PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see

Size: px
Start display at page:

Download "PHYSICS 110A : CLASSICAL MECHANICS HW 2 SOLUTIONS. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see"

Transcription

1 PHYSICS 11A : CLASSICAL MECHANICS HW SOLUTIONS (1) Taylor 5. Here is a sketch of the potential with A = 1, R = 1, and S = 1. From the plot we can see U(r) r Figure 1: Plot for problem 1. the minimum of the potential will be at r = R. We can also find this by setting the first derivative of U (r) equal to zero. We have: U (r) = A ( ) S e(r r)/s e (R r)/s 1 =. This will be zero when r = R. We will call this value r. So now we expand U (r) as a Taylor series around the point r : U (r + x) = U (r ) + U (r ) x + 1! U (r ) x

2 Right away we know the second term will be zero because U (r ) is defined to be zero. Finding the second derivative we have: Plugging in r = R we have: So for small values of x we can say: For this potential the k constant is A S. U (r) = A ( ) S e(r r)/s e (R r)/s 1. U (r ) = A S. U (r + x) = A + 1 A S x +... () Taylor 5.13 Similar to problem 1 we have a potential and want to first take the derivative and set it equal to zero to find the potential s minimum: U (r) = U ( 1 R λ R r ) =. Setting this equal to zero we find the minimum is r = λr. Again we want to express the potential as a Taylor series: U (r + x) = U (r ) + U (r ) x + 1! U (r ) x +... Our second derivative of the potential is as follows: And we can write the potential as: U (r) = U λ R r 3. Our expression for the angular frequency is: U (r + x) = U λ + 1 U λr x +... ω = k m = U mλr.

3 (3) Taylor 5.38 As in example 5.3 the equation of motion for a driven damped linear oscillator is: x (t) = A cos (ωt δ) + e βt [B 1 cos (ω 1 t) + B sin (ω 1 t)]. (1) For us ω = 1, β =.1, and ω 1 = ω β =.995. From equations 5.64 and 5.65 from the text we have: A = and δ = π/. We have two boundary conditions: x = and v = 6. Our job is to calculate the given constants in the equation of motion and then plot the equation of motion. From equation (1) with t = we find: = A cos ( π/) + [B 1 cos () + B sin ()]. Or: B 1 =. The velocity function can be found be taking the time derivative of the position function as so: v (t) = ωa sin (ωt δ) + e βt B (ω 1 cos (ω 1 t) β sin (ω 1 t)). (Where I have dropped the B 1 terms.) From this at t = we have: v = ωa sin ( π/) + B (ω 1 cos () β sin ()). And this can be reduced to: B = v ωa ω 1. Plugging in numbers we get B 4 leading to an equation of motion: x (t) = cos (t π/) + 4e.1t sin (.995t). () 3

4 6 4 x(t) t The function is plotted in figure. Figure : Plot for problem 4. (4) Taylor 5.45 (a) First we are to find the time average of the rate P (t) or: P (t) = 1 τ τ dtp (t). The rate for which a force does work is F v. So for this force we will have: P (t) = F ωa τ τ dt cos (ωt) sin (ωt δ). Where v (t) = ωa sin (ωt δ). (Note: we get rid of the transient part of the velocity.) 4

5 Substituting here we have: P (t) = F ωa τ τ dt (sin ( δ) + sin (ωt δ)). The time average of a sinusoidal function is zero so we are left with: P (t) = F ωa sin (δ). Note: here we take advantage of sin ( δ) = sin (δ). Now we must substitute for sin (δ). From figure 5.14 on page 184 in the text we see: sin (δ) = βω (ω ω) + 4β ω And comparing with equation 5.64 from the text we see: sin (δ) = maβω F Remember f = F /m. Putting this together we find: P (t) = mβω A. (b) Now similarly we will do the same for the resistive force which is F res = mβv. We can find this as the second term (the friction term) in equation 5.4 from the text, and from equation 5.6 b = βm. So we will have P (t) = mβv and we have: But: P (t) = mβω A τ τ dt sin (ωt δ). 1 τ dt sin (ωt δ) = 1 τ. This is true for the square of any sinusoidal function (you may want to check this by substituting for the cos (ωt δ) as in part (a)). So we are left with: P (t) = mβω A. 5

