Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications Gao-Lei Hou, 1 Marat Valiev, 2,* Xue-Bin Wang 1,* 1 Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MS K8-88, Richland, Washington 99352, USA 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352, USA Electronic mail: xuebin.wang@pnnl.gov; marat.valiev@pnnl.gov S1

2 VDE: 5.67 (B3LYP/aug-cc-pVDZ) 6.44 (M06-2X//B3LYP/aug-cc-pVDZ) 6.55 (M06-2X/maug-cc-PVT(+d)Z // B3LYP/aug-cc-pVDZ) VDE: 5.69 (B3LYP/6-31+G(d)) 6.61 (M06-2X//B3LYP/6-31+G(d)) 6.63(M06-2X/maug-cc-PVT(+d)Z// B3LYP/6-31+G(d)) Figure S1. Optimized structures of HDC 6 (H 2 DC 6 ) at B3LYP/aug-cc-pVDZ (left) and B3LYP/6-31+G(d) (right) levels of theory, respectively. Their calculated EBEs at three different levels are also presented. S2

3 Figure S2. Schematic interpretation of the relationship between the electron binding energy (EBE) difference and the binding energy (BE) difference. S3

4 Figure S3. Optimized structures of HDC n (H 2 DC n ) (n = 1 3) neutrals at B3LYP/aug-cc-pVDZ level of theory. S4

5 Figure S4. Optimized B3LYP/aug-cc-pVDZ structures for singly deprotonated dicarboxylic acid anions HDC n (n = 0 12). S5

6 Figure S5. Optimized B3LYP/aug-cc-pVDZ dicarboxylic acid H 2 DC n (n = 0 12) structures. S6

7 S7

8 Figure S6. Optimized structures of HDC n (H 2 DC n ) at B3LYP/aug-cc-pVDZ (n 6) and 6-31+g(d) (n 7) level of theory. S8

9 Details of the Evaporation Rates Calculations We calculated the evaporation rates of these complexes by employing the method proposed by Ortega et al. S1 The collision rates of ions with neutral molecules were calculated according to the parametrizations from trajectory simulations of collisions between a point charge and a rigidly rotating molecule by Su and Chesnavich. S2, S3 In this way, the collision rates β i,j and further the evaporation rates γ i,j are calculated according to the following equations: β i, j L βi, j (0.4767χ , χ 2 2 = L ( χ ) βi, j, χ < (1) Among which, β = q m ( πα / ε ), L 1/2 1/2 i, j i red j 0 1/2 = j / (8 πε 0α jkbt ) and I* µ ji / ( α jqmred ) χ µ = ; I is the moment of inertia of the neutral molecule. At low values of I* with 2 I* < (0.7 + χ ) / ( χ), the collision rate was noted to be independent of I*. All ion-neutral collisions occurring in this study fall into this low-i* region. q i is the charge of the ion, α j and µ j are the polarizability and dipole moment of the neutral molecule, respectively, ε 0 is the vacuum permittivity. m red is the reduced mass of the collision partners, k B is the Boltzmann constant, and T is the temperature. γ P G = β exp( ) (2) k T r ef i, j i, j kbt G is the Gibbs free energy of formation of the evaporating cluster and the products at temperature T and pressure P ref. B References: S1. Ortega, I. K.; Kupiainen, O.; Kurtén, T.; Olenius, T.; Wilkman, O.; McGrath, M. J.; Loukonen, V.; Vehkamäki, H. From quantum chemical formation free energies to evaporation rates. Atmos. Chem. Phys. 2012, 12, S2. Su, T.; Chesnavich, W. J. Parametrization of the ion polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 1982, 76, S3. Kupiainen-Maatta, O.; Olenius, T.; Kurten, T.; Vehkamaki, H. CIMS sulfuric acid detection efficiency enhanced by amines due to higher dipole moments: a computational study. J. Phys. Chem. A 2013, 117, S9

