Extended or Composite Systems Systems of Many Particles Deformation

Size: px
Start display at page:

Download "Extended or Composite Systems Systems of Many Particles Deformation"

Transcription

1 Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017

2 Overview last center of mass example systems of many particles deforming systems

3 Continuous mass distribution: Another Example Center of mass of a cylinder of uniform density, ρ. z dr r R L (Exam- ) Calculating I e z axis for a solid cylinder.

4 Continuous mass distribution: Another Example Let s choose our axes so that z points along the length of the cylinder, and the origin is right in the center of the cylinder. Probably, you can easily guess where the CM will be.

5 Continuous mass distribution: Another Example Let s choose our axes so that z points along the length of the cylinder, and the origin is right in the center of the cylinder. Probably, you can easily guess where the CM will be. At the origin!

6 Continuous mass distribution: Another Example How could we prove it?

7 Continuous mass distribution: Another Example How could we prove it? Along the z-direction this cylinder is very similar to the thin rod we just considered. Observe that dm = (πr 2 )ρ dz: z CM = 1 z(πr 2 ρ dz) M = (πr2 )ρ πr 2 Lρ L/2 L/2 z dz

8 Continuous mass distribution: Another Example How could we prove it? Along the z-direction this cylinder is very similar to the thin rod we just considered. Observe that dm = (πr 2 )ρ dz: z CM = 1 z(πr 2 ρ dz) M = (πr2 )ρ πr 2 Lρ = 0 L/2 L/2 z dz

9 Continuous mass distribution: Another Example Along the x-direction this cylinder we are looking down on a circle. Let x = R cos θ, y = R sin θ Observe that dm = (2yL)ρ dx: (Looking at just the positive x part of the cylinder, viewed top down.) 1 Or, leave the integral in terms of x and use the substitution u = x 2.

10 Continuous mass distribution: Another Example Along the x-direction this cylinder we are looking down on a circle. Let x = R cos θ, y = R sin θ Observe that dm = (2yL)ρ dx: x CM = 1 x(2yl)ρ dx M = = = 0 Lρ πr 2 L ρ πr 2 0 π R 2 (2 sin θ cos θ)( R sin θ dθ) [ 2 3 R3 sin 3 θ ] 0 π 1 Or, leave the integral in terms of x and use the substitution u = x 2.

11 Continuous mass distribution: Another Example By symmetry the evaluation for y CM must go exactly the same way as for x CM, therefore, y CM = 0. This is what we expected all along, but this same technique can be used in cases where we cannot guess the answer.

12 Systems of Particles Last lecture we talked about the CM point standing in for an extended object to model the object as point-like. Now we justify why that works. Velocity of the center-of-mass: v CM = dr CM dt Multiply both sides by M: = 1 M i m i dr i dt = 1 M m i v i i M v CM = i p i = p tot

13 Systems of Particles Last lecture we talked about the CM point standing in for an extended object to model the object as point-like. Now we justify why that works. Velocity of the center-of-mass: v CM = dr CM dt Multiply both sides by M: = 1 M i m i dr i dt = 1 M m i v i i M v CM = i p i = p tot The momentum of an entire system of many particles is the same as just calculating the momentum from the total mass and the velocity of the center of mass.

14 Systems of Particles M v CM = p tot Implication: we can model linear momentum of the entire system collectively by imagining that the mass of the entire system is at the center of mass point.

15 Systems of Particles We can also consider how a collection of forces that act on different particles in the system affect the motion of the center of mass. a CM = dv CM dt = 1 M i m i dv i dt = 1 M Since F i = m i a i, we can deduce that F i is the net force on particle i. i F i

16 Systems of Particles We can also consider how a collection of forces that act on different particles in the system affect the motion of the center of mass. a CM = dv CM dt = 1 M i m i dv i dt = 1 M Since F i = m i a i, we can deduce that F i is the net force on particle i. Some of the forces on particle i might come from other particles in the system. i F i

17 Systems of Particles Some of the forces on particle i might come from other particles in the system. For example consider a system of two particles. They exert a force on each other, and also experience an external force: F net,1 = F F ext,1 and F net,2 = F F ext,2 = F F ext,2

18 Systems of Particles Some of the forces on particle i might come from other particles in the system. For example consider a system of two particles. They exert a force on each other, and also experience an external force: F net,1 = F F ext,1 and F net,2 = F F ext,2 = F F ext,2 Then The internal forces cancel! F net,1 + F net,2 = F ext,1 + F ext,2