6 <P(t)> ω Figure 3: Plot for problem 6. (c) Writing this out as a function of ω we have: P (t) = mβω f ( ω ω ) + 4β ω. Plotting this for β = 1,m = 1, and ω = 4 we see the maximum is at ω as expected. You may also find this by maximizing the function. (5) Fall 7 Midterm #1 Question #1 A particle of mass m moves in the one-dimensional potential U(x) = U a 4 ( x a ). (3) (a) Sketch U(x). Identify the location(s) of any local minima and/or maxima, and be sure that your sketch shows the proper behavior as x ±. [15 points] Solution : Clearly the minima lie at x = ±a and there is a local maximum at x =. 6

7 Figure 4: Sketch of the double well potential U(x) = (U /a 4 )(x a ), here with distances in units of a, and associated phase curves. The separatrix is the phase curve which runs through the origin. Shown in red is the phase curve for U = 1 U, consisting of two deformed ellipses. For U = U, the phase curve is connected, lying outside the separatrix. (b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which exist, and identify their energies. Also sketch all the phase curves for motions with total energy E = 1 U. Do the same for E = U. [15 points] Solution : See Fig. 4 for the phase curves. Clearly U(±a) = is the minimum of the potential, and U() = U is the local maximum and the energy of the separatrix. Thus, E = 1 U cuts through the potential in both wells, and the phase curves at this energy form two disjoint sets. For E < U there are four turning points, at x 1,< = a 1 + E E, x U 1,> = a 1 U 7

8 and x,< = a 1 E E, x U,> = a 1 + U For E = U, the energy is above that of the separatrix, and there are only two turning points, x 1,< and x,>. The phase curve is then connected. (c) The phase space dynamics are written as = V( ), where = lower components of the vector field V. [1 points] ( ) x. Find the upper and ẋ Solution : d dt ( ) ( x = ẋ ẋ 1 m U (x) ) ( = ẋ 4U x (x a ) a ). (4) (d) Derive and expression for the period T of the motion when the system exhibits small oscillations about a potential minimum. [1 points] Solution : Set x = ±a + η and Taylor expand: U(±a + η) = 4U a η + O(η 3 ). (5) Equating this with 1 k η, we have the effective spring constant k = 8U /a, and the small oscillation frequency k 8 ω = m = U ma. (6) The period is π/ω. 8

9 (6) Fall 7 Midterm #1 Question # An R-L-C circuit is shown in fig. 5. The resistive element is a light bulb. The inductance is L = 4 µh; the capacitance is C = 1 µf; the resistance is R = 3 Ω. The voltage V (t) oscillates sinusoidally, with V (t) = V cos(ωt), where V = 4 V. In this problem, you may neglect all transients; we are interested in the late time, steady state operation of this circuit. Recall the relevant MKS units: 1 Ω = 1 V s / C, 1 F = 1 C / V, 1 H = 1 V s / C. Figure 5: An R-L-C circuit in which the resistive element is a light bulb. (a) Is this circuit underdamped or overdamped? [1 points] Solution : We have ω = (LC) 1/ = s 1, β = R L = 4 14 s 1. Thus, ω > β and the circuit is underdamped. (b) Suppose the bulb will only emit light when the average power dissipated by the bulb is greater than a threshold P th = 9 W. For fixed V = 4 V, find the frequency range for ω over which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is P R (t) = I (t)r. (Average this over a cycle to get the average power dissipated.) [ points] Solution : The charge on the capacitor plate obeys the ODE L Q + R Q + Q C = V (t). 9

