Problem Set 8

Size: px
Start display at page:

Download "Problem Set 8"

Transcription

1 Eli H. Ross Alberto De Sole November, 8.5 Problem Set 8 Exercise 36 Let X t and Y t be two independent Poisson processes with rate parameters λ and µ respectively, measuring the number of customers arriving in shops and, respectively. a) What is the probability that a customer arrives in store before any customer arrives in store? b) Show that Z t = X t + Y t is a Poisson process, and compute its rate. c) What is the probability that in the first four hours a total of customers have arrived in the two stores? d) Given that exactly customers have arrived at the two stores, what is the probability that the all went to store? e) Let T ) be the time of arrival of the first customer in store. Then X ) is the T number of customers in store at the time the first customer arrives in store. Find the probability distribution of the random variable X ). T f) Let T be the first time that at least one customer has arrive in each of the two shops. Find the probability density function for T. a) The probability that the first customer arrives in store at time x is λe xλ. The probability that the first customer arrives in store at time y is µe yµ. Hence, the probability that the first customer arrives in store at time x and the first customer arrives in store at time y is λµe xλ yµ. The desired probability is the following integral: which we can evaluate as x λµe xλ yµ dy dx, λe xλ+µ) dx = λ λ + µ. b) Let τ Z > k be the event that a waiting time for Z t greater than k. Note that P[τ Z > k] = P[τ X > k, τ Y > k]. Since X t and Y t are independent, this is P[τ X > k] P[τ Y > k] = e λk e µk = e λ+µ)k. Hence, Z t is a Poisson process with rate λ + µ.

2 c) The probability that n customers have arrived at store during the hours is λ)n e λ and the probability that n customers have arrived at store during the hours is µ)n e µ n!. We sum over all of the possibilities: λ) n e λ n= n! =! e λ+µ) µ) n e µ ) = e λ+µ) n)! n= n= λ n µ n n! n)! ) )λ n µ n = 3 n 3 e λ+µ) λ + µ). n! d) The desired conditional probability is λ) e λ! µ) e µ )! 3 3 e λ+µ) λ + µ) = λ λ + µ) = ) λ. λ + µ e) See that = P[X T ) = k] = P[X T ) ) P[X t = k] P[T ) = t] dt = ) = k T ) = t] P[T ) = t] dt ) λt) k e λt µe tµ dt k! = λk µ λ + µ) k+. Thus, the probability distribution for P[X ) T and elsewhere. = k] is ) λ k µ λ + µ λ + µ for k =,,,..., f) The probability that the first customer arrives in store at time x is λe xλ. The probability that the first customer arrives in store at time y is µe yµ. Hence, the probability that the first customer arrives in store at time x and the first customer arrives in store at time y is λµe xλ yµ. If T = t, then either the second store to get a customer was store at time t or store at time t. Thus, we have = P[T = t] = t λµe tλ yµ dy + t λµe xλ tµ dx λe tλ+µ) + λe tλ) + µe tλ+µ) + µe tµ) = λe tλ + µe tµ λ + µ)e λ+µ)t.

3 Exercise 37 Consider the continuous time Markov chain with state space S = {,, 3, } and infinitesimal generator A = a) Find the equilibrium distribution π. 3 3 b) Suppose the chain starts in state. What is the expected amount of time until it changes for the first time? c) Again assume that the chain starts in state. What is the expected amount of time until the chain reaches state?. a) Take πa = where π = [π π π 3 π ]. Expanding gives 3π + π 3 = π 3π + π 3 = π + π π 3 + π = π + π + π 3 π =. We have π 3 = 3π, so π 3π + 6π =, which gives π = 7 3 π. Finally, π π + 3π π =, so π = 9 3 π. Hence, i= π i = 38 3 π =, so π = Back substitution gives the complete equilibrium distribution: π = [ ]. b) The change rate is 3 per unit of time. Hence, the expected amount of time until the first jump is 3 of a unit of time. c) The expected time of first passage for state is τ ). Note that τ ) = A )), where A ) is the matrix obtained from A by erasing row and column. Thus, we have that 3 A ) = 3 so A )) = 8/9 6/9 5/9 /9 /9 6/9 3/9 7/9 9/9 Hence, A )) ) = [ ], so τ =. 3.

