Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons

Size: px
Start display at page:

Download "Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons"

Transcription

1 Most Probable Escape Path Method and its Application to Leaky Integrate And Fire Neurons Simon Fugmann Humboldt University Berlin 13/02/06

2 Outline The Most Probable Escape Path (MPEP) Motivation General Equations The Leaky Integrate And Fire Neuron The Model Overdamped Brownian Particle in a Harmonic Potential Well Periodic Driving α-stimulus Summary, To Do Summary Open questions

3 Outline The Most Probable Escape Path (MPEP) Motivation General Equations The Leaky Integrate And Fire Neuron The Model Overdamped Brownian Particle in a Harmonic Potential Well Periodic Driving α-stimulus Summary, To Do Summary Open questions

4 Motivation Motivation Kramer s Escape Problem Metastable Potential Wall Small White Noise Noice induced escape flux: j e U T

5 Motivation Motivation Kramer s Escape Problem Metastable Potential Wall Small White Noise Noice induced escape flux: j e U T Dynamics q + Γ q + U = f (t) f (t) = 0 f (t) f (t ) = 2ΓT δ(t t ) T U

6 Motivation Potential Well The aim is to predict analytically the particle s movement to the top initially situated in the bottom well under influence of small white noise.

7 General Equations Path Integral Representation Of Transition Probability p tr (q f, t f, q i, t i ) = Df (t) P [f (t)] δ(q(t f ) q f ) q(t i )=q i with P [ξ(t)] representing the probability density of a given noise realization f (t)

8 General Equations Path Integral Representation Of Transition Probability p tr (q f, t f, q i, t i ) = Df (t) P [f (t)] δ(q(t f ) q f ) q(t i )=q i with P [ξ(t)] representing the probability density of a given noise realization f (t) for a given noise intensity D noise one has P [f (t)] = 1 Z exp( S [f ] /D noise)

9 General Equations Transformation from noise variables to dynamical variables for white noise one has S [f ] = 1 2 t 0 dτ f 2 (τ)

10 General Equations Transformation from noise variables to dynamical variables for white noise one has S [f ] = 1 2 t 0 resulting in dτ f 2 (τ) p tr = qf q i Dq(t) J f q (q) 1 Z exp( S [q] /D noise) J is the Jacobian of the transformation

11 General Equations Direct Transition On Optimal Path p tr = p exp( S min /D noise ) S min Minimum of the functional S among all trajectories p preexponential factor depending on noise relatively weakly t i = 0 and t f = t tr

12 General Equations Lagrangian and Action S = ttr 0 Action dt L (q, q, q, t)

13 General Equations Lagrangian and Action S = ttr 0 L = 1 4Γ Action dt L (q, q, q, t) Lagrangian ( q + Γ q + du ) 2 dq

14 General Equations Lagrangian and Action S = ttr 0 L = 1 4Γ Action dt L (q, q, q, t) Lagrangian ( q + Γ q + du ) 2 dq Activation Energy S min = min (S)

15 General Equations Necessary condition for the extrema of the functional S δs = 0

16 General Equations Necessary condition for the extrema of the functional S δs = 0 leading to the Euler-Poisson-Equation L q d dt ( ) L + d 2 q dt 2 ( ) L = 0 q

17 General Equations Necessary condition for the extrema of the functional S δs = 0 leading to the Euler-Poisson-Equation L q d dt ( ) L + d 2 q dt 2 d 4 q dt 4 + d 2 ( q dt 2 2 d 2 ) U dq 2 Γ2 + ( ) L = 0 q ( ) dq 2 d 3 U dt dq 3 + d 2 U du dq 2 dq = 0

18 General Equations d 4 q dt 4 + d 2 ( q dt 2 2 d 2 ) U dq 2 Γ2 + ( ) dq 2 d 3 U dt dq 3 + d 2 U du dq 2 dq = 0 4th-order differential equation with boundary conditions ( ) ( ) q(0) q(ttr ) = i and = j q(0) q(t tr )