19 Systems of Particles Therefore, a CM = 1 M Simplifies to: F ext,i = M a CM where both sides were multiplied by M. i i F i

20 Systems of Particles Therefore, a CM = 1 M Simplifies to: F ext,i = M a CM where both sides were multiplied by M. i i F i This shows that the center of mass of the system of particles moves just as a point mass would under the influence of a net external force F ext. Newton s second law: F net,ext = M a CM

21 Systems of Particles Lastly, we still have that the impulse is the total change in momentum of the entire system collectively. I = F ext,i dt = i M dv CM dt dt = M dv CM = M v CM

22 Systems of Particles Lastly, we still have that the impulse is the total change in momentum of the entire system collectively. I = F ext,i dt = i M dv CM dt dt = M dv CM = M v CM = p tot

23 Deformable Systems Some systems will change the distribution of their mass during their motion.

24 Deformable Systems Some systems will change the distribution of their mass during their motion. 1 Image from

25 Deformable Systems In a system that is deformed, the positions of the masses of particles may change relative to the center of mass, but we can still study the system by considering what happens to the center of mass.

26 leave the floor? (d) Does it make sense to say that this momentum came from the floor? Explain. (e) With what kinetic energy does the person leave the floor? (f) Does it make sense to say that this energy came from the floor? Explain. Deformable Systems Problem Page 288, # Figure P9.59a shows an overhead view of the initial S configuration of two pucks of mass m on frictionless ice. The pucks are tied together with a string of length, and negligible mass. At time t 5 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance d, and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d,,, and m? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy? m (a) It has an exhaust speed dizer is requi design could amount of fue same task? (c (b) is 2.50 tim why the requ factor of A rocket has 330 kg of fu it starts from engine at tim ative speed v 2.50 kg/s. Th M f /k k ing the burn time is given b, m t 0 F d CM d v t t F (b) Make a gr tion of time fo that the accel a b (d) Graph th

27 the person? (c) With what momentum does the person leave the floor? (d) Does it make sense to say that this momentum came from the floor? Explain. (e) With what kinetic energy does the person leave the floor? (f) Does it make sense to say that this energy came from the floor? Explain. Deformable Systems Problem Page 288, # Figure P9.59a shows an overhead view of the initial S configuration of two pucks of mass m on frictionless ice. The pucks are tied together with a string of length, and negligible mass. At time t 5 0, a constant force of magnitude F begins to pull to the right on the center point of the string. At time t, the moving pucks strike each other and stick together. At this time, the force has moved through a distance d, and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d,,, and m? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy? m en (a ex di de am sa (b wh fa 64. A 33 it en at 2. M in tim d CM v

28 each other and stick together. At this time, the force has moved through a distance d, and the pucks have attained a speed v (Fig. P9.59b). (a) What is v in terms of F, d,,, and m? (b) How much of the energy transferred into the system by work done by the force has been transformed to internal energy? Deformable Systems Problem Page 288, #59 m 3 i e a 2 M i t, m t 0 F d CM d v t t F ( t t a b Figure P9.59 Section 9.9 Rocket Propulsion 60. A model rocket engine has an average thrust of 5.26 N. ( (

29 Deformable Systems (a) Speed of pucks, v, after collision?

30 Deformable Systems (a) Speed of pucks, v, after collision? F = M a CM

31 Deformable Systems (a) Speed of pucks, v, after collision? F = M a CM F is constant a CM is constant.

32 Deformable Systems (a) Speed of pucks, v, after collision? F = M a CM F is constant a CM is constant. a CM = F 2m vf 2 = vi 2 + 2a CM x ( ) ( F vf 2 = d l ) 2m 2 2Fd F l v f = 2m

33 Deformable Systems (b) Increase in internal energy? system: pucks + pucks and ice s internal degrees of freedom W = K + E int

34 Deformable Systems (b) Increase in internal energy? system: pucks + pucks and ice s internal degrees of freedom W = K + E int E int = W K f = Fd 1 2 (2m)v 2 = Fd 1 2 (2m)2Fd F l 2m = Fd Fd + F l 2 = 1 2 F l

35 Summary systems of many particles deformations 3rd Collected Homework! due Monday, Nov 20. Next test Monday, Nov 27. (Uncollected) Homework Serway & Jewett, Ch 9, onward from page 288. Probs: 51, 55, 57, 92 Read ahead in Chapter 10. Ch 10, onward from page 288. Probs: 3

