Satellite Navigation GPS measurements and error sources

Size: px
Start display at page:

Download "Satellite Navigation GPS measurements and error sources"

Transcription

1 Satellite Navigation GPS measrements and error sorces Pictre: ESA AE4E08 Sandra Verhagen Corse , lectre 4 1

2 Today s topics Recap: GPS signal components Code Phase measrements psedoranges Carrier Phase measrements GPS measrements: example Otlook: error sorces Book: Section 5.1 2

3 Recap: GPS signal components All signals and time information are coherently derived from the same clock with a freqency of f 0 =10.23 MHz Signal components Freqency Wavelength / chiplength L1 carrier MHz (154*f 0 ) cm L2 carrier MHz (120*f 0 ) cm C/A code on L1 with Mbits/sec (0.1*f 0 ) 293 m P code on L1 and L Mbits/sec (f 0 ) 29.3 m Broadcast message 50 bits/sec 3

4 Recap: GPS signal components From: Misra and Enge 4

5 Recap: GPS signal components carrier f (t) +1-1 phase shift 180 o code and data Ct () Dt () signal St () 5

6 Code Phase measrements τ? transit time 70 to 90 ms t? tre GPS time at which code is received s ( ) t t τ emission time (imprinted on signal) t () t measred arrival time (clock reading) ρ ( ) s ( τ ) () t = c t t t t psedorange 6

7 Code Phase measrements ( ) = +δ () t t t t t receiver clock bias t ( ) = +δ () t t t t t t = t t 8

8 Code Phase measrements t t t t t ( ) = +δ () receiver clock bias t ( ) = +δ () t t t t t t = t Receiver clocks: drift! Deviation from GPS time limited to ±1 ms: continos clock steering reset (clock jmp!) when certain threshold is reached δt () t t 9

9 Code Phase measrements t t t t t ( ) = +δ () receiver clock bias s t t t t t ( ) s τ = ( τ) + δ ( τ) satellite clock bias estimated by control segment 10

10 Code Phase measrements t () t = t+δt () t s t t t t t ( ) s τ = ( τ) + δ ( τ) Unmodeled effects and errors ρ () t = c t () s ( ) t t t τ + ε ρ () t () ( ) s = c t+ δt ( ) t t τ δt t τ + ερ () t () s = cτ + c δt ( ) t δt t τ + ερ () t 11

11 psedorange () t c c t t t t () t ρ = τ + δ ( ) δ s ( τ) + ε ρ clock biases noise + errors distance traveled by signal 12

12 psedorange () t c c t t t t () t ρ = τ + δ ( ) δ s ( τ) + ε ρ clock biases noise + errors distance traveled by signal cτ = r(, t t τ ) + I () t + T () t ρ ρ geometric range ionosphere and troposphere delays 13

13 psedorange ρ = r+ I + T + c δt δt + ε s ρ ρ ρ psedorange measrement = biased and noisy measrement of the geometric range r Not to be stdied: part on Constrcting psedorange measrements in Section

14 psedorange measrements: example -clock 1 psedorange [m] Figre: Peter Bist 15

15 psedorange measrements: example -clock 2 psedorange [m] Figre: Peter Bist 16

16 psedorange measrements: example -clock 1 -clock 2 clock error [m] Figre: Peter Bist 17

17 Carrier Phase measrements φ [cyc] Very precise! 18

18 Carrier Phase measrements φ ( t ) φ() t 0 φ [cyc] f ( t t ) 0 = nmber of cycles since starting point of interval Carrier phase : φ() t = φ( t ) + f ( t t )

19 Carrier Phase measrements received φ generated Carrier phase measrement: Difference between phases of receiver-generated carrier signal and received carrier signal 20

20 Carrier Phase measrements received φ generated Carrier phase measrement: Difference between phases of receiver-generated carrier signal and received carrier signal Phase measrement + whole nmber of cycles traveled range Change in phase continosly measred (incl. fll cycles) 21

21 Carrier Phase measrements s φ() t = φ () t φ ( t τ) + N + εφ Recall: φ() t = φ( t ) + f ( t t ) 0 0 φ () t = φ ( t ) + f ( t t ) + f ( δt () t δt ( t )) clock biases φ ( t τ) = φ ( t ) + f ( t τ t ) + f ( δt ( t τ) δt ( t )) s s s s

22 φ() t = f τ ( s δ () ( )) δ τ + f t t t t + φ ( t ) φ ( t ) s 0 0 ( s δ ( ) 0) δ ( 0) f t t t t + N + ε φ Carrier Phase measrements s φ() t = φ () t φ ( t τ) + N + εφ ( ) φ () t = φ ( t ) + f ( t t ) + f δt () t δt ( t ) s s s s t = t0 + f t t0 + f t t t t0 ( ) φ ( τ) φ ( ) ( τ ) δ ( τ) δ ( ) -clock biases - initial phases - clock biases at t 0 - integer ambigity (constant) - noise and errors A 23

23 φ() t = f τ Carrier Phase measrements ( δ () s ( )) δ τ + f t t t t + A + λ A + ε φ c f = λ λ φ() t = c τ ( δ () s ( )) δ τ + c t t t t + λ ε φ cycles meters 24

24 Carrier Phase measrements λ φ() t = c τ ( δ () s ( )) δ τ + c t t t t + λ A + λ ε φ Φ = r+ I + T φ φ ( s δ ) δ + c t t + λ A + ε Φ Ambigities mst be resolved to take advantage of high precision phase measrements 25