10 Table S1. Thermochemical parameters for the complex formation calculated at ambient conditions ( K and 1 atm). n BE a (kcal/mol) H a (kcal/mol) G a (kcal/mol) S a (cal/mol/k) B3LYP M06-2X b M06-2X B3LYP M06-2X B3LYP M06-2X B3LYP M06-2X a Binding energy, Enthalpy, Gibbs free energy, and Entropy changes are obtained by using the following equation: BE[HDC n (H 2 DC n )] = E(HDC n ) + E(H 2 DC n ) E[HDC n (H 2 DC n )] (with ZPE correction) H[HSO 4 (Sol) n ] = H[HDC n (H 2 DC n )]-H(HDC n ) H(H 2 DC n ) (n = 0-12) (with ZP Enthalpy correction) G[HSO 4 (Sol) n ] = G[HDC n (H 2 DC n )]-G(HDC n ) G(H 2 DC n ) (n = 0-12) (with ZP Gibbs Free Energy correction) S=( H- G)/T, T=298.15K b Without ZPE correction. Table S2. Comparison of the thermochemical parameters for HSO 4 (SUA) and SUA (SUA). (SUA = H 2 DC 2 ) BE (kcal/mol) H (kcal/mol) G (kcal/mol) S (cal/mol/k) EBE (kcal/mol) HSO 4 (SUA) SUA (SUA) S10

11 Table S3. Dipole moments (μ) and polarizabilities (α) as well as the collision rates (β) calculated at ambient conditions ( K and 1 atm). n μ (D) α (Å 3 ) β (10-9 cm 3 s -1 ) B3LYP M06-2X B3LYP M06-2X B3LYP M06-2X n β L (10-9 cm 3 s -1 ) Χ γ (s -1 ) B3LYP M06-2X B3LYP M06-2X B3LYP M06-2X E E E E E E E E E E E E E E-4 S11

12 Cartesian coordinates for the structures shown in Figure 2 n = 0 C O C O O O H n = 1 C O C O O O H C H H n = 2 O C O C H H C H H C O H O n = 3 O C O C H H C H H C S12

13 O H O C H H n = 4 O C O C H H C H O O C H H C H H C H H n = 5 O C O C H H C H O O C H H C H H C H H C S13

14 H H n = 6 O C O C H H C H H C O H O C H H C H H C H H C H H n = 7 O C O C H C H O O H C H H C H H C H S14

15 H C H H C H H C H H n = 8 O C O C H C H O O H C H H C H H C H H C H H C H H C H H C H H n = 9 O C O C S15

16 H H C H O O C H H C H H C H H C H H C H H C H H C H H C H H n = 10 O C O C H H C H O O H C H H C H H S16

17 C H H C H H C H C H H C H H C H H C H H n = 11 O C O C H H C H O O C H H C H H C H H C H H C H H C H S17

18 H C H H C H H C H H C H H n = 12 O C O C H H C H H C O H O C H H C H H C H H C H H C H H C H H C H H S18

19 C H H C H H C H H S19

20 Cartesian coordinates for the structures shown in Figure 3 n = 0 C O C O O O H H n = 1 C O C O O O H H C H H n = 2 O C O C H H C H H C O H O H n = 3 O C O C H H C S20

21 H H C O H O H C H H n = 4 O C O C H H C H O O H C H H C H H C H H n = 5 O C O C H H C H O O H C H H C S21

22 H H C H H C H H n = 6 O C O C H H C H H C O H O H C H H C H H C H H C H H n = 7 O C O C H H C H O O H S22

23 C H H C H H C H H C H H C H H C H H n = 8 O C O C H H C H O O H C H H C H H C H H C H H C H H C H H S23

24 C H H n = 9 O C O C H H C H O O H C H H C H H C H H C H H C H H C H H C H H C H H n = 10 O C O C H H C S24

25 H O O H H C H H C H H C H H C H H C H C H H C H H C H H C H H n = 11 O C O C H H C H O O H C H H C H S25

26 H C H H C H H C H H C H H C H H C H H C H H C H H n = 12 O C O C H H C H H C O H O H C H H C H H C H S26

27 H C H H C H H C H H C H H C H H C H H C H H S27

28 Cartesian coordinates for the structures shown in Figure 4 n = 0 C O C O O O H C O C O O O H H n = 1 C O C O O O H C O C O O O H H C H H C H H n = 2 O C O C H H S28

