworks for photon upconversion at ultralow excitation power Prasenjit Mahato, 1 Angelo Monguzzi, 2 Nobuhiro Yanai, 1,3* Teppei Yamada,

More information

arxiv: v1 [cond-mat.mtrl-sci] 18 Feb 2009

arxiv: v1 [cond-mat.mtrl-sci] 18 Feb 2009 Diffusion of triplet excitons in an operational Organic Light Emitting Diode M. Lebental 1, H. Choukri 1, S. Chénais 1, S. Forget 1, A. Siove 1, B. Geffroy 2, and E. Tutiš 3 1 CNRS, Université Paris Nord,

More information

Light generation: principles of OLED

Light generation: principles of OLED Advanced Course on ORGANIC ELECTRONIC Principles, devices and applications Light generation: principles of OLED Marco ampietro ORGANIC LED Exciton Electron EXCITON neutral excited entity (molecule) (presence

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Rational Design of a blue TADF Emitter Family using a Trifluoromethylphenyl Core

Rational Design of a blue TADF Emitter Family using a Trifluoromethylphenyl Core Rational Design of a blue TAD Emitter amily using a Trifluoromethylphenyl Core Ramunas Lygaitis, Paul Kleine, Reinhard Scholz, Ludwig Popp, Olaf Zeika, Simone Lenk, and Sebastian Reineke Dresden Integrated

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

Dihedral Angle Control of Blue Thermally-

Dihedral Angle Control of Blue Thermally- Supplementary Information Dihedral Angle Control of Blue Thermally- Activated Delayed Fluorescent Emitters through Donor Substitution Position for Efficient Reverse Intersystem Crossing Chan Seok Oh 1,

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Interaction mechanism for energy transfer from Ce to Tb ions in silica

Interaction mechanism for energy transfer from Ce to Tb ions in silica Interaction mechanism for energy transfer from Ce to Tb ions in silica HAA Seed Ahmed 1,2, W-S Chae 3, OM Ntwaeaborwa 1 and RE Kroon 1 1 Department of Physics, University of the Free State, South Africa

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

CHEM Outline (Part 15) - Luminescence 2013

CHEM Outline (Part 15) - Luminescence 2013 CHEM 524 -- Outline (Part 15) - Luminescence 2013 XI. Molecular Luminescence Spectra (Chapter 15) Kinetic process, competing pathways fluorescence, phosphorescence, non-radiative decay Jablonski diagram

More information

Light extraction and optical loss mechanisms in organic light-emitting diodes

Light extraction and optical loss mechanisms in organic light-emitting diodes Light extraction and optical loss mechanisms in organic light-emitting diodes Stefan Nowy, Nils A. Reinke +,Jörg Frischeisen, and Wolfgang Brütting * Experimental Physics IV, University of Augsburg, 86135

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Temperature dependence of the triplet diffusion and quenching rates in films of an Ir ppy 3 -cored dendrimer

Temperature dependence of the triplet diffusion and quenching rates in films of an Ir ppy 3 -cored dendrimer Temperature dependence of the triplet diffusion and quenching rates in films of an Ir ppy 3 -cored dendrimer J. C. Ribierre, A. Ruseckas, I. D. W. Samuel, S. V. Staton, 2 and P. L. Burn 2,3 Organic Semiconductor

More information

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer

Inverted Quantum-dot Light-Emitting Diode with Solution-Processed Aluminum-Zinc- Oxide as Cathode Buffer Normalized Absorbance (a.u.) Normalized PL Intensity (a.u.) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 22 SUPPORTING INFORMATION

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information Bicolour electroluminescence of 2 (carbazol 9 yl)anthraquinone

More information

Chapter 6 Photoluminescence Spectroscopy

Chapter 6 Photoluminescence Spectroscopy Chapter 6 Photoluminescence Spectroscopy Course Code: SSCP 4473 Course Name: Spectroscopy & Materials Analysis Sib Krishna Ghoshal (PhD) Advanced Optical Materials Research Group Physics Department, Faculty

More information

Excimers and exciplexes in organic electroluminescence *

Excimers and exciplexes in organic electroluminescence * Materials Science-Poland, Vol. 27, No. 3, 2009 Excimers and exciplexes in organic electroluminescence * J. KALINOWSKI ** Department of Molecular Physics, Gdańsk University of Technology, 80-952 Gdańsk,

More information

Light generation: principles of OLED

Light generation: principles of OLED Advanced Course on ORGANIC ELECRONIC Principles, devices and applications Light generation: principles of OLED Marco ampietro Exciton Electron Hole ORGANIC LED EXCITON neutral excited molecule (presence

More information

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density

Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Highly efficient organic light-emitting devices beyond theoretical prediction under high current density Miaomiao Tian 1, 2, Jinsong Luo 1, and Xingyuan Liu 1* 1 Key Laboratory of Excited State Processes,

More information