25 GPS measrements: example Dataset Jne 1 st, GPS week :00-23:59 (GPS-time) 10 seconds interval Trimble 4700 receiver dal-freqency GPS (L1 & L2) choke-ring antenna at GNSS-observatory in Delft RINEX: Receiver Independent Exchange format data (delf1520) provided by H. van der Marel plots by Q. Le, photo by R. Kremers 26

26 Rinex version OBSERVATION DATA G (GPS) RINEX VERSION / TYPE teqc 2002Mar14 Atomatic GPS proces :15:24UTCPGM / RUN BY / DATE Linx Pentim II gcc Linx 486/DX+ COMMENT BIT 2 OF LLI FLAGS DATA COLLECTED UNDER A/S CONDITION COMMENT DELFT-16 MARKER NAME 13502M004 MARKER NUMBER H. VAN DER MAREL AGRS.NL (KAD,MD,TUD) OBSERVER / AGENCY TRIMBLE 4700 N1.30/S0.00 REC # / TYPE / VERS TRM UNAV ANT # / TYPE APPROX POSITION XYZ ANTENNA: DELTA H/E/N 1 1 WAVELENGTH FACT L1/2 7 L1 L2 C1 P2 D1 S1 S2 # / TYPES OF OBSERV INTERVAL COMMENT AGRS.NL - Active GPS Reference System for the Netherlands COMMENT H.vanderMarel@geo.tdelft.nl COMMENT COMMENT The coordinates in the RINEX header are given in the COMMENT system ETRS89 and were based on the ITRF96 soltion. COMMENT SNR is mapped to RINEX snr flag vale [1-9] COMMENT L1: 3 -> 1; 8 -> 5; 40 -> 9 COMMENT L2: 1 -> 1; 5 -> 5; 60 -> 9 COMMENT GPS TIME OF FIRST OBS END OF HEADER G 5G 1G 4G 2G14G30G 6G25G Satellite Navigation (AE4E08) Lectre

27 date time observed GPS satellites G 5G 1G 4G 2G14G30G 6G25G L1 [cyc] L2 [cyc] C1 [m] P2 [m] D1 [Hz] S1 [db-hz] S2 [db-hz] Rinex version 2

28 Rinex version 3 > G G G G G G G G G G G G E S S S24 date time no. observed GNSS 7 satellites > G G G G C1 [m] L1 [cyc] D [Hz] 8 S [db-hz] G G G G G G G01 Satellite Navigation (AE4E08) Lectre G E G: GPS E: Galileo S: SBAS

29 consider one GPS satellite a = m r = m skyplot: local azimth verss elevation of GPS satellite PRN 20 grond-track as observed in Delft over 24 hr period (Delft is at 52 degrees latitde North, the orbital plane has a 55 degrees inclination) 30

30 90 Elevation elevation angle - PRN20 80 elevation angle [degrees] time [hors of day] 31

31 Psedorange observation 2.8 x C1 - PRN range [meters] time [hors of day] 32

32 L1 carrier phase observation carrier phase is ambigos (jst starts at zero here) 0.5 x L1 - PRN range [cycles] time [hors of day] 33

33 L1 Doppler freqency observation 4000 D1 - PRN Doppler [Hz] time [hors of day] 34

34 55 Signal strength actally Carrier-to-Noise density ratio S1 - PRN20 Signal-to-Noise ratio [db-hz] time [hors of day] down to 25 db-hz, pretty good receiver 35

35 range [meters] Psedorange observations 2.9 x C1 - all PRNs they get longer as time proceeds? time [hors of day] 36

36 Receiver clock error 2.5 x 106 receiver clock error [m] [m] time [hors of day] oscillator in receiver has stability of abot 10-7 s/s 37

37 Noise and bias Noise: qickly varying, averages ot to zeros Bias: systematic / persistent over longer time, or otlier in observation 38

38 Normal distribtion assme satellite and receiver are not moving range measrement repeated 10,000 times flctations de to measrement noise relative freqecy ρ ρ 39

39 Normal distribtion assme satellite and receiver are not moving range measrement repeated 10,000 times flctations de to measrement noise generally, normal distribtion assmed relative freqecy ρ ρ 40

40 Normal distribtion A random variable has a normal or Gassian distribtion with parameters and x σ x x σ x 2 σ x : mean : standard deviation : variance Notation: 41

41 Standard deviation and RMS error Standard deviation: measre for flctations 2 ( x ) Empirical standard deviation: i x with n i= 1 n 1 P( x x σ ) = 68.3% P( x x 2 σ ) = 95.4% x x x 1 n xi n i = 1 = RMS error: n i= 1 ( x n x i 2 ) 42

42 Error sorces satellite: orbit clock instrmental delays signal path ionosphere troposphere mltipath receiver clock instrmental delays other spoofing interference 44

43 Smmary and otlook GPS: history and overview (Chapter 1, Sections 2.1, 2.2, 4.4) GPS signals (Section 2.3) Ftre GNSS (Chapter 3) GPS receivers (paper Braasch and Van Dierendonck) GPS measrements (Section 5.1) Homework (optional): on blackboard Next: error sorces and PVT estimation 45

Satellite Navigation error sources and position estimation

Satellite Navigation error sources and position estimation Satellite Navigation error sources and position estimation Picture: ESA AE4E08 Sandra Verhagen Course 2010 2011, lecture 6 1 Today s topics Recap: GPS measurements and error sources Signal propagation