19 General Equations Minimization of S over t tr δs δt tr = 0

20 General Equations Minimization of S over t tr δs δt tr = 0 Soskin: For the given S, carrying out an integration by parts twice and using the Euler-Poisson-Equation, one derives by introducing an quasi-energy Ẽ ( L Ẽ = L + q d dt ( )) L q + L q q q Ẽ = 0 along the solution, also been shown Ẽ 0

21 General Equations Time-reversal Process For an assumed known optimal solution q(τ) = q(t τ) with ( q(0) q(0) q + Γ q + U = 0 ) = j and ( q(ttr ) q(t tr ) ) = i

22 General Equations Time-reversal Process For an assumed known optimal solution q(τ) = q(t τ) with ( q(0) q(0) q + Γ q + U = 0 ) = j and ( q(ttr ) q(t tr ) ) = i One can show: ( Γ + ( Γ 2 (Γ ) 2) /2) = 2ΓẼ

23 General Equations Given that Ẽ = 0, that equation can be integrated explicitly, leading to d 2 q ( ) Γ(τ t) d q dτ 2 + Γ coth 2 dτ + du( q) = 0 d q q(τ) = q(t τ)

24 General Equations Given that Ẽ = 0, that equation can be integrated explicitly, leading to d 2 q ( ) Γ(τ t) d q dτ 2 + Γ coth 2 dτ + du( q) = 0 d q q(τ) = q(t τ) q(τ) τ=0 = q(t tr ) q(τ) τ=0 = q(t tr ) in case of wall boundary q(τ) τ=0 = q(t tr )! = 0

25 General Equations For further studies see e.g. Soskin et al., Phys. Rev. Lett 86, 1665 (2001) Soskin et al., Chaos 11, 595 (2001)

26 Outline The Most Probable Escape Path (MPEP) Motivation General Equations The Leaky Integrate And Fire Neuron The Model Overdamped Brownian Particle in a Harmonic Potential Well Periodic Driving α-stimulus Summary, To Do Summary Open questions

27 The Model RC Circuit I (t) = U R + C U with τ m U = U + RI, τm = RC U - membrane potential, τ m - membrane time constant

28 Overdamped Brownian Particle in a Harmonic Potential Well General Expression u = u + µ + 2Dξ(t)

29 Overdamped Brownian Particle in a Harmonic Potential Well General Expression u = u + µ + 2Dξ(t) with V = 1 2 (u µ)2 leading to u = dv du + 2Dξ(t) 3 parameters: u r reset value of the potential, u f threshold, µ external current

30 Overdamped Brownian Particle in a Harmonic Potential Well Two Different Regimes Deterministic Regime Excitable Regime

31 Overdamped Brownian Particle in a Harmonic Potential Well L = 1 2 ( u + dv ) 2 du

32 Overdamped Brownian Particle in a Harmonic Potential Well L = 1 2 ( u + dv ) 2 du δs = 0 0 = ü V V with Ṽ = 1 ( dv ) 2 2 du ü + dv e du = 0 Hamiltonian System E = u2 2 + Ṽ u = ± 2E + ( ) dv 2 du

33 Overdamped Brownian Particle in a Harmonic Potential Well L = 1 2 ( u + dv ) 2 du δs = 0 0 = ü V V with Ṽ = 1 ( dv ) 2 2 du ü + dv e du = 0 Hamiltonian System E = u2 2 + Ṽ u = ± 2E + ( ) dv 2 du t = uf u r du 2E + ( ) E(t) dv 2 du

34 Overdamped Brownian Particle in a Harmonic Potential Well S(t) = E + ( ) dv 2 du 2E + ( ) + dv du dv 2 du du

35 Overdamped Brownian Particle in a Harmonic Potential Well Explicite result S(t) = E + ( ) dv 2 du 2E + ( ) + dv du dv 2 du du S(t) = u2 f u2 r µ 4 2 (u f u r ) (u f µ) 2E + (u f µ) (u r µ) 2E + (u r µ) 2