10 The solution is with Q(t) = Q hom (t) + A(ω) V L cos ( ωt δ(ω) ), A(ω) = [(ω ω ) + 4β ω ] 1/ ( ) βω, δ(ω) = tan 1 ω. ω Thus, ignoring the transients, the power dissipated by the bulb is P R (t) = Q (t) R = ω A (ω) V R L sin( ωt δ(ω) ). Averaging over a period, we have sin (ωt δ) = 1, so P R = ω A (ω) V R L = V R 4β ω (ω ω ) + 4β ω. Now V /R = 1 4 W. So P th = αv /R, with α = 8 9. We then set P R = P th, whence (1 α) 4β ω = α (ω ω ). The solutions are (1 ) 1 α α ω = ± α β + β α + ω = ( 3 3 ± ) 1 s 1. (c) Compare the expressions for the instantaneous power dissipated by the voltage source, P V (t), and the power dissipated by the resistor P R (t) = I (t)r. If P V (t) P R (t), where does the power extra power go or come from? What can you say about the averages of P V and P R (t) over a cycle? Explain your answer. [ points] Solution : The instantaneous power dissipated by the voltage source is P V (t) = V (t) I(t) = ω A V sin(ωt δ) cos(ωt) L = ω A V ( ) sin δ sin(ωt δ). L As we have seen, the power dissipated by the bulb is P R (t) = ω A V R L sin (ωt δ). These two quantities are not identical, but they do have identical time averages over one cycle: P V (t) = P R (t) = V R 4β ω A (ω). 1

11 Energy conservation means where P V (t) = P R (t) + Ė(t), E(t) = L Q + Q C is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of Ė over a cycle must vanish, which guarantees P V (t) = P R (t). 11

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the timevarying

More information

The Harmonic Oscillator

The Harmonic Oscillator The Harmonic Oscillator Math 4: Ordinary Differential Equations Chris Meyer May 3, 008 Introduction The harmonic oscillator is a common model used in physics because of the wide range of problems it can

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Physics 11b Lecture #15

Physics 11b Lecture #15 Physics 11b ecture #15 and ircuits A ircuits S&J hapter 3 & 33 Administravia Midterm # is Thursday If you can t take midterm, you MUST let us (me, arol and Shaun) know in writing before Wednesday noon

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits 1 Capacitor Resistor + Q = C V = I R R I + + Inductance d I Vab = L dt AC power source The AC power source provides an alternative voltage, Notation - Lower case

More information

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2

Module 25: Outline Resonance & Resonance Driven & LRC Circuits Circuits 2 Module 25: Driven RLC Circuits 1 Module 25: Outline Resonance & Driven LRC Circuits 2 Driven Oscillations: Resonance 3 Mass on a Spring: Simple Harmonic Motion A Second Look 4 Mass on a Spring (1) (2)

More information

Physics 4 Spring 1989 Lab 5 - AC Circuits

Physics 4 Spring 1989 Lab 5 - AC Circuits Physics 4 Spring 1989 Lab 5 - AC Circuits Theory Consider the series inductor-resistor-capacitor circuit shown in figure 1. When an alternating voltage is applied to this circuit, the current and voltage

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

Chapter 30 Inductance

Chapter 30 Inductance Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and self-inductance. An inductor is formed by taken

More information

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008

Name:... Section:... Physics 208 Quiz 8. April 11, 2008; due April 18, 2008 Name:... Section:... Problem 1 (6 Points) Physics 8 Quiz 8 April 11, 8; due April 18, 8 Consider the AC circuit consisting of an AC voltage in series with a coil of self-inductance,, and a capacitor of

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Chapter 4 Transients. Chapter 4 Transients

Chapter 4 Transients. Chapter 4 Transients Chapter 4 Transients Chapter 4 Transients 1. Solve first-order RC or RL circuits. 2. Understand the concepts of transient response and steady-state response. 1 3. Relate the transient response of first-order

More information

2.4 Harmonic Oscillator Models

2.4 Harmonic Oscillator Models 2.4 Harmonic Oscillator Models In this section we give three important examples from physics of harmonic oscillator models. Such models are ubiquitous in physics, but are also used in chemistry, biology,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy

More information

Lecture 39. PHYC 161 Fall 2016

Lecture 39. PHYC 161 Fall 2016 Lecture 39 PHYC 161 Fall 016 Announcements DO THE ONLINE COURSE EVALUATIONS - response so far is < 8 % Magnetic field energy A resistor is a device in which energy is irrecoverably dissipated. By contrast,