More information

EESC Geodesy with the Global Positioning System. Class 6: Point Positioning using Pseuduorange

EESC Geodesy with the Global Positioning System. Class 6: Point Positioning using Pseuduorange EESC 9945 Geodesy with the Global Positioning System Class 6: Point Positioning using Pseuduorange GPS Positioning Solutions Point Positioning: Determination of the coordinates of a point with respect

More information

Satellite Navigation PVT estimation and integrity

Satellite Navigation PVT estimation and integrity Satellite Navigation PVT estimation and integrity Picture: ESA AE4E8 Sandra Verhagen Course 1 11, lecture 7 1 Satellite Navigation (AE4E8 Lecture 7 Today s topics Position, Velocity and Time estimation

More information

GNSS: Global Navigation Satellite Systems

GNSS: Global Navigation Satellite Systems GNSS: Global Navigation Satellite Systems Global: today the American GPS (Global Positioning Service), http://gps.losangeles.af.mil/index.html the Russian GLONASS, http://www.glonass-center.ru/frame_e.html

More information

Global Navigation Satellite Systems

Global Navigation Satellite Systems Global Navigation Satellite Systems GPS GLONASS Galileo BeiDou I I (COMPASS)? How Does a GNSS Work? Based on principle of triangulation Also called satellite ranging Signal travels at constant speed (3.0x10

More information

Carrier-phase Ambiguity Success Rates for Integrated GPS-Galileo Satellite Navigation

Carrier-phase Ambiguity Success Rates for Integrated GPS-Galileo Satellite Navigation Proceedings Space, Aeronautical and Navigational Electronics Symposium SANE2, The Institute of Electronics, Information and Communication Engineers (IEICE), Japan, Vol., No. 2, pp. 3- Carrier-phase Ambiguity

More information

Atmospheric delay. X, Y, Z : satellite cartesian coordinates. Z : receiver cartesian coordinates. In the vacuum the signal speed c is constant

Atmospheric delay. X, Y, Z : satellite cartesian coordinates. Z : receiver cartesian coordinates. In the vacuum the signal speed c is constant Atmospheric delay In the vacuum the signal speed c is constant c τ = ρ = ( X X ) + ( Y Y ) + ( Z Z ) S S S 2 S 2 S 2 X, Y, Z : receiver cartesian coordinates S S S X, Y, Z : satellite cartesian coordinates

More information

Introduction to Global Navigation Satellite System (GNSS) Module: 2

Introduction to Global Navigation Satellite System (GNSS) Module: 2 Introduction to Global Navigation Satellite System (GNSS) Module: 2 Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide :

More information

Principles of the Global Positioning System Lecture 14

Principles of the Global Positioning System Lecture 14 12.540 Principles of the Global Positioning System Lecture 14 Prof. Thomas Herring http://geoweb.mit.edu/~tah/12.540 Propagation Medium Propagation: Signal propagation from satellite to receiver Light-time

More information

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes:

GPS Geodesy - LAB 7. Neglecting the propagation, multipath, and receiver errors, eq.(1) becomes: GPS Geodesy - LAB 7 GPS pseudorange position solution The pseudorange measurements j R i can be modeled as: j R i = j ρ i + c( j δ δ i + ΔI + ΔT + MP + ε (1 t = time of epoch j R i = pseudorange measurement

More information

Carrier Phase Integer Ambiguity Resolution Recent results and open issues

Carrier Phase Integer Ambiguity Resolution Recent results and open issues Carrier Phase Integer Ambiguity Resolution Recent results and open issues Sandra Verhagen DEOS, Delft University of Technology, The Netherlands Kolloquium Satellitennavigation, TU München, 9 February 2010

More information

ESA/ESOC Status. T. Springer, E. Schoenmann, W. Enderle. ESA/ESOC Navigation Support Office. ESA UNCLASSIFIED - For Official Use

ESA/ESOC Status. T. Springer, E. Schoenmann, W. Enderle. ESA/ESOC Navigation Support Office. ESA UNCLASSIFIED - For Official Use ESA/ESOC Status T. Springer, E. Schoenmann, W. Enderle ESA/ESOC Navigation Support Office ESA UNCLASSIFIED - For Official Use Content Issues in BIAS PP Status regarding future ILRS plans Other ILRS/SLR

More information

EESC Geodesy with the Global Positioning System. Class 4: The pseudorange and phase observables

EESC Geodesy with the Global Positioning System. Class 4: The pseudorange and phase observables EESC 9945 Geodesy with the Global Positioning System Class 4: The pseudorange and phase observables In previous classes we had presented the equation for the pseudorange as the true range biased by the

More information

Figure from Mike Rymer, USGS

Figure from Mike Rymer, USGS Ge111A Winter 2009 3/5/2009 1 Figure from Mike Rymer, USGS Ge111A Winter 2009 3/5/2009 2 Ge111A Winter 2009 3/5/2009 3 SWIR image made from ASTER data Ge111A Winter 2009 3/5/2009 4 Ge111A Winter 2009 3/5/2009

More information

Climate Monitoring with Radio Occultation Data

Climate Monitoring with Radio Occultation Data Climate Monitoring with Radio Occultation Data Systematic Error Sources C. Rocken, S. Sokolovskiy, B. Schreiner, D. Hunt, B. Ho, B. Kuo, U. Foelsche Radio Occultation Claims Most stable Global Thermometer