36 Overdamped Brownian Particle in a Harmonic Potential Well u r = 0, u f = 1.2, µ = 0.8

37 Periodic Driving External Current with small periodic perturbation µ(t) = µ 0 + δ sin(ωt) δs = 0 ü u µ + µ = 0 with boundary conditions u(0) = u r and u(t tr ) = u f u(t) u(t) L(u, u, t) S(t tr )

38 Periodic Driving External Current with small periodic perturbation µ(t) = µ 0 + δ sin(ωt) δs = 0 ü u µ + µ = 0 with boundary conditions u(0) = u r and u(t tr ) = u f u(t) u(t) L(u, u, t) S(t tr ) S(t tr ) = c(t tr ) 2 (e 2ttr 1) c(t) = u r µ 0 + δω ω sinh(t) (u r e t u f + µ 0 (1 e t ) + δ ω (sin(ωt) ωcos(ωt) + ωet ))

39 Periodic Driving Example 1 u r = 0, u f = 1.2, µ 0 = 0.8, ω = 15, D = 0.1, δ = 0.1

40 Periodic Driving Example 2 u r = 0, u f = 1.0, µ 0 = 0.8, ω = 10, D = 0.05, δ = 0.1

41 α-stimulus Idea Neuron s reaction to random α-input of other neurons N neurons, coupling strength c j and random spike times t j per neuron fixed delay

42 α-stimulus N µ(t) = c j (t t j ) exp( (t t j ) + )Θ(t t j ) t j j=1

43 α-stimulus c(t) = µ(t) = N c j j=1 1 sinh(t) (u f u r e t t j (t t j ) exp( (t t j ) + )Θ(t t j ) L = 1 2 ( u + u µ(t))2 = 2 c(t tr ) 2 e 2t S(t tr ) = c(t tr ) 2 (e 2ttr 1) NX X c j j=1 2 (t t j ) 2 t j exp( (t t j )+ )Θ(t t j ))

44 α-stimulus c(t) = µ(t) = N c j j=1 1 sinh(t) (u f u r e t t j (t t j ) exp( (t t j ) + )Θ(t t j ) L = 1 2 ( u + u µ(t))2 = 2 c(t tr ) 2 e 2t S(t tr ) = c(t tr ) 2 (e 2ttr 1) NX X c j j=1 2 (t t j ) 2 t j exp( (t t j )+ )Θ(t t j )) to test the results creation of random t j -array (uniform distribution), both for analytical calculus and simulation

45 α-stimulus Example 1 u r = 0.2, u f = 1.0, = 2, D = 0.1, N = 8

46 α-stimulus Example 2 u r = 0.2, u f = 1.2, = 2, D = 0.1, N = 10

47 Outline The Most Probable Escape Path (MPEP) Motivation General Equations The Leaky Integrate And Fire Neuron The Model Overdamped Brownian Particle in a Harmonic Potential Well Periodic Driving α-stimulus Summary, To Do Summary Open questions

48 Summary by applicating of MPEP to some simple models analytical results can be derived results accord with simulations qualitatively quantitative differences

49 Open questions preexponential factor interacting neurons application to more complicated neuronal models

50 Open questions Thank You for Your Attention!

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis

On the Dynamics of Delayed Neural Feedback Loops. Sebastian Brandt Department of Physics, Washington University in St. Louis On the Dynamics of Delayed Neural Feedback Loops Sebastian Brandt Department of Physics, Washington University in St. Louis Overview of Dissertation Chapter 2: S. F. Brandt, A. Pelster, and R. Wessel,

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Localized Excitations in Networks of Spiking Neurons

Localized Excitations in Networks of Spiking Neurons Localized Excitations in Networks of Spiking Neurons Hecke Schrobsdorff Bernstein Center for Computational Neuroscience Göttingen Max Planck Institute for Dynamics and Self-Organization Seminar: Irreversible