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

Linear Momentum. Lana Sheridan. Nov 6, De Anza College

Linear Momentum. Lana Sheridan. Nov 6, De Anza College Linear Momentum Lana Sheridan De Anza College Nov 6, 2017 Last time energy practice Overview introducing momentum Newton s Second Law: more general form relation to force relation to Newton s third law

More information

Linear Momentum Isolated Systems Nonisolated Systems: Impulse

Linear Momentum Isolated Systems Nonisolated Systems: Impulse Linear Momentum Isolated Systems Nonisolated Systems: Impulse Lana Sheridan De Anza College Nov 7, 2016 Last time introduced momentum Newton s Second Law: more general form relation to force relation to

More information

Rotation Moment of Inertia and Applications

Rotation Moment of Inertia and Applications Rotation Moment of Inertia and Applications Lana Sheridan De Anza College Nov 20, 2016 Last time net torque Newton s second law for rotation moments of inertia calculating moments of inertia Overview calculating

More information

LINEAR MOMENTUM. Contents. (A. Savas ARAPO GLU) July 16, Introduction 2. 2 Linear Momentum 2

LINEAR MOMENTUM. Contents. (A. Savas ARAPO GLU) July 16, Introduction 2. 2 Linear Momentum 2 LINEAR MOMENTUM (A. Savas ARAPO GLU) July 16, 2017 Contents 1 Introduction 2 2 Linear Momentum 2 3 Impulse & Collisions 4 3.1 Collison of Particles................................ 5 3.2 Collison Types...................................

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

Rotation Angular Momentum Conservation of Angular Momentum

Rotation Angular Momentum Conservation of Angular Momentum Rotation Angular Momentum Conservation of Angular Momentum Lana Sheridan De Anza College Nov 29, 2017 Last time Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum

More information

Linear Momentum Collisions

Linear Momentum Collisions Linear Momentum Collisions Lana Sheridan De Anza College Nov 8, 2017 Last time applying the rocket equation conservation of momentum in isolated systems nonisolated systems impulse average force Overview

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Mechanics More about Impulse Conservation of Momentum

Mechanics More about Impulse Conservation of Momentum Mechanics More about Impulse Conservation of Momentum Lana Sheridan De Anza College Nov 6, 2018 Last time center of mass linear momentum momentum and Newton s second law impulse Overview more about impulse

More information

Linear Momentum Inelastic Collisions

Linear Momentum Inelastic Collisions Linear Momentum Inelastic Collisions Lana Sheridan De Anza College Nov 9, 2017 Last time collisions elastic collisions Overview inelastic collisions the ballistic pendulum Linear Momentum and Collisions

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Rotational Motion Rotational Kinematics

Rotational Motion Rotational Kinematics Rotational Motion Rotational Kinematics Lana Sheridan De Anza College Nov 16, 2017 Last time 3D center of mass example systems of many particles deforming systems Overview rotation relating rotational

More information

Rotation Atwood Machine with Massive Pulley Energy of Rotation

Rotation Atwood Machine with Massive Pulley Energy of Rotation Rotation Atwood Machine with Massive Pulley Energy of Rotation Lana Sheridan De Anza College Nov 21, 2017 Last time calculating moments of inertia the parallel axis theorem Overview applications of moments

More information

Energy Work Kinetic Energy Potential Energy

Energy Work Kinetic Energy Potential Energy Energy Work Kinetic Energy Potential Energy Lana Sheridan De Anza College Oct 25, 2017 Last time energy work Overview Work as an integral Kinetic energy Work-Kinetic energy theorem Potential energy N through

More information

Rotation Torque Moment of Inertia

Rotation Torque Moment of Inertia Rotation Torque Moment of Inertia Lana Sheridan De Anza College Nov 17, 2017 Last time rotational quantities rotational kinematics torque Quick review of Vector Expressions Let a, b, and c be (non-null)

More information

Rotation Work and Power of Rotation Rolling Motion Examples and Review

Rotation Work and Power of Rotation Rolling Motion Examples and Review Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic

More information

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc. Chapter 9 Linear Momentum and Collisions Linear Momentum Units of Chapter 9 Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Units of Chapter

More information

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 8 LINEAR MOMENTUM AND COLLISIONS Chapter 8 LINEAR MOMENTUM AND COLLISIONS Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass Systems with Changing

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

Physics 121. Thursday, February 28, Department of Physics and Astronomy, University of Rochester