More information

Carrier Phase Techniques

Carrier Phase Techniques Carrier Phase Techniques Michael P Vitus August 30, 2005 Introduction This paper provides an explanation of the methods as well as the wor performed on the GPS project under Professor Ng ding the summer

More information

FRÉCHET KERNELS AND THE ADJOINT METHOD

FRÉCHET KERNELS AND THE ADJOINT METHOD PART II FRÉCHET KERNES AND THE ADJOINT METHOD 1. Setp of the tomographic problem: Why gradients? 2. The adjoint method 3. Practical 4. Special topics (sorce imaging and time reversal) Setp of the tomographic

More information

Cosmic Microwave Background Radiation. Carl W. Akerlof April 7, 2013

Cosmic Microwave Background Radiation. Carl W. Akerlof April 7, 2013 Cosmic Microwave Backgrond Radiation Carl W. Akerlof April 7, 013 Notes: Dry ice sblimation temperatre: Isopropyl alcohol freezing point: LNA operating voltage: 194.65 K 184.65 K 18.0 v he terrestrial

More information

IGS-MGEX: QZSS Orbit and Clock Determination

IGS-MGEX: QZSS Orbit and Clock Determination IGS-MGEX: QZSS Orbit and Clock Determination P. Steigenberger (1), S. Kogure (2) (1) DLR/GSOC, (2) JAXA Quasi-Zenith Satellite System (QZSS) Japanese regional augmentation System for GPS in the Asia and

More information

RINEX Extensions to Handle Clock Information ********************************************

RINEX Extensions to Handle Clock Information ******************************************** RINEX Extensions to Handle Clock Information ******************************************** Jim Ray, US Naval Observatory Werner Gurtner, University of Berne (Initial version, 27 August 1998) (Error in example

More information

CODE's multi-gnss orbit and clock solution

CODE's multi-gnss orbit and clock solution source: https://doi.org/10.7892/boris.68193 downloaded: 13.3.2017 CODE's multi-gnss orbit and clock solution L. Prange, E. Orliac, R. Dach, D. Arnold, G. Beutler, S. Schaer, A. Jäggi Astronomical Institute,

More information

2. GNSS Measurements

2. GNSS Measurements Abstract: With the development of the International GNSS Service, whose primary object is to provide highest products for research, education and multidisciplinary application, the concept of Precise Point

More information

Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning

Impact of Tropospheric Delay Gradients on Total Tropospheric Delay and Precise Point Positioning International Journal of Geosciences, 016, 7, 645-654 Published Online May 016 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.436/ijg.016.75050 Impact of Tropospheric Delay Gradients

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

Homework #1 Solution: March 8, 2006

Homework #1 Solution: March 8, 2006 12.540 Homework #1 Solution: March 8, 2006 Question 1: (a) Convert geodetic position 290 deg Long 42 deg latitude ellipsoidal height 0 m into Cartesian and geocentric coordinates. (b) How far apart on

More information

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute

Use of ground-based GNSS measurements in data assimilation. Reima Eresmaa Finnish Meteorological Institute Use of ground-based GNSS measurements in data assimilation Reima Eresmaa Finnish Meteorological Institute 16 June 2006 Outline 1) Introduction GNSS * positioning Tropospheric delay 2) GNSS as a meteorological

More information

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH

WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH WHITEPAPER: ACHIEVING THE CRAMER-RAO LOWER BOUND IN GPS TIME-OF-ARRIVAL ESTIMATION, A FREQUENCY DOMAIN WEIGHTED LEAST-SQUARES ESTIMATOR APPROACH KENNETH M PESYNA, JR AND TODD E HUMPHREYS THE UNIVERSITY

More information

Satellite Geodesy and Navigation Present and Future

Satellite Geodesy and Navigation Present and Future Satellite Geodesy and Navigation Present and Future Drazen Svehla Institute of Astronomical and Physical Geodesy Technical University of Munich, Germany Content Clocks for navigation Relativistic geodesy

More information

Mitigation of Multipath-induced Errors in Satellite Navigation

Mitigation of Multipath-induced Errors in Satellite Navigation Mitigation of Multipath-induced Errors in Satellite Navigation Master Thesis Ioana Gulie Aalborg University Department of Electronic Systems Fredrik Bajers Vej 7B 922 Aalborg, Denmark Astrium GmbH Department

More information

esa ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG)

esa ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG) ACE+ An Atmosphere and Climate Explorer based on GPS, GALILEO, and LEO-LEO Occultation Per Høeg (AIR/DMI) Gottfried Kirchengast (IGAM/UG) OPAC-1, September, 2002 1 Objectives Climate Monitoring global

More information

TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS 23

TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS 23 TOWARDS ROBUST LOCALIZATION OF RTK-GPS TOPOGRAPHIC SURVEYS Jerry W. Nave, North Carolina A&T University; Tarig A. Ali, American University of Sharjah Abstract Localization is performed to fit the observed

More information

Geodesy Part of the ACES Mission: GALILEO on Board the International Space Station

Geodesy Part of the ACES Mission: GALILEO on Board the International Space Station Geodesy Part of the ACES Mission: GALILEO on Board the International Space Station 1 Svehla D, 2 Rothacher M, 3 Salomon C, 2 Wickert J, 2 Helm A, 2 Beyerle, G, 4 Ziebart M, 5 Dow J 1 Institute of Astronomical