More information

12 Chapter Driven RLC Circuits

12 Chapter Driven RLC Circuits hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

Classical Mechanics Phys105A, Winter 2007

Classical Mechanics Phys105A, Winter 2007 Classical Mechanics Phys5A, Winter 7 Wim van Dam Room 59, Harold Frank Hall vandam@cs.ucsb.edu http://www.cs.ucsb.edu/~vandam/ Phys5A, Winter 7, Wim van Dam, UCSB Midterm New homework has been announced

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Inductance, RL and RLC Circuits

Inductance, RL and RLC Circuits Inductance, RL and RLC Circuits Inductance Temporarily storage of energy by the magnetic field When the switch is closed, the current does not immediately reach its maximum value. Faraday s law of electromagnetic

More information

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212 I ve got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying No. So I like to ask it questions that a fan would say no to. Do you keep my hair in place? Do you

More information

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Active Figure 32.3 (SLIDESHOW MODE ONLY) RL Circuit, Analysis An RL circuit contains an inductor and a resistor When the switch is closed (at time t = 0), the current begins to increase At the same time, a back emf is induced in the inductor

More information

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because

More information

Handout 10: Inductance. Self-Inductance and inductors

Handout 10: Inductance. Self-Inductance and inductors 1 Handout 10: Inductance Self-Inductance and inductors In Fig. 1, electric current is present in an isolate circuit, setting up magnetic field that causes a magnetic flux through the circuit itself. This

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Damped Oscillation Solution

Damped Oscillation Solution Lecture 19 (Chapter 7): Energy Damping, s 1 OverDamped Oscillation Solution Damped Oscillation Solution The last case has β 2 ω 2 0 > 0. In this case we define another real frequency ω 2 = β 2 ω 2 0. In

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Math 216 Second Midterm 20 March, 2017

Math 216 Second Midterm 20 March, 2017 Math 216 Second Midterm 20 March, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material

More information

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Chapter 17. Physics 110A-B Exams. The following pages contain problems and solutions from midterm and final exams in Physics 110A-B.

Chapter 17. Physics 110A-B Exams. The following pages contain problems and solutions from midterm and final exams in Physics 110A-B. Chapter 17 Physics 110A-B Exams The following pages contain problems and solutions from midterm and final exams in Physics 110A-B. 1 2 CHAPTER 17. PHYSICS 110A-B EXAMS 17.1 F05 Physics 110A Midterm #1

More information

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33

Physics 115. AC: RL vs RC circuits Phase relationships RLC circuits. General Physics II. Session 33 Session 33 Physics 115 General Physics II AC: RL vs RC circuits Phase relationships RLC circuits R. J. Wilkes Email: phy115a@u.washington.edu Home page: http://courses.washington.edu/phy115a/ 6/2/14 1

More information

1. (10 points) Find the general solution to the following second-order differential equation:

1. (10 points) Find the general solution to the following second-order differential equation: Math 307A, Winter 014 Midterm Solutions Page 1 of 8 1. (10 points) Find the general solution to the following second-order differential equation: 4y 1y + 9y = 9t. To find the general solution to this nonhomogeneous

More information

Forced Oscillation and Resonance

Forced Oscillation and Resonance Chapter Forced Oscillation and Resonance The forced oscillation problem will be crucial to our understanding of wave phenomena Complex exponentials are even more useful for the discussion of damping and

More information

WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations

WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations WPI Physics Dept. Intermediate Lab 2651 Free and Damped Electrical Oscillations Qi Wen March 11, 2017 Index: 1. Background Material, p. 2 2. Pre-lab Exercises, p. 4 3. Report Checklist, p. 6 4. Appendix,

More information

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown: ircuits onsider the R and series circuits shown: ++++ ---- R ++++ ---- Suppose that the circuits are formed at t with the capacitor charged to value. There is a qualitative difference in the time development

More information

Chapter 32. Inductance

Chapter 32. Inductance Chapter 32 Inductance Joseph Henry 1797 1878 American physicist First director of the Smithsonian Improved design of electromagnet Constructed one of the first motors Discovered self-inductance Unit of

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self-paced Course MODULE 26 APPLICATIONS TO ELECTRICAL CIRCUITS Module Topics 1. Complex numbers and alternating currents 2. Complex impedance 3.