Physics 121. Thursday, February 28, Department of Physics and Astronomy, University of Rochester Physics 121. Thursday, February 28, 2008. Physics 121. Thursday, February 28, 2008. Course Information Quiz? Topics to be discussed today: The center of mass Conservation of linear momentum Systems of

More information

Energy Practice. Lana Sheridan. Nov 2, De Anza College

Energy Practice. Lana Sheridan. Nov 2, De Anza College Energy Practice Lana heridan De Anza College Nov 2, 2017 Overview Practice problems! a nonconservative force acts. Example: Block pulled across surface g along a freeway at 65 mi/h. Your car has kinetic

More information

Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems

Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems Lana Sheridan De Anza College Oct 30, 2017 Last time gravitational and spring potential energies conservative and

More information

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d!

Physics 121. Quiz lecture 14. Linear momentum (a quick review). Linear momentum (a quick review). Systems with variable mass. ( ) = M d! Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

Angular Momentum Conservation of Angular Momentum

Angular Momentum Conservation of Angular Momentum Lecture 22 Chapter 12 Physics I Angular Momentum Conservation of Angular Momentum Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

Review of Forces and Conservation of Momentum

Review of Forces and Conservation of Momentum Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 6 Review of Forces and Conservation of Momentum Slide 1 of 22 Vector Addition and Subtraction Vectors are added head to tail Note: a+b = b+a Vectors

More information

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester

Physics 121. Thursday, March 6, Department of Physics and Astronomy, University of Rochester Physics 121. Thursday, March 6, 2008. Physics 121. Thursday, March 6, 2008. Course Information Quiz Topics to be discussed today: Conservation of linear momentum and one-dimensional collisions (a brief

More information

Linear Momentum Collisions and Energy Collisions in 2 Dimensions

Linear Momentum Collisions and Energy Collisions in 2 Dimensions Linear Momentum Collisions and Energy Collisions in 2 Dimensions Lana Sheridan De Anza College Mar 1, 2019 Last time collisions elastic collision example inelastic collisions Overview the ballistic pendulum

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

Dynamics Applying Newton s Laws The Drag Equation

Dynamics Applying Newton s Laws The Drag Equation Dynamics Applying Newton s Laws The Drag Equation Lana Sheridan De Anza College Feb 8, 2019 Last time introduced resistive forces model 1: Stokes drag Overview model 2: the Drag Equation finish resistive

More information

Energy Work vs Potential Energy Energy and Friction

Energy Work vs Potential Energy Energy and Friction Energy Work vs Potential Energy Energy and Friction Lana heridan De Anza College Feb 19, 2019 Last time conservation Overview work vs. potential kinetic friction and Two Views: Isolated vs Nonisolated

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and

More information

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. 9 Momentum. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 1 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

PHYS 121: Work, Energy, Momentum, and Conservation Laws, Systems, and Center of Mass Review Sheet

PHYS 121: Work, Energy, Momentum, and Conservation Laws, Systems, and Center of Mass Review Sheet Physics 121 Summer 2006 Work, Energy, Momentum Review Sheet page 1 of 12 PHYS 121: Work, Energy, Momentum, and Conservation Laws, Systems, and Center of Mass Review Sheet June 21, 2006 The Definition of

More information

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall

Physics 207 Lecture 11. Lecture 11. Chapter 8: Employ rotational motion models with friction or in free fall Goals: Lecture 11 Chapter 8: Employ rotational motion models with friction or in free fall Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation

More information

Introduction to Mechanics Non-uniform Circular Motion Introducing Energy

Introduction to Mechanics Non-uniform Circular Motion Introducing Energy Introduction to Mechanics Non-uniform Circular Motion Introducing Energy Lana Sheridan De Anza College Nov 20, 2017 Last time applying the idea of centripetal force banked turns Overview non-uniform circular

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision

Nov. 27, 2017 Momentum & Kinetic Energy in Collisions elastic collision inelastic collision. completely inelastic collision Nov. 27, 2017 Momentum & Kinetic Energy in Collisions In our initial discussion of collisions, we looked at one object at a time, however we'll now look at the system of objects, with the assumption that

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems

Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems Energy Energy Diagrams and Equilibrium Conservation Laws Isolated and Nonisolated Systems Lana Sheridan De Anza College Oct 30, 2017 Last time gravitational and spring potential energies conservative and