More information

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status

ATOMIC CLOCK ENSEMBLE IN SPACE Mission status ATOMIC CLOCK ENSEMBLE IN SPACE Mission status Luigi Cacciapuoti on behalf of the ACES team 30/03/2017 Rencontres de Moriond 2017 - Gravitation, La Thuile ACES Luigi Cacciapuoti 30/03/2017 Slide 2 The Columbus

More information

Modern Navigation

Modern Navigation 12.215 Modern Navigation Thomas Herring (tah@mit.edu), MW 10:30-12:00 Room 54-322 http://geoweb.mit.edu/~tah/12.215 Course Overview The development of the Global Positioning System (GPS) started in the

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

A priori solar radiation pressure model for QZSS Michibiki satellite

A priori solar radiation pressure model for QZSS Michibiki satellite IGS Workshop, 8-12 Feb, 2016, Sydney, Australia A priori solar radiation pressure model for QZSS Michibiki satellite Qile Zhao, Guo Chen, Jing Guo, Jingnan Liu (Email: zhaoql@whu.edu.cn) GNSS Research

More information

The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System

The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System Sensors 214, 14, 15182-1522; doi:1.339/s14815182 Article OPEN ACCESS sensors ISSN 1424-822 www.mdpi.com/journal/sensors The Open Service Signal in Space Navigation Data Comparison of the Global Positioning

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

Discontinuous Fluctuation Distribution for Time-Dependent Problems

Discontinuous Fluctuation Distribution for Time-Dependent Problems Discontinos Flctation Distribtion for Time-Dependent Problems Matthew Hbbard School of Compting, University of Leeds, Leeds, LS2 9JT, UK meh@comp.leeds.ac.k Introdction For some years now, the flctation

More information

Week 02. Assist. Prof. Dr. Himmet KARAMAN

Week 02. Assist. Prof. Dr. Himmet KARAMAN Week 02 Assist. Prof. Dr. Himmet KARAMAN Contents Satellite Orbits Ephemerides GPS Review Accuracy & Usage Limitation Reference Systems GPS Services GPS Segments Satellite Positioning 2 Satellite Orbits

More information

Impact of the SRP model on CODE's 5- system orbit and clock solution for the MGEX

Impact of the SRP model on CODE's 5- system orbit and clock solution for the MGEX Impact of the SRP model on CODE's 5- system orbit and clock solution for the MGEX L. Prange, E. Orliac, R. Dach, D. Arnold, G. Beutler, S. Schaer, A. Jäggi Astronomical Institute, University of Bern, Switzerland

More information

SPACECRAFT NAVIGATION AND MISSION SIMULATION

SPACECRAFT NAVIGATION AND MISSION SIMULATION TianQin Space-borne gravitational wave detector SPACECRAFT NAVIGATION AND MISSION SIMULATION December 9, 2015 - Prepared by Viktor T. Toth A PERSPECTIVE Precision navigation End-to-end mission simulation

More information

Impact of GPS box-wing models on LEO orbit determination

Impact of GPS box-wing models on LEO orbit determination Impact of GPS box-wing models on LEO orbit determination Heike Peter (1), Tim Springer (1),(2), Michiel Otten (1),(2) (1) PosiTim UG Sentinel-1 GPS-IIF (2) ESA/ESOC Sentinel-2 Credits:ESA gps.gov IGS Workshop

More information

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase

EESC Geodesy with the Global Positioning System. Class 7: Relative Positioning using Carrier-Beat Phase EESC 9945 Geodesy with the Global Positioning System Class 7: Relative Positioning using Carrier-Beat Phase GPS Carrier Phase The model for the carrier-beat phase observable for receiver p and satellite

More information

NPL Time and Frequency Section: NPL S CONTRIBUTION TO TUGGS

NPL Time and Frequency Section: NPL S CONTRIBUTION TO TUGGS NPL Time & Frequency NPL Time and Frequency Section: NPL S CONTRIBUTION TO TUGGS J A Davis, P W Stacey, R Hlavac, and P B Whibberley. Date: 21st April 2004 THALES UK-BASED GNSS GROUND SEGMENT (TUGGS) Aim

More information

Chapter 4 Linear Models

Chapter 4 Linear Models Chapter 4 Linear Models General Linear Model Recall signal + WG case: x[n] s[n;] + w[n] x s( + w Here, dependence on is general ow we consider a special case: Linear Observations : s( H + b known observation

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Basic Statistics Summary of last class Statistical description and parameters Probability distributions Descriptions: expectations, variances, moments Covariances

More information

The Usefulness of WADGPS Satellite Orbit and Clock Corrections for Dual-Frequency Precise Point Positioning

The Usefulness of WADGPS Satellite Orbit and Clock Corrections for Dual-Frequency Precise Point Positioning The Usefulness of WADGPS Satellite Orbit and Clock Corrections for Dual-Frequency Precise Point Positioning Hyunho Rho and Richard B. Langley Department of Geodesy and Geomatics Engineering, University

More information

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency

The ACES Mission. Fundamental Physics Tests with Cold Atom Clocks in Space. L. Cacciapuoti European Space Agency The ACES Mission Fundamental Physics Tests with Cold Atom Clocks in Space L. Cacciapuoti European Space Agency La Thuile, 20-27 March 2011 Gravitational Waves and Experimental Gravity 1 ACES Mission Concept