More information

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) Hamiltonian flow in phase space and Liouville s theorem (Lecture 5) January 26, 2016 90/441 Lecture outline We will discuss the Hamiltonian flow in the phase space. This flow represents a time dependent

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Lecture 2: Open quantum systems

Lecture 2: Open quantum systems Phys 769 Selected Topics in Condensed Matter Physics Summer 21 Lecture 2: Open quantum systems Lecturer: Anthony J. Leggett TA: Bill Coish 1. No (micro- or macro-) system is ever truly isolated U = S +

More information

Canonical transformations (Lecture 4)

Canonical transformations (Lecture 4) Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

When is an Integrate-and-fire Neuron like a Poisson Neuron?

When is an Integrate-and-fire Neuron like a Poisson Neuron? When is an Integrate-and-fire Neuron like a Poisson Neuron? Charles F. Stevens Salk Institute MNL/S La Jolla, CA 92037 cfs@salk.edu Anthony Zador Salk Institute MNL/S La Jolla, CA 92037 zador@salk.edu

More information

Partitioned Methods for Multifield Problems

Partitioned Methods for Multifield Problems C Partitioned Methods for Multifield Problems Joachim Rang, 6.7.2016 6.7.2016 Joachim Rang Partitioned Methods for Multifield Problems Seite 1 C One-dimensional piston problem fixed wall Fluid flexible

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Circular symmetry of solutions of the neural field equation

Circular symmetry of solutions of the neural field equation Neural Field Dynamics Circular symmetry of solutions of the neural field equation take 287 Hecke Dynamically Selforganized Max Punk Institute Symposium on Nonlinear Glacier Dynamics 2005 in Zermatt Neural

More information

F r (t) = 0, (4.2) F (t) = r= r a (t)

F r (t) = 0, (4.2) F (t) = r= r a (t) Chapter 4 Stochastic Equations 4.1 Langevin equation To explain the idea of introduction of the Langevin equation, let us consider the concrete example taken from surface physics: motion of an atom (adatom)

More information

Fluctuations for su(2) from first principles

Fluctuations for su(2) from first principles Fluctuations for su(2) from first principles Benoît Vicedo DAMTP, Cambridge University, UK AdS/CFT and Integrability Friday March 14-th, 2008 Outline Semiclassical quantisation The zero-mode problem Finite

More information

NE 204 mini-syllabus (weeks 4 8)

NE 204 mini-syllabus (weeks 4 8) NE 24 mini-syllabus (weeks 4 8) Instructor: John Burke O ce: MCS 238 e-mail: jb@math.bu.edu o ce hours: by appointment Overview: For the next few weeks, we will focus on mathematical models of single neurons.

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

Physics 5153 Classical Mechanics. Canonical Transformations-1

Physics 5153 Classical Mechanics. Canonical Transformations-1 1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

More information

1 Hamiltonian formalism

1 Hamiltonian formalism 1 Hamiltonian formalism 1.1 Hamilton s principle of stationary action A dynamical system with a finite number n degrees of freedom can be described by real functions of time q i (t) (i =1, 2,..., n) which,

More information

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER, DOUGLAS ZHOU, AADITYA V. RANGAN, AND DAVID CAI Abstract. Synchronous

More information

Synchrony in Stochastic Pulse-coupled Neuronal Network Models

Synchrony in Stochastic Pulse-coupled Neuronal Network Models Synchrony in Stochastic Pulse-coupled Neuronal Network Models Katie Newhall Gregor Kovačič and Peter Kramer Aaditya Rangan and David Cai 2 Rensselaer Polytechnic Institute, Troy, New York 2 Courant Institute,

More information

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS

DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER, DOUGLAS ZHOU, AADITYA V. RANGAN, AND DAVID CAI Abstract. Synchronous