More information

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 9. Momentum. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 9 Momentum PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 9 Momentum Slide 9-2 Slide 9-3 Slide 9-4 Reading Quiz 1. Impulse is A. a force that is applied at a random

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1

Phys101 First Major-061 Zero Version Coordinator: Abdelmonem Monday, October 30, 2006 Page: 1 Coordinator: Abdelmonem Monday, October 30, 006 Page: 1 Q1. An aluminum cylinder of density.70 g/cm 3, a radius of.30 cm, and a height of 1.40 m has the mass of: A) 6.8 kg B) 45.1 kg C) 13.8 kg D) 8.50

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Chapter 9. Center of Mass and Linear Momentum

Chapter 9. Center of Mass and Linear Momentum Chapter 9 Center of Mass and Linear Momentum 9.2 The Center of Mass Recall we had idealized a body by treating it as a point particle (neglecting its extent). We now start working towards a more complete

More information

Chapter 9. Linear momentum and collisions. PHY 1124 Fundaments of Physics for Engineers. Michael Wong PHY1124 Winter uottawa.

Chapter 9. Linear momentum and collisions. PHY 1124 Fundaments of Physics for Engineers. Michael Wong PHY1124 Winter uottawa. Chapter 9 Linear momentum and collisions Michael Wong PHY1124 Winter 2019 PHY 1124 Fundaments of Physics for Engineers uottawa.ca https://uottawa.brightspace.com/d2l/home Goals 2 Chapter 9 Momentum and

More information

Dynamics Applying Newton s Laws Introducing Energy

Dynamics Applying Newton s Laws Introducing Energy Dynamics Applying Newton s Laws Introducing Energy Lana Sheridan De Anza College Oct 23, 2017 Last time introduced resistive forces model 1: Stokes drag Overview finish resistive forces energy work Model

More information

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13)

Lectures. Today: Rolling and Angular Momentum in ch 12. Complete angular momentum (chapter 12) and begin equilibrium (chapter 13) Lectures Today: Rolling and Angular Momentum in ch 1 Homework 6 due Next time: Complete angular momentum (chapter 1) and begin equilibrium (chapter 13) By Monday, will post at website Sample midterm II

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Conceptual Physics Energy Sources Collisions

Conceptual Physics Energy Sources Collisions Conceptual Physics Energy ources Collisions Lana heridan De Anza College July 7, 2015 Last time energy and work kinetic energy potential energy conservation of energy energy transfer simple machines efficiency

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Problem Set 4 Momentum and Continuous Mass Flow Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall 2012 Problem Set 4 Momentum and Continuous Mass Flow Solutions Problem 1: a) Explain why the total force on a system of particles

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

Static Equilibrium Gravitation

Static Equilibrium Gravitation Static Equilibrium Gravitation Lana Sheridan De Anza College Dec 6, 2017 Overview One more static equilibrium example Newton s Law of Universal Gravitation gravitational potential energy little g Example

More information

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009

Exam II: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring 2009 UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 15 / LeClair Spring 009 Exam II: Solutions 1. A block of mass m is released from rest at a height d=40 cm and slides down a frictionless ramp

More information

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum

Conservation of Momentum. Chapter 9: Collisions, CM, RP. Conservation of Momentum. Conservation of Momentum. Conservation of Momentum P H Y S I C S Chapter 9: Collisions, CM, RP Since impulse = change in momentum, If no impulse is exerted on an object, the momentum of the object will not change. If no external forces act on a system,

More information

Energy Power. Lana Sheridan. Nov 1, De Anza College

Energy Power. Lana Sheridan. Nov 1, De Anza College Energy Power Lana heridan De Anza College Nov 1, 2017 Overview Power Practice problems! Power Power the rate of energy transfer to a system. Power Power the rate of energy transfer to a system. The instantaneous

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

AAST/AEDT. Center of mass

AAST/AEDT. Center of mass AAST/AEDT AP PHYSICS C: Center of mass Let us run an experiment: We take an object of a random shape and pull it by applying a force as shown on a diagram. The object experiences translational and rotational

More information

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum

Quiz Samples for Chapter 9 Center of Mass and Linear Momentum Name: Department: Student ID #: Notice +2 ( 1) points per correct (incorrect) answer No penalty for an unanswered question Fill the blank ( ) with ( ) if the statement is correct (incorrect) : corrections

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 20, 2018 Last time Newton s second law mass and weight examples free-body diagrams Overview Newton s second law

More information

Kinematics: Circular Motion Mechanics: Forces

Kinematics: Circular Motion Mechanics: Forces Kinematics: Circular Motion Mechanics: Forces Lana heridan De Anza College Oct 11, 2018 Last time projectile trajectory equation projectile examples projectile motion and relative motion Overview circular

More information

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Lana Sheridan De Anza College May 24, 2018 Last time interference and sound standing waves and sound musical instruments Reminder: Speed

More information

(1) Center of mass of a symmetric object always lies on an axis of symmetry. (2) Center of mass of an object does NOT need to be on the object.