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension 105A Practice Final Solutions March 13, 01 William Kelly Problem 1: Lagrangians and Conserved Quantities Consider the following action for a particle of mass m moving in one dimension S = dtl = mc dt 1

More information

AC analysis. EE 201 AC analysis 1

AC analysis. EE 201 AC analysis 1 AC analysis Now we turn to circuits with sinusoidal sources. Earlier, we had a brief look at sinusoids, but now we will add in capacitors and inductors, making the story much more interesting. What are

More information

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively

Chapter 31 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively Chapter 3 Electromagnetic Oscillations and Alternating Current LC Oscillations, Qualitatively In the LC circuit the charge, current, and potential difference vary sinusoidally (with period T and angular

More information

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW ELECTROMAGNETIC INDUCTION AND FARADAY S LAW Magnetic Flux The emf is actually induced by a change in the quantity called the magnetic flux rather than simply py by a change in the magnetic field Magnetic

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Inductance Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current. Basis of the electrical circuit element called an

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Electromagnetic Oscillations Physics for Scientists & Engineers Spring Semester 005 Lecture 8! We have been working with circuits that have a constant current a current that increases to a constant current

More information

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is 1 Part 4: Electromagnetism 4.1: Induction A. Faraday's Law The magnetic flux through a loop of wire is Φ = BA cos θ B A B = magnetic field penetrating loop [T] A = area of loop [m 2 ] = angle between field

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 8.1 Introduction to the Natural Response

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

Response of Second-Order Systems

Response of Second-Order Systems Unit 3 Response of SecondOrder Systems In this unit, we consider the natural and step responses of simple series and parallel circuits containing inductors, capacitors and resistors. The equations which

More information

Coupled Electrical Oscillators Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 5/24/2018

Coupled Electrical Oscillators Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 5/24/2018 Coupled Electrical Oscillators Physics 3600 - Advanced Physics Lab - Summer 08 Don Heiman, Northeastern University, 5/4/08 I. INTRODUCTION The objectives of this experiment are: () explore the properties

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1 Oscillations and Electromagnetic Waves March 30, 2014 Chapter 31 1 Three Polarizers! Consider the case of unpolarized light with intensity I 0 incident on three polarizers! The first polarizer has a polarizing

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Physics 142 A ircuits Page 1 A ircuits I ve had a perfectly lovely evening but this wasn t it. Groucho Marx Alternating current: generators and values It is relatively easy to devise a source (a generator

More information

Slide 1 / 26. Inductance by Bryan Pflueger

Slide 1 / 26. Inductance by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (Part-I) 1. One coulomb charge is equal to the charge on (a) 6.24 x 10 18 electrons (b) 6.24 x 10 24 electrons (c) 6.24 x 10 18 atoms (d) none of the above 2. The correct relation

More information

Mathematical Physics

Mathematical Physics Mathematical Physics MP205 Vibrations and Waves Lecturer: Office: Lecture 9-10 Dr. Jiří Vala Room 1.9, Mathema

More information

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1 Chapter 21: RC Circuits PHY2054: Chapter 21 1 Voltage and Current in RC Circuits AC emf source: driving frequency f ε = ε sinωt ω = 2π f m If circuit contains only R + emf source, current is simple ε ε

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015 First and Second Order Circuits Claudio Talarico, Gonzaga University Spring 2015 Capacitors and Inductors intuition: bucket of charge q = Cv i = C dv dt Resist change of voltage DC open circuit Store voltage

More information

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A. ATENATING UENT 3 3 IDENTIFY: i Icosωt and I I/ SET UP: The specified value is the root-mean-square current; I 34 A EXEUTE: (a) I 34 A (b) I I (34 A) 48 A (c) Since the current is positive half of the time

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

Circuits with Capacitor and Inductor

Circuits with Capacitor and Inductor Circuits with Capacitor and Inductor We have discussed so far circuits only with resistors. While analyzing it, we came across with the set of algebraic equations. Hereafter we will analyze circuits with