29 C H H C O H O C O C O O O H H C H H C H H n = 3 O C O C H H C H H C O H O H C H H O C O C H H C H H S29

30 C O H O C H H n = 4 O C O C H H C H O O H C H H C H H C H H O C O C H H C H O O C H H C H H C H H S30

31 n = 5 O C O C H H C H O O H C H H C H H C H H C H H O C O C H H C H O O C H H C H H C H H C H H n = 6 O S31

32 C O C H H C H H C O H O H C H H C H H C H H C H H O C O C H H C H H C O H O C H H C H H C H H C H H S32

33 n = 7 O C O C H H C H O O H H C H H C H H C H H C H C H H C H H O C O C H H C H O O H C H H C H H C S33

34 H H C H C H H C H H n = 8 O C O C H H C H O O H H C H H C H H C H H C H C H H C H H O C O C H H C H S34

35 O O H C H H C H H C H H C H C H H C H H C H H C H H n = 9 O C O C H H C H O O H H C H H C H H C H H S35

36 C H H C H C H H C H H C H H O C O C H H C H O O H C H H C H H C H H C H H C H C H H C H H C H H S36

37 n = 10 O C O C H H C H O O H H C H H C H H C H H C H H C H C H H C H H C H H C H H O C O C H H C H O O S37

38 H C H H C H H C H H C H H C H C H H C H H C H H C H H n = 11 O C O C H H C H O O H H C H H C H H C H S38

39 H C H H C H C H H C H H C H H C H H O C O C H H C H O O H C H H C H H C H H C H H C H C H H C H H C S39

Hydration of Atmospherically Relevant Molecular Clusters: Computational Chemistry and Classical Thermodynamics

Hydration of Atmospherically Relevant Molecular Clusters: Computational Chemistry and Classical Thermodynamics pubs.acs.org/jpca Hydration of Atmospherically Relevant Molecular Clusters: Computational Chemistry and Classical Thermodynamics Henning Henschel,, * Juan C. Acosta Navarro, Taina Yli-Juuti, Oona Kupiainen-Maäẗta,

More information

Université Lille 1, Villeneuve d Ascq, France Accepted author version posted online: 13 Mar 2014.

Université Lille 1, Villeneuve d Ascq, France Accepted author version posted online: 13 Mar 2014. This article was downloaded by: [213.135.234.6] On: 07 September 2015, At: 04:18 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5

More information

Supporting information for: On the atmospheric fate of methacrolein: 1. Peroxy. radical isomerization following addition of OH and O 2

Supporting information for: On the atmospheric fate of methacrolein: 1. Peroxy. radical isomerization following addition of OH and O 2 Supporting information for: On the atmospheric fate of methacrolein: 1. Peroxy radical isomerization following addition of OH and O 2 John D. Crounse,, Hasse C. Knap, Kristian B. Ørnsø, Solvejg Jørgensen,

More information

Uptake of OH radical to aqueous aerosol: a computational study

Uptake of OH radical to aqueous aerosol: a computational study Uptake of OH radical to aqueous aerosol: a computational study Grigory Andreev Karpov Institute of Physical Chemistry 10 Vorontsovo pole, Moscow, 105064, Russia Institute of Physical Chemistry and Electrochemistry

More information

Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water a computational study

Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water a computational study Atmos. Chem. Phys., 10, 4961 4974, 2010 doi:10.5194/acp-10-4961-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Enhancing effect of dimethylamine in sulfuric acid nucleation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Calculations predict a stable molecular crystal of N 8 : Barak Hirshberg a, R. Benny Gerber a,b, and Anna I. Krylov c a Institute of Chemistry and The Fritz Haber Center for Molecular Dynamics, The Hebrew

More information

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution

Supporting Information. Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Supporting Information Engineering the Composition and Crystallinity of Molybdenum Sulfide for High-performance Electrocatalytic Hydrogen Evolution Yanpeng Li 1,2 *, Yifei Yu 2, Robert A. Nielsen 3, William

More information

The charging of neutral dimethylamine and dimethylamine sulfuric acid clusters using protonated acetone

The charging of neutral dimethylamine and dimethylamine sulfuric acid clusters using protonated acetone doi:10.5194/amt-8-2577-2015 Author(s) 2015. CC Attribution 3.0 License. The charging of neutral dimethylamine and dimethylamine sulfuric acid clusters using protonated acetone K. Ruusuvuori 1, P. Hietala

More information

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4.

ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion. h = 6.62 x J s Energy conversion factor: 1 calorie = 4. Name: ME 262A - Physical Gas Dynamics 1996 Final Exam: Open Book Portion Useful data and information: k = 1.38 x 10-23 J/K h = 6.62 x 10-34 J s Energy conversion factor: 1 calorie = 4.2 J 1. (40 points)

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 214 Infrared Spectroscopy from Ab Initio Molecular Dynamics - the MeCN-HCl Molecular

More information

A. MP2 - Inclusion of counterpoise in the optimisation step

A. MP2 - Inclusion of counterpoise in the optimisation step A. MP2 - Inclusion of counterpoise in the optimisation step Figure S1. Top and side views of the M_FS_SF_A and M_FS_SF_R IP-dimer structures computed at the MP2 level with (orange) and without (blue) counterpoise

More information

Atmospheric Fate of Methyl Vinyl Ketone: Peroxy. Radical Reactions with NO and HO 2. Supporting Information

Atmospheric Fate of Methyl Vinyl Ketone: Peroxy. Radical Reactions with NO and HO 2. Supporting Information Atmospheric Fate of Methyl Vinyl Ketone: Peroxy Radical Reactions with NO and HO 2 Supporting Information Eric Praske, John D. Crounse*, Kelvin H. Bates, Theo Kurtén, Henrik G. Kjaergaard, Paul O. Wennberg

More information

Ion-Gated Gas Separation through Porous Graphene

Ion-Gated Gas Separation through Porous Graphene Online Supporting Information for: Ion-Gated Gas Separation through Porous Graphene Ziqi Tian, Shannon M. Mahurin, Sheng Dai,*,, and De-en Jiang *, Department of Chemistry, University of California, Riverside,

More information

The role of ammonia in sulfuric acid ion induced nucleation

The role of ammonia in sulfuric acid ion induced nucleation The role of ammonia in sulfuric acid ion induced nucleation I. K. Ortega, T. Kurtén, H. Vehkamäki, M. Kulmala To cite this version: I. K. Ortega, T. Kurtén, H. Vehkamäki, M. Kulmala. The role of ammonia

More information

Calculation of the Solvation Free Energy of the Proton in Methanol

Calculation of the Solvation Free Energy of the Proton in Methanol Calculation of the Solvation Free Energy of the Proton in Methanol Bull. Korean Chem. Soc. 2005, Vol. 26, No. 4 589 Calculation of the Solvation Free Energy of the Proton in Methanol Sungu Hwang * and

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Protein-mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure

Protein-mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure Supplemental Information for: Protein-mineral interactions: molecular dynamics simulations capture importance of variations in mineral surface composition and structure Amity Andersen, *,1 Patrick N. Reardon,

More information

Can Urea Be a Seed for Aerosol Particle Formation in Air?

Can Urea Be a Seed for Aerosol Particle Formation in Air? Supporting Information For Can Urea Be a Seed for Aerosol Particle Formation in Air? Manoj Kumar, [1] Tarek Trabelsi, [1] and Joseph S. Francisco [1],* 1 Department of Chemistry, University of Nebraska-Lincoln,

More information

Growth of atmospheric clusters involving cluster cluster collisions: comparison of different growth rate methods

Growth of atmospheric clusters involving cluster cluster collisions: comparison of different growth rate methods doi:10.5194/acp-16-5545-2016 Author(s) 2016. CC Attribution 3.0 License. Growth of atmospheric clusters involving cluster cluster collisions: comparison of different growth rate methods Jenni Kontkanen

More information

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step

Photoinduced Water Oxidation at the Aqueous. GaN Interface: Deprotonation Kinetics of. the First Proton-Coupled Electron-Transfer Step Supporting Information Photoinduced Water Oxidation at the Aqueous Interface: Deprotonation Kinetics of the First Proton-Coupled Electron-Transfer Step Mehmed Z. Ertem,,,* eerav Kharche,,* Victor S. Batista,