4 Exercise 38 Consider the birth and death process with λ n = /n + ) and µ n =. Show that the process is recurrent and admits and equilibrium distribution. Find the equilibrium distribution. Since there is no absorbing state, the process will be recurrent. Indeed, see that from each n = k, we can get to n = k with positive parameter, and we can get to n = k + with positive parameter /n + ). At, we will either grow or not grow. Clearly, then, we can get from any state to any other state, so the process is recurrent. There must be an equilibrium distribution because λ n...λ n= µ n...µ <. To see this, note that the denominator is, and the numerator is n! ; hence, the sum is e. Let A be the standard birthdeath process infinitesimal generator, with the specific values as given in this problem. Let π = [π π π...]. Then, we want πa =. Expanding this out gives: for the first term, and then λ π + µ π = λ n π n λ n + µ n ) π n + µ n+ π n+ = for all the other terms n =,,...). We substitute µ n = and λ n = /n + ) to obtain and π + π = ) n π n n + + π n + π n+ = for n =,,..., so π n+ = n+ n+π n n π n. Inserting π = π gives π = π. Then, π 3 = 3 π π = 6 π. Then, π = 5 6 π 3 π = π. We have compelling evidence that π n = n! π. Let s prove this using induction. We ve shown the base case up to n =, in fact); now, suppose that this holds for n =,,,..., m. Then, π m+ = m + m + m! π m m + = π m + )! ) m! m + m )! π = π m! m + ) = π m + ) m + ) m + )! m )! m ) = π m + )!, which completes the induction. Now, we need n= π n = π n= n! =, so π e =, so π = e. Hence, the equilibrium distribution is π = [π π π...] where π n = e n!. )

5 Exercise 39 K&T. p.3) A new product a Home Helicopter to solve the commuting problem) is being introduced. The sales are expected to be determined by both media advertising and word-of-mouth advertising. Assume that media advertising creates new customers according to a Poisson process of rate α = customer per month. For the word-of-mouth advertising, assume that each purchaser of a Home Helicopter will generate new customers at a rate θ = customers per month. Let X t be the total number of Home Helicopter customers up to time t. a) Model X t as a pure birth process by specifying the birth parameters λ n, n =. b) What is the probability that exactly two helicopters are sold during the first month? a) There is birth rate from media advertising regardless of the number of customers), and birth rate from each customer. Hence, we can model this as a pure birth process with parameter λ n = n + for n =,,,... b) Using the equations given in the textbook, we have that and for n =,,... For P t), we have λ =, so P t) = λ P t) P nt) = λ n P n t) + λ n P n t) P t) = P t) which gives P t) = Ce t. The initial condition of P ) = gives C =, so P t) = e t. Then, since λ = + = 3, we have P t) = 3P t) + e t. Multiplying by the integrating factor e 3t gives e 3t P t) = e t dt = et + C, so P t) = e t + Ce 3t. Using the condition that P ) =, we find C =, so P t) = e t e 3t. Finally, we have λ = + = 5, so P t) = 5P t) + 3 e t e 3t). Multiplying by the integrating factor e 5t gives 3 e 5t P t) = et 3 ) et dt = 3 8 et 3 et + C, so P t) = 3 8 e t 3e 3t + Ce 5t. Using the condition that P ) =, we find C = 8 3, so P t) = 8 3e t + 3 e 3t + 8 3e 5t. Our desired value is P ) = 3 8e 3 e e 5. 5