More information

INTEGRATED OPERATIONAL PRECISE ORBIT DETERMINATION FOR LEO

INTEGRATED OPERATIONAL PRECISE ORBIT DETERMINATION FOR LEO INTEGRATED OPERATIONAL PRECISE ORBIT DETERMINATION FOR LEO J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton, 8760 Tres Cantos, Spain, Email: jfernandez@gmv.com,

More information

Test Computations

Test Computations 158 7. Test Computations.3.2.1 -.1 -.2 Fourier index 2.8.4 -.4 -.8 Fourier index 2.2.1 -.1 -.2 Fourier index 3.8.4 -.4 -.8 Fourier index 3.2.1 -.1 -.2 -.3 Fourier index 4.8.4 -.4 -.8 Fourier index 4.2.1

More information

Experimental verification of Internet-based Global Differential GPS

Experimental verification of Internet-based Global Differential GPS Experimental verification of Internet-based Global Differential GPS M.O. Kechine, C.C.J.M. Tiberius and H. van der Marel Section of Mathematical Geodesy and Positioning (MGP) Delft University of Technology

More information

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty

Technical Note. ODiSI-B Sensor Strain Gage Factor Uncertainty Technical Note EN-FY160 Revision November 30, 016 ODiSI-B Sensor Strain Gage Factor Uncertainty Abstract Lna has pdated or strain sensor calibration tool to spport NIST-traceable measrements, to compte

More information

Research of Satellite and Ground Time Synchronization Based on a New Navigation System

Research of Satellite and Ground Time Synchronization Based on a New Navigation System Research of Satellite and Ground Time Synchronization Based on a New Navigation System Yang Yang, Yufei Yang, Kun Zheng and Yongjun Jia Abstract The new navigation time synchronization method is a breakthrough

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Mltidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Compter Science http://inside.mines.ed/~whoff/ Forier Transform Part : D discrete transforms 2 Overview

More information

Department of Electrical Engineering and Information Technology. Institute for Communications and Navigation Prof. Dr. sc. nat.

Department of Electrical Engineering and Information Technology. Institute for Communications and Navigation Prof. Dr. sc. nat. Technische Universität München Department of Electrical Engineering and Information Technology Institute for Communications and Navigation Prof. Dr. sc. nat. Christoph Günther Master thesis Partial ambiguity

More information

Gravitational-Wave Data Analysis: Lecture 2

Gravitational-Wave Data Analysis: Lecture 2 Gravitational-Wave Data Analysis: Lecture 2 Peter S. Shawhan Gravitational Wave Astronomy Summer School May 29, 2012 Outline for Today Matched filtering in the time domain Matched filtering in the frequency

More information

Cycle Slip Detection and Correction Methods with Time-Differenced Model for Single Frequency GNSS Applications*

Cycle Slip Detection and Correction Methods with Time-Differenced Model for Single Frequency GNSS Applications* Vol 6, No 1, pp 15, 13 Special Issue on the 3rd ISCIE International Symposium on Stochastic Systems Theory and Its Applications III Paper Cycle Slip Detection and Correction Methods with Time-Differenced

More information

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty November 2007

Workshop on Understanding and Evaluating Radioanalytical Measurement Uncertainty November 2007 1833-3 Workshop on Understanding and Evalating Radioanalytical Measrement Uncertainty 5-16 November 007 Applied Statistics: Basic statistical terms and concepts Sabrina BARBIZZI APAT - Agenzia per la Protezione

More information

), σ is a parameter, is the Euclidean norm in R d.

), σ is a parameter, is the Euclidean norm in R d. WEIGHTED GRAPH LAPLACIAN AND IMAGE INPAINTING ZUOQIANG SHI, STANLEY OSHER, AND WEI ZHU Abstract. Inspired by the graph Laplacian and the point integral method, we introdce a novel weighted graph Laplacian

More information

imin...

imin... Pulsar Timing For a detailed look at pulsar timing and other pulsar observing techniques, see the Handbook of Pulsar Astronomy by Duncan Lorimer and Michael Kramer. Pulsars are intrinsically interesting

More information

Mobile Radio Communications

Mobile Radio Communications Course 3: Radio wave propagation Session 3, page 1 Propagation mechanisms free space propagation reflection diffraction scattering LARGE SCALE: average attenuation SMALL SCALE: short-term variations in

More information

FRTN10 Exercise 12. Synthesis by Convex Optimization

FRTN10 Exercise 12. Synthesis by Convex Optimization FRTN Exercise 2. 2. We want to design a controller C for the stable SISO process P as shown in Figre 2. sing the Yola parametrization and convex optimization. To do this, the control loop mst first be

More information

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS

Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS Chapter 3 MATHEMATICAL MODELING OF DYNAMIC SYSTEMS 3. System Modeling Mathematical Modeling In designing control systems we mst be able to model engineered system dynamics. The model of a dynamic system

More information

E ect Of Quadrant Bow On Delta Undulator Phase Errors

E ect Of Quadrant Bow On Delta Undulator Phase Errors LCLS-TN-15-1 E ect Of Qadrant Bow On Delta Undlator Phase Errors Zachary Wolf SLAC Febrary 18, 015 Abstract The Delta ndlator qadrants are tned individally and are then assembled to make the tned ndlator.