More information

Chapter 2 Experimental sources of intermolecular potentials

Chapter 2 Experimental sources of intermolecular potentials Chapter 2 Experimental sources of intermolecular potentials 2.1 Overview thermodynamical properties: heat of vaporization (Trouton s rule) crystal structures ionic crystals rare gas solids physico-chemical

More information

Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory

Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory doi: 10.2478/auoc-2014-0001 Ovidius University Annals of Chemistry Volume 25, Number 1, pp. 5-10, 2014 Investigation of hydrogen bonding between nitrosamine and sulfuric acid using Density Functional Theory

More information

Force Field for Water Based on Neural Network

Force Field for Water Based on Neural Network Force Field for Water Based on Neural Network Hao Wang Department of Chemistry, Duke University, Durham, NC 27708, USA Weitao Yang* Department of Chemistry, Duke University, Durham, NC 27708, USA Department

More information

Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid

Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid pubs.acs.org/jpca Theoretical Study of the Hydration of Atmospheric Nucleation Precursors with Acetic Acid Yu-Peng Zhu, Yi-Rong Liu, Teng Huang, Shuai Jiang, Kang-Ming Xu, Hui Wen, Wei-Jun Zhang,, and

More information

Supporting Informations

Supporting Informations Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Supporting Informations Fabio Gabas, Giovanni Di Liberto, Riccardo Conte, and Michele Ceotto

More information

Computational and Spectroscopic Investigation of Solution Phase Excited State Dynamics in 7 azaindole

Computational and Spectroscopic Investigation of Solution Phase Excited State Dynamics in 7 azaindole Computational and Spectroscopic Investigation of Solution Phase Excited State Dynamics in 7 azaindole Nathan Erickson, Molly Beernink, and Nathaniel Swenson Midwest Undergraduate Computational Chemistry

More information

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the Module 7 : Theories of Reaction Rates Lecture 33 : Transition State Theory Objectives After studying this Lecture you will be able to do the following. Distinguish between collision theory and transition

More information

Supporting Information

Supporting Information Supporting Information Computational Evidence of Inversion of 1 L a and 1 L b -Derived Excited States in Naphthalene Excimer Formation from ab Initio Multireference Theory with Large Active Space: DMRG-CASPT2

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Photoelectron Spectroscopy of Cold Hydrated Sulfate Clusters, SO 4 2- (H 2 O) n (n ) 4-7): Temperature-Dependent Isomer Populations

Photoelectron Spectroscopy of Cold Hydrated Sulfate Clusters, SO 4 2- (H 2 O) n (n ) 4-7): Temperature-Dependent Isomer Populations J. Phys. Chem. A 2009, 113, 5567 5576 5567 Photoelectron Spectroscopy of Cold Hydrated Sulfate Clusters, SO 4 2- (H 2 O) n (n ) 4-7): Temperature-Dependent Isomer Populations Xue-Bin Wang,*,, Alina P.

More information

Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO 4

Effect of Ammonia on the Gas-Phase Hydration of the Common Atmospheric Ion HSO 4 Int. J. Mol. Sci. 2008, 9, 2184-2193; DOI: 10.3390/ijms9112184 Special Issue The Chemical Bond and Bonding OPEN CCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms/

More information

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study L. Gorb* ), J. Jadżyn $) and K. W. Wojciechowski #) Institute of Molecular Physics, Polish Academy of

More information

On the stability of glycine-water clusters with excess electron: Implications for photoelectron spectroscopy

On the stability of glycine-water clusters with excess electron: Implications for photoelectron spectroscopy THE JOURNAL OF CHEMICAL PHYSICS 122, 084310 2005 On the stability of glycine-water clusters with excess electron: Implications for photoelectron spectroscopy Doo-Sik Ahn, Ae-Ri Kang, and Sungyul Lee a

More information

Gherman Group Meeting. Thermodynamics and Kinetics and Applications. June 25, 2009

Gherman Group Meeting. Thermodynamics and Kinetics and Applications. June 25, 2009 Gherman Group Meeting Thermodynamics and Kinetics and Applications June 25, 2009 Outline Calculating H f, S, G f Components which contribute to H f, S, G f Calculating ΔH, ΔS, ΔG Calculating rate constants