More information

Large deviation functions and fluctuation theorems in heat transport

Large deviation functions and fluctuation theorems in heat transport Large deviation functions and fluctuation theorems in heat transport Abhishek Dhar Anupam Kundu (CEA, Grenoble) Sanjib Sabhapandit (RRI) Keiji Saito (Tokyo University) Raman Research Institute Statphys

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Colin Cotter (Imperial College London) & Sebastian Reich (Universität Potsdam) Outline 1. Hydrostatic and semi-geostrophic

More information

Dynamics of a Mirror and the Electromagnetic Field

Dynamics of a Mirror and the Electromagnetic Field Dynamics of a Mirror and the Electromagnetic Field Ricardo weder@unam.mx Universidad Nacional Autónoma de México Waves diffracted by Patrick Joly 28-30.08.2017 L O. Castaños and R., Classical dynamics

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

Open Quantum Systems and Markov Processes II

Open Quantum Systems and Markov Processes II Open Quantum Systems and Markov Processes II Theory of Quantum Optics (QIC 895) Sascha Agne sascha.agne@uwaterloo.ca July 20, 2015 Outline 1 1. Introduction to open quantum systems and master equations

More information

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics Rate Theory (overview) macroscopic view (phenomenological) rate of reactions experiments thermodynamics Van t Hoff & Arrhenius equation microscopic view (atomistic) statistical mechanics transition state

More information

Is the superposition of many random spike trains a Poisson process?

Is the superposition of many random spike trains a Poisson process? Is the superposition of many random spike trains a Poisson process? Benjamin Lindner Max-Planck-Institut für Physik komplexer Systeme, Dresden Reference: Phys. Rev. E 73, 2291 (26) Outline Point processes

More information

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations.

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations. 19th May 2011 Chain Introduction We will Show the relation between stochastic differential equations, Gaussian processes and methods This gives us a formal way of deriving equations for the activity of

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Small-signal neural models and their applications Author(s) Basu, Arindam Citation Basu, A. (01). Small-signal

More information

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility

Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility José Enrique Figueroa-López 1 1 Department of Statistics Purdue University Statistics, Jump Processes,

More information

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df

for changing independent variables. Most simply for a function f(x) the Legendre transformation f(x) B(s) takes the form B(s) = xs f(x) with s = df Physics 106a, Caltech 1 November, 2018 Lecture 10: Hamiltonian Mechanics I The Hamiltonian In the Hamiltonian formulation of dynamics each second order ODE given by the Euler- Lagrange equation in terms

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Nonlinear Control Lecture 1: Introduction

Nonlinear Control Lecture 1: Introduction Nonlinear Control Lecture 1: Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Nonlinear Control Lecture 1 1/15 Motivation

More information

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi,

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Electrophysiology of the neuron

Electrophysiology of the neuron School of Mathematical Sciences G4TNS Theoretical Neuroscience Electrophysiology of the neuron Electrophysiology is the study of ionic currents and electrical activity in cells and tissues. The work of

More information

Paracontrolled KPZ equation

Paracontrolled KPZ equation Paracontrolled KPZ equation Nicolas Perkowski Humboldt Universität zu Berlin November 6th, 2015 Eighth Workshop on RDS Bielefeld Joint work with Massimiliano Gubinelli Nicolas Perkowski Paracontrolled

More information

Scaling and crossovers in activated escape near a bifurcation point

Scaling and crossovers in activated escape near a bifurcation point PHYSICAL REVIEW E 69, 061102 (2004) Scaling and crossovers in activated escape near a bifurcation point D. Ryvkine, M. I. Dykman, and B. Golding Department of Physics and Astronomy, Michigan State University,

More information

Optimal Saving under Poisson Uncertainty: Corrigendum

Optimal Saving under Poisson Uncertainty: Corrigendum Journal of Economic Theory 87, 194-217 (1999) Article ID jeth.1999.2529 Optimal Saving under Poisson Uncertainty: Corrigendum Klaus Wälde Department of Economics, University of Dresden, 01062 Dresden,