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

DO NOT TURN OVER UNTIL TOLD TO BEGIN

DO NOT TURN OVER UNTIL TOLD TO BEGIN ame HEMIS o. For Internal Stdents of Royal Holloway DO OT TUR OVER UTIL TOLD TO BEGI EC5040 : ECOOMETRICS Mid-Term Examination o. Time Allowed: hor Answer All 4 qestions STATISTICAL TABLES ARE PROVIDED

More information

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions

sin u 5 opp } cos u 5 adj } hyp opposite csc u 5 hyp } sec u 5 hyp } opp Using Inverse Trigonometric Functions 13 Big Idea 1 CHAPTER SUMMARY BIG IDEAS Using Trigonometric Fnctions Algebra classzone.com Electronic Fnction Library For Yor Notebook hypotense acent osite sine cosine tangent sin 5 hyp cos 5 hyp tan

More information

Update on the In-orbit Performances of GIOVE Clocks

Update on the In-orbit Performances of GIOVE Clocks Update on the In-orbit Performances of GIOVE Clocks Pierre Waller, Francisco Gonzalez, Stefano Binda, ESA/ESTEC Ilaria Sesia, Patrizia Tavella, INRiM Irene Hidalgo, Guillermo Tobias, GMV Abstract The Galileo

More information

Identifying a low-frequency oscillation in Galileo IOV pseudorange rates

Identifying a low-frequency oscillation in Galileo IOV pseudorange rates GPS Solut (2016) 20:363 372 DOI 10.1007/s10291-015-0443-7 ORIGINAL ARTICLE Identifying a low-frequency oscillation in Galileo IOV pseudorange rates Daniele Borio Ciro Gioia Neil Mitchison Received: 29

More information

Free electron lasers

Free electron lasers Preparation of the concerned sectors for edcational and R&D activities related to the Hngarian ELI project Free electron lasers Lectre 1.: Introdction, overview and working principle János Hebling Zoltán

More information

III. Demonstration of a seismometer response with amplitude and phase responses at:

III. Demonstration of a seismometer response with amplitude and phase responses at: GG5330, Spring semester 006 Assignment #1, Seismometry and Grond Motions De 30 Janary 006. 1. Calibration Of A Seismometer Using Java: A really nifty se of Java is now available for demonstrating the seismic

More information

Influences of different factors on temporal correlations of GNSS observations

Influences of different factors on temporal correlations of GNSS observations 2 T : oscillation period (unknown) C : scaling factor (unknown) ND : determined empirically a priori C,T: least-squares regression on sample ACF ND : first zero point of sample ACF h= ACF h π h ND ND T

More information

Centralized Wireless Data Networks: Performance Analysis

Centralized Wireless Data Networks: Performance Analysis Centralized Wireless Data Networks: Performance Analysis Sndhar Ram S ECE 559: Corse Presentations December 6, 2007 Centralized Wireless Data Networks Voice networks Inelastic traffic Drop packets Smaller

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences

GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences 1 GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences Hyung Keun Lee, Jang-Gyu Lee, and Gyu-In Jee Hyung Keun Lee is with Seoul National University-Korea University Joint Research

More information

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20 Efficient QR Sequential Least Square algorithm for high frequency GNSS Precise Point Positioning A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty AVENUE project June, 20 A. Barbu, J. Laurent-Varin,

More information

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy Lecture 2 Measurement Systems GEOS 655 Tectonic Geodesy VLBI and SLR VLBI Very Long Baseline Interferometry SLR Satellite Laser Ranging Very Long Baseline Interferometry VLBI Geometric Delay δg S Baseline

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 6 Part B, Lecture 6 17 March, 2017 C O N T E N T S In this lecture, we will look at various existing satellite tracking techniques. Recall that we

More information

Status of the Gravitational Redshift Test with Eccentric Galileo Satellites

Status of the Gravitational Redshift Test with Eccentric Galileo Satellites Status of the Gravitational Redshift Test with Eccentric Galileo Satellites J. Ventura-Traveset, R. Prieto-Cerdeira, D. Blonski ICG 11, Sochi, 7 November 2016 Contents 1. Galileo satellites 5 & 6 Status

More information

Possible advantages of equipping GNSS satellites with on-board accelerometers

Possible advantages of equipping GNSS satellites with on-board accelerometers Possible advantages of equipping GNSS satellites with on-board accelerometers - a way to get profits - Maciej Kalarus (1) Krzysztof Sośnica (2) Agata Wielgosz (1) Tomasz Liwosz (3) Janusz B. Zielioski

More information

Material. Lecture 8 Backlash and Quantization. Linear and Angular Backlash. Example: Parallel Kinematic Robot. Backlash.

Material. Lecture 8 Backlash and Quantization. Linear and Angular Backlash. Example: Parallel Kinematic Robot. Backlash. Lectre 8 Backlash and Qantization Material Toda s Goal: To know models and compensation methods for backlash Lectre slides Be able to analze the effect of qantization errors Note: We are sing analsis methods

More information

Autocorrelation Functions in GPS Data Processing: Modeling Aspects

Autocorrelation Functions in GPS Data Processing: Modeling Aspects Autocorrelation Functions in GPS Data Processing: Modeling Aspects Kai Borre, Aalborg University Gilbert Strang, Massachusetts Institute of Technology Consider a process that is actually random walk but

More information

IGS-related multi-gnss activities at CODE

IGS-related multi-gnss activities at CODE IGS-related multi-gnss activities at CODE Lars Prange (1), Rolf Dach (1) Simon Lutz (1), Stefan Schaer (2), Adrian Jäggi (1) (1) Astronomical Institute, University of Bern, Switzerland source: http://boris.unibe.ch/57698/