6 Exercise K&T. p.3) Consider a pure birth process on the states,,..., N, with birth parameters λ n = N n)λ for n =,,..., N. Suppose that X =. Determine P n t) = P[X t = n] for n =,,. Using the equations given in the textbook, we have that and P t) = λ P t) P nt) = λ n P n t) + λ n P n t) for n =,,... For P t), we have λ = Nλ, so P t) = NλP t) P t) P t) = Nλ ln P t)) = Nλt + C so P t) = Ke Nλt. The initial condition of P ) = gives K =, so P t) = e Nλt. Then, P t) = λ P t) + λ P t) = N )λp t) + Nλe Nλt. We multiply by the integrating factor e N )λt to obtain e N )λt P t) = Nλe λt dt = Ne λt + C, so P t) = Ne Nλt + Ce N )λt. Using the condition P ) =, we find that C = N. Thus, P t) = N e N )λt e Nλt) ), or P t) = Ne Nλt e λt. Finally, we have that P t) = λ P t) + λ P t) = N )λp t) + N )λ Ne Nλt e λt ). We multiply by the integrating factor e N )λt to obtain e N )λt P t) = = NN )e λt + N )λn e λt e λt)) dt NN ) e λt + C, so P t) = NN )e N )λt + NN ) e Nλt + Ce N )λt. Using the condition P ) =, we find that C = NN ). Thus, P t) = NN )e N )λt + NN ) e Nλt + NN ) e N )λt. We can factor this nicely as P t) = NN ) ) e Nλt e λt e λt +. 6

Stochastic Processes MIT, fall 2011 Day by day lecture outline and weekly homeworks. A) Lecture Outline Suggested reading

Stochastic Processes MIT, fall 2011 Day by day lecture outline and weekly homeworks. A) Lecture Outline Suggested reading Stochastic Processes 18445 MIT, fall 2011 Day by day lecture outline and weekly homeworks A) Lecture Outline Suggested reading Part 1: Random walk on Z Lecture 1: thursday, september 8, 2011 Presentation

More information

LTCC. Exercises. (1) Two possible weather conditions on any day: {rainy, sunny} (2) Tomorrow s weather depends only on today s weather

LTCC. Exercises. (1) Two possible weather conditions on any day: {rainy, sunny} (2) Tomorrow s weather depends only on today s weather 1. Markov chain LTCC. Exercises Let X 0, X 1, X 2,... be a Markov chain with state space {1, 2, 3, 4} and transition matrix 1/2 1/2 0 0 P = 0 1/2 1/3 1/6. 0 0 0 1 (a) What happens if the chain starts in

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Continuous Time Markov Chains Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 2015 Outline Introduction Continuous-Time Markov

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

6 Continuous-Time Birth and Death Chains

6 Continuous-Time Birth and Death Chains 6 Continuous-Time Birth and Death Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology.

More information

STAT 380 Continuous Time Markov Chains

STAT 380 Continuous Time Markov Chains STAT 380 Continuous Time Markov Chains Richard Lockhart Simon Fraser University Spring 2018 Richard Lockhart (Simon Fraser University)STAT 380 Continuous Time Markov Chains Spring 2018 1 / 35 Continuous

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

Assignment 3 with Reference Solutions

Assignment 3 with Reference Solutions Assignment 3 with Reference Solutions Exercise 3.: Poisson Process Given are k independent sources s i of jobs as shown in the figure below. The interarrival time between jobs for each source is exponentially

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Fault-Tolerant Computing

Fault-Tolerant Computing Fault-Tolerant Computing Motivation, Background, and Tools Slide 1 About This Presentation This presentation has been prepared for the graduate course ECE 257A (Fault-Tolerant Computing) by Behrooz Parhami,

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia). wkc/course/part2.pdf

All models are wrong / inaccurate, but some are useful. George Box (Wikipedia).  wkc/course/part2.pdf PART II (3) Continuous Time Markov Chains : Theory and Examples -Pure Birth Process with Constant Rates -Pure Death Process -More on Birth-and-Death Process -Statistical Equilibrium (4) Introduction to

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

Lecture 4a: Continuous-Time Markov Chain Models

Lecture 4a: Continuous-Time Markov Chain Models Lecture 4a: Continuous-Time Markov Chain Models Continuous-time Markov chains are stochastic processes whose time is continuous, t [0, ), but the random variables are discrete. Prominent examples of continuous-time

More information

Birth and Death Processes. Birth and Death Processes. Linear Growth with Immigration. Limiting Behaviour for Birth and Death Processes

Birth and Death Processes. Birth and Death Processes. Linear Growth with Immigration. Limiting Behaviour for Birth and Death Processes DTU Informatics 247 Stochastic Processes 6, October 27 Today: Limiting behaviour of birth and death processes Birth and death processes with absorbing states Finite state continuous time Markov chains

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

Continuous Time Processes

Continuous Time Processes page 102 Chapter 7 Continuous Time Processes 7.1 Introduction In a continuous time stochastic process (with discrete state space), a change of state can occur at any time instant. The associated point

More information

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 295 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 16 Queueing Systems with Two Types of Customers In this section, we discuss queueing systems with two types of customers.