More information

Dedicated to the sixtieth birthday of Professor Andrew Majda

Dedicated to the sixtieth birthday of Professor Andrew Majda COMMUN. MATH. SCI. Vol. 8, No. 2, pp. 541 6 c 21 International Press DYNAMICS OF CURRENT-BASED, POISSON DRIVEN, INTEGRATE-AND-FIRE NEURONAL NETWORKS KATHERINE A. NEWHALL, GREGOR KOVAČIČ, PETER R. KRAMER,

More information

Estimating Lyapunov Exponents from Time Series. Gerrit Ansmann

Estimating Lyapunov Exponents from Time Series. Gerrit Ansmann Estimating Lyapunov Exponents from Time Series Gerrit Ansmann Example: Lorenz system. Two identical Lorenz systems with initial conditions; one is slightly perturbed (10 14 ) at t = 30: 20 x 2 1 0 20 20

More information

Nosé-Hoover Thermostats

Nosé-Hoover Thermostats Nosé- Nosé- Texas A & M, UT Austin, St. Olaf College October 29, 2013 Physical Model Nosé- q Figure: Simple Oscillator p Physical Model Continued Heat Bath T p Nosé- q Figure: Simple Oscillator in a heat

More information

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Sketchy Notes on Lagrangian and Hamiltonian Mechanics Sketchy Notes on Lagrangian and Hamiltonian Mechanics Robert Jones Generalized Coordinates Suppose we have some physical system, like a free particle, a pendulum suspended from another pendulum, or a field

More information

2 Department of Physics, Saratov State University, Astrahanskaya 83, Saratov, Russia

2 Department of Physics, Saratov State University, Astrahanskaya 83, Saratov, Russia Experimental Studies Of The Non-Adiabatic Escape Problem M. Arrayas 1, I.A. Khovanov 2, D.G. Luchinsky 1, R. Mannella 3, P.V.E. McClintock 1, M. Greenall 1, H. Sabbagh 4 1 Department of Physics, Lancaster

More information

Nonlinear systems, chaos and control in Engineering

Nonlinear systems, chaos and control in Engineering Nonlinear systems, chaos and control in Engineering Module 1 block 3 One-dimensional nonlinear systems Cristina Masoller Cristina.masoller@upc.edu http://www.fisica.edu.uy/~cris/ Schedule Flows on the

More information

Nonlinear Dynamics: Synchronisation

Nonlinear Dynamics: Synchronisation Nonlinear Dynamics: Synchronisation Bristol Centre for Complexity Sciences Ian Ross BRIDGE, School of Geographical Sciences, University of Bristol October 19, 2007 1 / 16 I: Introduction 2 / 16 I: Fireflies

More information

Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces

Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces Dynamics of two coupled particles: comparison of Lennard-Jones and spring forces Renata Retkute a and James P. Gleeson a a Department of Applied Mathematics, UCC, Cork, Ireland; ABSTRACT The motion of

More information

Lecture IV: LTI models of physical systems

Lecture IV: LTI models of physical systems BME 171: Signals and Systems Duke University September 5, 2008 This lecture Plan for the lecture: 1 Interconnections of linear systems 2 Differential equation models of LTI systems 3 eview of linear circuit

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information

Green s functions: calculation methods

Green s functions: calculation methods M. A. Gusmão IF-UFRGS 1 FIP161 Text 13 Green s functions: calculation methods Equations of motion One of the usual methods for evaluating Green s functions starts by writing an equation of motion for the

More information

Modelling biological oscillations

Modelling biological oscillations Modelling biological oscillations Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Van der Pol equation Van

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

AT2 Neuromodeling: Problem set #3 SPIKE TRAINS

AT2 Neuromodeling: Problem set #3 SPIKE TRAINS AT2 Neuromodeling: Problem set #3 SPIKE TRAINS Younesse Kaddar PROBLEM 1: Poisson spike trains Link of the ipython notebook for the code Brain neuron emit spikes seemingly randomly: we will aim to model