More information

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae

Numerical Simulation of Three Dimensional Flow in Water Tank of Marine Fish Larvae Copyright c 27 ICCES ICCES, vol.4, no.1, pp.19-24, 27 Nmerical Simlation of Three Dimensional Flo in Water Tank of Marine Fish Larvae Shigeaki Shiotani 1, Atsshi Hagiara 2 and Yoshitaka Sakakra 3 Smmary

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Trimble RTX TM Orbit Determination and User Positioning Performance with BeiDou Satellites

Trimble RTX TM Orbit Determination and User Positioning Performance with BeiDou Satellites Nick Talbot, Xiaoming Chen, Nico Reussner, Markus Brandl, Markus Nitschke, Carlos Rodriguez-Solano, Feipeng Zhang Trimble Terrasat GmbH IGNSS 2016, SYDNEY, AUSTRALIA Trimble RTX TM Orbit Determination

More information

ON THE SHAPES OF BILATERAL GAMMA DENSITIES

ON THE SHAPES OF BILATERAL GAMMA DENSITIES ON THE SHAPES OF BILATERAL GAMMA DENSITIES UWE KÜCHLER, STEFAN TAPPE Abstract. We investigate the for parameter family of bilateral Gamma distribtions. The goal of this paper is to provide a thorogh treatment

More information

Real-Time Estimation of GPS Satellite Clocks Based on Global NTRIP-Streams. André Hauschild

Real-Time Estimation of GPS Satellite Clocks Based on Global NTRIP-Streams. André Hauschild Real-Time Estimation of GPS Satellite Clocks Based on Global NTRIP-Streams André Hauschild Agenda Motivation Overview of the real-time clock estimation system Assessment of clock product quality a) SISRE

More information

The Potential of Galileo Inter-Satellite Ranging for Tropospheric Monitoring

The Potential of Galileo Inter-Satellite Ranging for Tropospheric Monitoring The Potential of Galileo Inter-Satellite Ranging for Tropospheric Monitoring Gregor Möller 1, Fabian Hinterberger 1, Robert Weber 1, Philipp Berglez 2, Lakshmi Privy Sevuga Vijayakumara 2, Janina Boisits

More information

EE4304 C-term 2007: Lecture 17 Supplemental Slides

EE4304 C-term 2007: Lecture 17 Supplemental Slides EE434 C-term 27: Lecture 17 Supplemental Slides D. Richard Brown III Worcester Polytechnic Institute, Department of Electrical and Computer Engineering February 5, 27 Geometric Representation: Optimal

More information

Geog Lecture 29 Mapping and GIS Continued

Geog Lecture 29 Mapping and GIS Continued Geog 1000 - Lecture 29 Mapping and GIS Continued http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 13-25, 28-29) 1. Hand back Assignment 3 2. Review of Dr. Peddle s lecture last week

More information

GISM Global Ionospheric Scintillation Model

GISM Global Ionospheric Scintillation Model GISM Global Ionospheric Scintillation Model http://www.ieea.fr/en/gism-web-interface.html Y. Béniguel, IEEA Béniguel Y., P. Hamel, A Global Ionosphere Scintillation Propagation Model for Equatorial Regions,

More information

V. Hadron quantum numbers

V. Hadron quantum numbers V. Hadron qantm nmbers Characteristics of a hadron: 1) Mass 2) Qantm nmbers arising from space-time symmetries : total spin J, parity P, charge conjgation C. Common notation: 1 -- + 2 J P (e.g. for proton:

More information

Ionosphere Prediction Service for GNSS Users

Ionosphere Prediction Service for GNSS Users Ionosphere Prediction Service for GNSS Users International Technical Symposium on Navigation and Timing Filippo Rodriguez, PhD, Telespazio 15th November 2018 Introduction Monitoring and forecasting of

More information

Lecture 2: CENTRAL LIMIT THEOREM

Lecture 2: CENTRAL LIMIT THEOREM A Theorist s Toolkit (CMU 8-859T, Fall 3) Lectre : CENTRAL LIMIT THEOREM September th, 3 Lectrer: Ryan O Donnell Scribe: Anonymos SUM OF RANDOM VARIABLES Let X, X, X 3,... be i.i.d. random variables (Here

More information

Enhanced GPS Accuracy using Lunar Transponders

Enhanced GPS Accuracy using Lunar Transponders Enhanced GPS Accuracy using Lunar Transponders G. Konesky SGK NanoStructures, Inc. LEAG - ICEUM - SSR Port Canaveral, FL Oct. 28-31, 2008 GPS Broadcast Ephemeris Error Nov. 1, 1997 Warren, 2002 Warren,

More information

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007

Graphs and Networks Lecture 5. PageRank. Lecturer: Daniel A. Spielman September 20, 2007 Graphs and Networks Lectre 5 PageRank Lectrer: Daniel A. Spielman September 20, 2007 5.1 Intro to PageRank PageRank, the algorithm reportedly sed by Google, assigns a nmerical rank to eery web page. More

More information

Model Predictive Control Lecture VIa: Impulse Response Models

Model Predictive Control Lecture VIa: Impulse Response Models Moel Preictive Control Lectre VIa: Implse Response Moels Niet S. Kaisare Department of Chemical Engineering Inian Institte of Technolog Maras Ingreients of Moel Preictive Control Dnamic Moel Ftre preictions

More information

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B Chin. J. Astron. Astrophys. Vol. 8 (28), No., 63 61 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and

More information