More information

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013 Time: 9:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Page 1 of 7 English Contact: Håkon Tjelmeland 48 22 18 96 EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES Wednesday 7. August, 2013

More information

Markov Processes Cont d. Kolmogorov Differential Equations

Markov Processes Cont d. Kolmogorov Differential Equations Markov Processes Cont d Kolmogorov Differential Equations The Kolmogorov Differential Equations characterize the transition functions {P ij (t)} of a Markov process. The time-dependent behavior of the

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3

MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 MATH 56A: STOCHASTIC PROCESSES CHAPTER 3 Plan for rest of semester (1) st week (8/31, 9/6, 9/7) Chap 0: Diff eq s an linear recursion (2) n week (9/11...) Chap 1: Finite Markov chains (3) r week (9/18...)

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 26 Applied Stochastic Processes Final Exam, Brief Solutions 1 (15 marks (a (7 marks For 3 j n, starting at the jth best point we condition on the rank R of the point we jump to next By

More information

A review of Continuous Time MC STA 624, Spring 2015

A review of Continuous Time MC STA 624, Spring 2015 A review of Continuous Time MC STA 624, Spring 2015 Ruriko Yoshida Dept. of Statistics University of Kentucky polytopes.net STA 624 1 Continuous Time Markov chains Definition A continuous time stochastic

More information

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling

TMA4265 Stochastic processes ST2101 Stochastic simulation and modelling Norwegian University of Science and Technology Department of Mathematical Sciences Page of 7 English Contact during examination: Øyvind Bakke Telephone: 73 9 8 26, 99 4 673 TMA426 Stochastic processes

More information

Renewal theory and its applications

Renewal theory and its applications Renewal theory and its applications Stella Kapodistria and Jacques Resing September 11th, 212 ISP Definition of a Renewal process Renewal theory and its applications If we substitute the Exponentially

More information

P 2 (t) = o(t). e λt. 1. keep on adding independent, exponentially distributed (with mean 1 λ ) inter-arrival times, or

P 2 (t) = o(t). e λt. 1. keep on adding independent, exponentially distributed (with mean 1 λ ) inter-arrival times, or POISSON PROCESS PP): State space consists of all non-negative integers, time is continuous. The process is time homogeneous, with independent increments and P 0 t) = λ t+ot) P t) = λ t+ot) P 2 t) = ot).

More information

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015

Markov chains. 1 Discrete time Markov chains. c A. J. Ganesh, University of Bristol, 2015 Markov chains c A. J. Ganesh, University of Bristol, 2015 1 Discrete time Markov chains Example: A drunkard is walking home from the pub. There are n lampposts between the pub and his home, at each of

More information

Promotion and Application of the M/M/1/N Queuing System

Promotion and Application of the M/M/1/N Queuing System Mathematica Aeterna, Vol 2, 2012, no 7, 609-616 Promotion and Application of the M/M/1/N Queuing System Quanru Pan School of Mathematics and Physics, Jiangsu University of science and technology, Zhenjiang,

More information

Math 597/697: Solution 5

Math 597/697: Solution 5 Math 597/697: Solution 5 The transition between the the ifferent states is governe by the transition matrix 0 6 3 6 0 2 2 P = 4 0 5, () 5 4 0 an v 0 = /4, v = 5, v 2 = /3, v 3 = /5 Hence the generator

More information

Performance Modelling of Computer Systems

Performance Modelling of Computer Systems Performance Modelling of Computer Systems Mirco Tribastone Institut für Informatik Ludwig-Maximilians-Universität München Fundamentals of Queueing Theory Tribastone (IFI LMU) Performance Modelling of Computer

More information

STATS 3U03. Sang Woo Park. March 29, Textbook: Inroduction to stochastic processes. Requirement: 5 assignments, 2 tests, and 1 final

STATS 3U03. Sang Woo Park. March 29, Textbook: Inroduction to stochastic processes. Requirement: 5 assignments, 2 tests, and 1 final STATS 3U03 Sang Woo Park March 29, 2017 Course Outline Textbook: Inroduction to stochastic processes Requirement: 5 assignments, 2 tests, and 1 final Test 1: Friday, February 10th Test 2: Friday, March

More information

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model.