More information

Introduction to numerical simulations for Stochastic ODEs

Introduction to numerical simulations for Stochastic ODEs Introduction to numerical simulations for Stochastic ODEs Xingye Kan Illinois Institute of Technology Department of Applied Mathematics Chicago, IL 60616 August 9, 2010 Outline 1 Preliminaries 2 Numerical

More information

Analytic Expressions for Rate and CV of a Type I Neuron Driven by White Gaussian Noise

Analytic Expressions for Rate and CV of a Type I Neuron Driven by White Gaussian Noise LETTER Communicated by Bard Ermentrout Analytic Expressions for Rate and CV of a Type I Neuron Driven by White Gaussian Noise Benjamin Lindner Lindner.Benjamin@science.uottawa.ca André Longtin alongtin@physics.uottawa.ca

More information

Noise and the PSTH Response to Current Transients: I. General Theory and Application to the Integrate-and-Fire Neuron

Noise and the PSTH Response to Current Transients: I. General Theory and Application to the Integrate-and-Fire Neuron Journal of Computational Neuroscience 11, 135 151, 21 c 21 Kluwer Academic Publishers. Manufactured in The Netherlands. Noise and the PSTH Response to Current Transients: I. General Theory and Application

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006

Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006 Matthew S. Norton PHY 112 Lab Report CL-4 Damped Oscillator: Feynman-Newton Method for Solving First-Order Differential Equations March 2, 2006 Norton 0 Norton 1 Abstract In this lab, I used the Feynman-Newton

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

Unusual Frequency Distribution Function Shape Generated by Particles Making Brownian Walk Along Line With Monotone Increasing Friction

Unusual Frequency Distribution Function Shape Generated by Particles Making Brownian Walk Along Line With Monotone Increasing Friction International Journal of Mathematics and Computational Science Vol. 1, No. 3, 2015, pp. 91-97 http://www.publicscienceframework.org/journal/ijmcs Unusual Frequency Distribution Function Shape Generated

More information

Assignment 8. [η j, η k ] = J jk

Assignment 8. [η j, η k ] = J jk Assignment 8 Goldstein 9.8 Prove directly that the transformation is canonical and find a generating function. Q 1 = q 1, P 1 = p 1 p Q = p, P = q 1 q We can establish that the transformation is canonical

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Introduction to Physiology V - Coupling and Propagation

Introduction to Physiology V - Coupling and Propagation Introduction to Physiology V - Coupling and Propagation J. P. Keener Mathematics Department Coupling and Propagation p./33 Spatially Extended Excitable Media Neurons and axons Coupling and Propagation

More information

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH

Dynamics and stochastic limit for phase transition problems. problems with noise. Dimitra Antonopoulou IACM-FORTH Dynamics and stochastic limit for phase transition problems with noise IACM-FORTH International Conference on Applied Mathematics, September 16-20, 2013, ACMAC, Heraklion, Greece Table of contents 1 1.1

More information

High-conductance states in a mean-eld cortical network model

High-conductance states in a mean-eld cortical network model Neurocomputing 58 60 (2004) 935 940 www.elsevier.com/locate/neucom High-conductance states in a mean-eld cortical network model Alexander Lerchner a;, Mandana Ahmadi b, John Hertz b a Oersted-DTU, Technical

More information

Jinki Kim Department of Mechanical Engineering University of Michigan

Jinki Kim Department of Mechanical Engineering University of Michigan Bistable and Adaptive Piezoelectric Circuitry for Impedance-Based Structural Health Monitoring Jinki Kim Department of Mechanical Engineering University of Michigan April 20 2017 Outline of the Presentation

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and

Lecture 6. Josephson junction circuits. Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and Lecture 6. Josephson junction circuits Simple current-biased junction Assume for the moment that the only source of current is the bulk leads, and I(t) its only destination is as supercurrent through the