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1 hapter 31: RL ircuits PHY049: hapter 31 1 L Oscillations onservation of energy Topics Damped oscillations in RL circuits Energy loss A current RMS quantities Forced oscillations Resistance, reactance,

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Damped & forced oscillators

Damped & forced oscillators SEISMOLOGY I Laurea Magistralis in Physics of the Earth and of the Environment Damped & forced oscillators Fabio ROMANELLI Dept. Earth Sciences Università degli studi di Trieste romanel@dst.units.it Damped

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner t W I w v 6.00-fall 017 Midterm 1 Name Problem 3 (15 pts). F the circuit below, assume that all equivalent parameters are to be found to the left of port

More information

Notes on the Periodically Forced Harmonic Oscillator

Notes on the Periodically Forced Harmonic Oscillator Notes on the Periodically orced Harmonic Oscillator Warren Weckesser Math 38 - Differential Equations 1 The Periodically orced Harmonic Oscillator. By periodically forced harmonic oscillator, we mean the

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

Alternating Currents. The power is transmitted from a power house on high voltage ac because (a) Electric current travels faster at higher volts (b) It is more economical due to less power wastage (c)

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits ourse Updates http://www.phys.hawaii.edu/~varner/phys272-spr10/physics272.html eminders: 1) Assignment #10 due Today 2) Quiz # 5 Friday (hap 29, 30) 3) Start A ircuits Alternating urrents (hap 31) In this

More information

Alternating Current. Symbol for A.C. source. A.C.

Alternating Current. Symbol for A.C. source. A.C. Alternating Current Kirchoff s rules for loops and junctions may be used to analyze complicated circuits such as the one below, powered by an alternating current (A.C.) source. But the analysis can quickly

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

More information

Lecture 4: R-L-C Circuits and Resonant Circuits

Lecture 4: R-L-C Circuits and Resonant Circuits Lecture 4: R-L-C Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L

More information

MAS212 Assignment #2: The damped driven pendulum

MAS212 Assignment #2: The damped driven pendulum MAS Assignment #: The damped driven pendulum Sam Dolan (January 8 Introduction In this assignment we study the motion of a rigid pendulum of length l and mass m, shown in Fig., using both analytical and

More information

MODULE I. Transient Response:

MODULE I. Transient Response: Transient Response: MODULE I The Transient Response (also known as the Natural Response) is the way the circuit responds to energies stored in storage elements, such as capacitors and inductors. If a capacitor

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 15c Lecture Harmonic Oscillators (H&L Sections 1.4 1.6, Chapter 3) Administravia! Problem Set #1! Due on Thursday next week! Lab schedule has been set! See Course Web " Laboratory

More information

2.1 Exponential Growth

2.1 Exponential Growth 2.1 Exponential Growth A mathematical model is a description of a real-world system using mathematical language and ideas. Differential equations are fundamental to modern science and engineering. Many

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: _15 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS Conference: Date: _15 April 2005 EXAM #2: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance

Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Supplemental Notes on Complex Numbers, Complex Impedance, RLC Circuits, and Resonance Complex numbers Complex numbers are expressions of the form z = a + ib, where both a and b are real numbers, and i

More information

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions

University of California, Berkeley Department of Mechanical Engineering ME 104, Fall Midterm Exam 1 Solutions University of California, Berkeley Department of Mechanical Engineering ME 104, Fall 2013 Midterm Exam 1 Solutions 1. (20 points) (a) For a particle undergoing a rectilinear motion, the position, velocity,

More information

Electric Circuits Fall 2015 Solution #5

Electric Circuits Fall 2015 Solution #5 RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermeate steps: a correct solution without an explanation will get zero cret.

More information

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Inductive & Capacitive Circuits. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Inductive & Capacitive Circuits Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur LR Circuit LR Circuit (Charging) Let us consider a circuit having an inductance

More information

a + b Time Domain i(τ)dτ.

a + b Time Domain i(τ)dτ. R, C, and L Elements and their v and i relationships We deal with three essential elements in circuit analysis: Resistance R Capacitance C Inductance L Their v and i relationships are summarized below.

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information