Poisson Processes. Particles arriving over time at a particle detector. Several ways to describe most common model. Poisson Processes Particles arriving over time at a particle detector. Several ways to describe most common model. Approach 1: a) numbers of particles arriving in an interval has Poisson distribution,

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time

Math 416 Lecture 11. Math 416 Lecture 16 Exam 2 next time Math 416 Lecture 11 Math 416 Lecture 16 Exam 2 next time Birth and death processes, queueing theory In arrival processes, the state only jumps up. In a birth-death process, it can either jump up or down

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 495 Renato Feres Probability background for continuous time Markov chains This long introduction is in part about topics likely to have been covered in math 3200 or math

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ),

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ), MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 4: Steady-State Theory Contents 4.1 The Concept of Stochastic Equilibrium.......................... 1 4.2

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

64 The imperfect production systems have been investigated by many researchers in the literature under the relaxed assumption that the production proc

64 The imperfect production systems have been investigated by many researchers in the literature under the relaxed assumption that the production proc 212 2 Chinese Journal of Applied Probability and Statistics Vol.28 No.1 Feb. 212 Optimal Periodic Preventive Overhaul Policy for Degenerate Production Systems under a Free-Repair Warranty Hu Fei (Department

More information

arxiv: v1 [math.pr] 18 Nov 2018

arxiv: v1 [math.pr] 18 Nov 2018 Integral Equation Approach to Stationary Stochastic Counting Process with Independent Increments arxiv:1811.7262v1 [math.pr] 18 Nov 218 Enzhi Li Suning R & D Center, Palo Alto, USA November 2, 218 Abstract:

More information

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam

Math 151. Rumbos Fall Solutions to Review Problems for Final Exam Math 5. Rumbos Fall 23 Solutions to Review Problems for Final Exam. Three cards are in a bag. One card is red on both sides. Another card is white on both sides. The third card in red on one side and white

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

LTCC. Exercises solutions

LTCC. Exercises solutions 1. Markov chain LTCC. Exercises solutions (a) Draw a state space diagram with the loops for the possible steps. If the chain starts in state 4, it must stay there. If the chain starts in state 1, it will

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Systems Simulation Chapter 6: Queuing Models

Systems Simulation Chapter 6: Queuing Models Systems Simulation Chapter 6: Queuing Models Fatih Cavdur fatihcavdur@uludag.edu.tr April 2, 2014 Introduction Introduction Simulation is often used in the analysis of queuing models. A simple but typical

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

Stochastic Processes

Stochastic Processes MTHE/STAT455, STAT855 Fall 202 Stochastic Processes Final Exam, Solutions (5 marks) (a) (0 marks) Condition on the first pair to bond; each of the n adjacent pairs is equally likely to bond Given that

More information

Photo: US National Archives

Photo: US National Archives ESD.86. Markov Processes and their Application to Queueing II Richard C. Larson March 7, 2007 Photo: US National Archives Outline Little s Law, one more time PASTA treat Markov Birth and Death Queueing

More information

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes.

IE 336 Seat # Name (one point) < KEY > Closed book. Two pages of hand-written notes, front and back. No calculator. 60 minutes. Closed book. Two pages of hand-written notes, front and back. No calculator. 6 minutes. Cover page and four pages of exam. Four questions. To receive full credit, show enough work to indicate your logic.

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/13 KC Border Introduction to Probability and Statistics Winter 217 Lecture 13: The Poisson Process Relevant textbook passages: Sections 2.4,3.8, 4.2 Larsen Marx [8]: Sections

More information

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours.