More information

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar Mathematical Model of Neuron Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar 09-10-2015 Review -- One Basic Circuit By Kirchhoff's Current Law 0 = I C + I R + I L I ext By Kirchhoff s Voltage

More information

Pentahedral Volume, Chaos, and Quantum Gravity

Pentahedral Volume, Chaos, and Quantum Gravity Pentahedral Volume, Chaos, and Quantum Gravity Hal Haggard May 30, 2012 Volume Polyhedral Volume (Bianchi, Doná and Speziale): ˆV Pol = The volume of a quantum polyhedron Outline 1 Pentahedral Volume 2

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

Linear systems, small signals, and integrators

Linear systems, small signals, and integrators Linear systems, small signals, and integrators CNS WS05 Class Giacomo Indiveri Institute of Neuroinformatics University ETH Zurich Zurich, December 2005 Outline 1 Linear Systems Crash Course Linear Time-Invariant

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

The (Fast) Fourier Transform

The (Fast) Fourier Transform The (Fast) Fourier Transform The Fourier transform (FT) is the analog, for non-periodic functions, of the Fourier series for periodic functions can be considered as a Fourier series in the limit that the

More information

Least action principle and stochastic motion : a generic derivation of path probability

Least action principle and stochastic motion : a generic derivation of path probability Journal of Physics: Conference Series PAPER OPEN ACCESS Least action principle and stochastic motion : a generic derivation of path probability To cite this article: Aziz El Kaabouchi and Qiuping A Wang

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

Residence-time distributions as a measure for stochastic resonance

Residence-time distributions as a measure for stochastic resonance W e ie rstra ß -In stitu t fü r A n g e w a n d te A n a ly sis u n d S to ch a stik Period of Concentration: Stochastic Climate Models MPI Mathematics in the Sciences, Leipzig, 23 May 1 June 2005 Barbara

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see

PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see 1.5 1 U(r).5.5 1 4 6 8 1 r Figure 1: Plot for problem

More information

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors Joël Peguiron Department of Physics and Astronomy, University of Basel, Switzerland Work done with Milena Grifoni at Kavli

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

arxiv:quant-ph/ v1 5 Nov 2003

arxiv:quant-ph/ v1 5 Nov 2003 Decoherence at zero temperature G. W. Ford and R. F. O Connell School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland arxiv:quant-ph/0311019v1 5 Nov

More information

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime Ceren Burçak Dağ Supervisors: Dr. Pol Forn-Díaz and Assoc. Prof. Christopher Wilson Institute

More information

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p.

SLE and nodal lines. Eugene Bogomolny, Charles Schmit & Rémy Dubertrand. LPTMS, Orsay, France. SLE and nodal lines p. SLE and nodal lines p. SLE and nodal lines Eugene Bogomolny, Charles Schmit & Rémy Dubertrand LPTMS, Orsay, France SLE and nodal lines p. Outline Motivations Loewner Equation Stochastic Loewner Equation

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

arxiv:cond-mat/ v4 [cond-mat.stat-mech] 14 Jan 2007

arxiv:cond-mat/ v4 [cond-mat.stat-mech] 14 Jan 2007 Exact analytical evaluation of time dependent transmission coefficient from the method of reactive flux for an inverted parabolic barrier arxiv:cond-mat/79v4 [cond-mat.stat-mech] 4 Jan 7 Raarshi Chakrabarti

More information

Canonical transformations and exact invariants for time-dependent Hamiltonian systems

Canonical transformations and exact invariants for time-dependent Hamiltonian systems Ann. Phys. Leipzig 11 00 1, 15 38 Canonical transformations and exact invariants for time-dependent Hamiltonian systems Jürgen Struckmeier a and Claus Riedel Gesellschaft für Schwerionenforschung GSI,

More information

Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. Abstract.

Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size. Abstract. Schwalger T, Deger M, Gerstner W. PLoS Comput Biol. 2017;13(4):e1005507 Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size Tilo Schwalger 1,*, Moritz

More information