(1) Center of mass of a symmetric object always lies on an axis of symmetry. (2) Center of mass of an object does NOT need to be on the object. x com = 1 M N i=1 m ix i x com = 1 M xdm x com = 1 V xdv y com = 1 M N i=1 m iy i y com = 1 M ydm z com = 1 M N i=1 m iz i z com = 1 M zdm M = N i=1 m i ρ = dm dv = M V Here mass density replaces mass

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Feb 2, 2015 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Conceptual Physics Gravity

Conceptual Physics Gravity Conceptual Physics Gravity Lana Sheridan De Anza College July 18, 2017 Last time rotational motion centripetal force vs. centrifugal force torque moment of inertia center of mass and center of gravity

More information

Fluids, Thermodynamics, Waves, and Optics Fluids

Fluids, Thermodynamics, Waves, and Optics Fluids Fluids, Thermodynamics, Waves, and Optics Fluids Lana Sheridan De Anza College April 10, 2018 Overview static fluids pressure liquid pressure Pascal s law Elastic Properties of Solids We are considering

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing 2.

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems.

Announcements. 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. Announcements 1. Do not bring the yellow equation sheets to the miderm. Idential sheets will be attached to the problems. 2. Some PRS transmitters are missing. Please, bring them back! 1 Kinematics Displacement

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Waves Pulse Propagation The Wave Equation

Waves Pulse Propagation The Wave Equation Waves Pulse Propagation The Wave Equation Lana Sheridan De Anza College May 16, 2018 Last time oscillations simple harmonic motion (SHM) spring systems energy in SHM introducing waves kinds of waves wave

More information

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem

Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem Today Ch 7, Momentum and Collisions Definition of impulse Definition of momentum Impulse-Momentum Theorem System of particles Conservation of Momentum 1 Data : Fatality of a driver in head-on collision

More information

Example. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2

Example. F and W. Normal. F = 60cos 60 N = 30N. Block accelerates to the right. θ 1 F 1 F 2 Physic 3 Lecture 7 Newton s 3 d Law: When a body exerts a force on another, the second body exerts an equal oppositely directed force on the first body. Frictional forces: kinetic friction: fk = μk N static

More information

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 11 Lecture RANDALL D. KNIGHT Chapter 11 Impulse and Momentum IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75

Collisions. Conservation of Momentum Elastic and inelastic collisions. Serway For practice: Chapter 9, problems 10, 11, 23, 70, 75 Collisions Conservation of Momentum Elastic and inelastic collisions Serway 9.3-9.4 For practice: Chapter 9, problems 10, 11, 23, 70, 75 Momentum: p = mv Impulse (a vector) is defined as F t (for a constant

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Essential Physics I. Lecture 9:

Essential Physics I. Lecture 9: Essential Physics I E I Lecture 9: 15-06-15 Last lecture: review Conservation of momentum: p = m v p before = p after m 1 v 1,i + m 2 v 2,i = m 1 v 1,f + m 2 v 2,f m 1 m 1 m 2 m 2 Elastic collision: +

More information

Introduction to Mechanics Friction Examples Friction Springs

Introduction to Mechanics Friction Examples Friction Springs Introduction to Mechanics Friction Examples Friction Springs Lana Sheridan De Anza College Mar 7, 2018 Last time kinetic and static friction friction examples Overview one more friction example springs

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

Electricity and Magnetism B-Fields from Moving Charges

Electricity and Magnetism B-Fields from Moving Charges Electricity and Magnetism B-Fields from Moving Charges Lana Sheridan De Anza College Feb 28, 2018 Last time force on a curved current carrying wire torque on a wire loop magnetic dipole moment Overview

More information

AP PHYSICS C Momentum Name: AP Review

AP PHYSICS C Momentum Name: AP Review AP PHYSICS C Momentum Name: AP Review Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = p i = m ivi Units:

More information

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS PHYS 14 Section A1 Mid-Term Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator

More information