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours. UNIVERSITY OF YORK MSc Examinations 2004 MATHEMATICS Networks Time Allowed: 3 hours. Answer 4 questions. Standard calculators will be provided but should be unnecessary. 1 Turn over 2 continued on next

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS October 4, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 6. Renewal Mathematically, renewal refers to a continuous time stochastic process with states,, 2,. N t {,, 2, 3, } so that you only have jumps from x to x + and

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

The conditioned reconstructed process

The conditioned reconstructed process The conditioned reconstructed process arxiv:83.53v [math.pr] 2 Mar 28 Tanja Gernhard Department of Mathematics, Kombinatorische Geometrie (M9), TU München Bolzmannstr. 3, 85747 Garching, Germany Phone

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Probability Distributions

Probability Distributions Lecture : Background in Probability Theory Probability Distributions The probability mass function (pmf) or probability density functions (pdf), mean, µ, variance, σ 2, and moment generating function (mgf)

More information

LECTURE #6 BIRTH-DEATH PROCESS

LECTURE #6 BIRTH-DEATH PROCESS LECTURE #6 BIRTH-DEATH PROCESS 204528 Queueing Theory and Applications in Networks Assoc. Prof., Ph.D. (รศ.ดร. อน นต ผลเพ ม) Computer Engineering Department, Kasetsart University Outline 2 Birth-Death

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Lent Term 2010/11 R. J. Gibbens Problem sheet William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Chapter 3: Markov Processes First hitting times

Chapter 3: Markov Processes First hitting times Chapter 3: Markov Processes First hitting times L. Breuer University of Kent, UK November 3, 2010 Example: M/M/c/c queue Arrivals: Poisson process with rate λ > 0 Example: M/M/c/c queue Arrivals: Poisson

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes

The story of the film so far... Mathematics for Informatics 4a. Continuous-time Markov processes. Counting processes The story of the film so far... Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 19 28 March 2012 We have been studying stochastic processes; i.e., systems whose time evolution has an element

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 011 MODULE 3 : Stochastic processes and time series Time allowed: Three Hours Candidates should answer FIVE questions. All questions carry

More information

Summary of Stochastic Processes

Summary of Stochastic Processes Summary of Stochastic Processes Kui Tang May 213 Based on Lawler s Introduction to Stochastic Processes, second edition, and course slides from Prof. Hongzhong Zhang. Contents 1 Difference/tial Equations

More information

Continuous time Markov chains

Continuous time Markov chains Continuous time Markov chains Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ October 16, 2017

More information

P (L d k = n). P (L(t) = n),

P (L d k = n). P (L(t) = n), 4 M/G/1 queue In the M/G/1 queue customers arrive according to a Poisson process with rate λ and they are treated in order of arrival The service times are independent and identically distributed with

More information

Probability Distributions

Probability Distributions Lecture 1: Background in Probability Theory Probability Distributions The probability mass function (pmf) or probability density functions (pdf), mean, µ, variance, σ 2, and moment generating function

More information

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have

Lectures 16-17: Poisson Approximation. Using Lemma (2.4.3) with θ = 1 and then Lemma (2.4.4), which is valid when max m p n,m 1/2, we have Lectures 16-17: Poisson Approximation 1. The Law of Rare Events Theorem 2.6.1: For each n 1, let X n,m, 1 m n be a collection of independent random variables with PX n,m = 1 = p n,m and PX n,m = = 1 p

More information

A Study of Poisson and Related Processes with Applications

A Study of Poisson and Related Processes with Applications University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2013 A Study of Poisson and Related

More information

Renewal processes and Queues

Renewal processes and Queues Renewal processes and Queues Last updated by Serik Sagitov: May 6, 213 Abstract This Stochastic Processes course is based on the book Probabilities and Random Processes by Geoffrey Grimmett and David Stirzaker.

More information

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS September 26, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

k=1 = e λ λ k λk 1 k! (k + 1)! = λ. k=0

k=1 = e λ λ k λk 1 k! (k + 1)! = λ. k=0 11. Poisson process. Poissonian White Boise. Telegraphic signal 11.1. Poisson process. First, recall a definition of Poisson random variable π. A random random variable π, valued in the set {, 1,, }, is

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information