More information

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Heterostructures of MXene and N-doped graphene as highly active bifunctional

More information

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents

Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Contents Supporting Information Multiscale Model for a Metal-Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74 Hajime Hirao*, Wilson Kwok Hung Ng, Adhitya Mangala

More information

CN NC. dha-7. dha-6 R' R. E-vhf (s-trans) E-vhf (s-cis) R CN. Z-vhf (s-cis) Z-vhf (s-trans) R = AcS R' = AcS

CN NC. dha-7. dha-6 R' R. E-vhf (s-trans) E-vhf (s-cis) R CN. Z-vhf (s-cis) Z-vhf (s-trans) R = AcS R' = AcS R' R R' R dha-6 dha-7 R' R R' R E-vhf (s-cis) E-vhf (s-trans) R R' R R' Z-vhf (s-cis) Z-vhf (s-trans) R = R' = Supplementary Figure 1 Nomenclature of compounds. Supplementary Figure 2 500 MHz 1 H NMR spectrum

More information

Potential Energy Surface and Binding Energy in External Electric Field: Modulation of Anion π Interactions for Graphene Based Receptors

Potential Energy Surface and Binding Energy in External Electric Field: Modulation of Anion π Interactions for Graphene Based Receptors Potential Energy Surface and Binding Energy in External Electric Field: Modulation of Anion π Interactions for Graphene Based Receptors Cina Foroutan Nejad a and Radek Marek a,b a National Center for Biomolecular

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 207 Supporting Information Carbon Nanoscroll- Silk Crystallite Hybrid Structure with Controllable Hydration

More information

Is Vitamin A an Antioxidant or a Prooxidant?

Is Vitamin A an Antioxidant or a Prooxidant? Supporting Information Is Vitamin A an Antioxidant or a Prooxidant? Duy Quang Dao 1,*, Thi Chinh Ngo 1, Nguyen Minh Thong 2, Pham Cam Nam 3,* 1 Institute of Research and Development, Duy Tan University,

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Quiz 3 Info. Average 6.40 St. Dev Quiz 3 Scores. 2/25/2014 Physics 132 1

Quiz 3 Info. Average 6.40 St. Dev Quiz 3 Scores. 2/25/2014 Physics 132 1 Quiz 3 Info Quiz 3 Scores Average 6.40 St. Dev 2.62 35 30 25 20 15 10 5 0 0 1 2 3 4 5 6 7 8 9 10 2/25/2014 Physics 132 1 1. (3 pts) A particular reaction has a negative enthalpy change AND a negative entropy

More information

Pyramidal Fe(CO) 5. P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute of Science,

Pyramidal Fe(CO) 5. P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute of Science, Fe as Hydrogen/Halogen Bond Acceptor in Square Pyramidal Fe(CO) 5 Supporting Information P. Aiswaryalakshmi, Devendra Mani and E. Arunan* Department of Inorganic and Physical Chemistry, Indian Institute

More information

Dispersion Interactions from the Exchange-Hole Dipole Moment

Dispersion Interactions from the Exchange-Hole Dipole Moment Dispersion Interactions from the Exchange-Hole Dipole Moment Erin R. Johnson and Alberto Otero-de-la-Roza Chemistry and Chemical Biology, University of California, Merced E. R. Johnson (UC Merced) Dispersion

More information

Thermochemistry in Gaussian

Thermochemistry in Gaussian Thermochemistry in Gaussian Joseph W. Ochterski, Ph.D. help@gaussian.com c 2000, Gaussian, Inc. June 2, 2000 Abstract The purpose of this paper is to explain how various thermochemical values are computed

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Anomalously Strong Effect of the Ion Sign on the Thermochemistry of Hydrogen Bonded Aqueous Clusters of Identical Chemical Composition

Anomalously Strong Effect of the Ion Sign on the Thermochemistry of Hydrogen Bonded Aqueous Clusters of Identical Chemical Composition Int. J. Mol. Sci. 2009, 10, 507-517; doi:10.3390/ijms10020507 Communication Special Issue The Chemical Bond and Bonding OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms

More information

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate

Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate Specific Ion Solvtion in Ethylene Carbonate and Propylene Carbonate A. Arslanargin, A. Powers, S. Rick, T. Pollard, T. Beck Univ Cincinnati Chemistry Support: NSF, OSC TSRC 2016 November 2, 2016 A. Arslanargin,

More information

MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS. Speaker: Chun I Wang ( 王俊壹 )

MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS. Speaker: Chun I Wang ( 王俊壹 ) MODEL FOR PREDICTING SOLUBILITY OF FULLERENES IN ORGANIC SOLVENTS Speaker Chun I Wang ( 王俊壹 ) 2014.11.03 Thermodynamics Concept of Fullerenes Solubility in Organic Solvents Fundamental Thermodynamics G

More information

Journal of Computational Methods in Molecular Design, 2013, 3 (1):1-8. Scholars Research Library (

Journal of Computational Methods in Molecular Design, 2013, 3 (1):1-8. Scholars Research Library ( Journal of Computational Methods in Molecular Design, 2013, 3 (1):1-8 Scholars Research Library (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231-3176 CODEN (USA): JCMMDA Theoretical study

More information

THERMOCHEMISTRY AND INTERNAL ROTOR CALCULATIONS OF PYRAZOLE DERIVATIVES

THERMOCHEMISTRY AND INTERNAL ROTOR CALCULATIONS OF PYRAZOLE DERIVATIVES IJRPC 2016, 6(3), 444-450 Karmvir Sangwan et al. ISS: 2231 2781 ITERATIOAL JOURAL OF RESEARCH I PHARMACY AD CHEMISTRY Available online at www.ijrpc.com Research Article THERMOCHEMISTRY AD ITERAL ROTOR

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VC Verlag Gmb & Co. KGaA, 69451 Weinheim, 2007 Brønsted Basicities of Diamines in the Gas Phase, Acetonitrile and Tetrahydrofuran Eva-Ingrid Rõõm, Agnes Kütt, Ivari

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 Electronic Supplementary Information

More information

Coupled-cluster and perturbation methods for macromolecules

Coupled-cluster and perturbation methods for macromolecules Coupled-cluster and perturbation methods for macromolecules So Hirata Quantum Theory Project and MacroCenter Departments of Chemistry & Physics, University of Florida Contents Accurate electronic structure

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Are intramolecular frustrated Lewis pairs also intramolecular

More information

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints

Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Supplementary information Silver (I) as DNA glue: Ag + - mediated guanine pairing revealed by removing Watson- Crick constraints Steven M. Swasey [b], Leonardo Espinosa Leal [c], Olga Lopez- Acevedo [c],

More information

Formation of binary ion clusters from polar vapours: effect of the dipole-charge interaction

Formation of binary ion clusters from polar vapours: effect of the dipole-charge interaction Atmos. Chem. Phys., 4, 385 389, 24 SRef-ID: 68-7324/acp/24-4-385 Atmospheric Chemistry and Physics Formation of inary ion clusters from polar vapours: effect of the dipole-charge interaction A. B. Nadykto

More information

Protein structure forces, and folding

Protein structure forces, and folding Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane Protein structure forces, and folding

More information

Q-Chem Workshop Tasks

Q-Chem Workshop Tasks Marek Freindorf Q-Chem Workshop Tasks Washington DC August 2009 Basic Calculations Carbon Dioxide, Example 1A 1. Calculate an optimal geometry of carbon dioxide using the B3LYP/6-31+G* level of theory

More information

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. (10 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics Dr. D. E. Manolopoulos First Year (0 Lectures) Michaelmas Term Lecture Synopsis. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Development of a Water Cluster Evaporation Model using Molecular Dynamics

Development of a Water Cluster Evaporation Model using Molecular Dynamics Development of a Water Cluster Evaporation Model using Molecular Dynamics Arnaud Borner, Zheng Li, Deborah A. Levin. Department of Aerospace Engineering, The Pennsylvania State University, University Park,

More information

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term

Introduction to Chemical Thermodynamics. D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Introduction to Chemical Thermodynamics D. E. Manolopoulos First Year (13 Lectures) Michaelmas Term Lecture Synopsis 1. Introduction & Background. Le Chatelier s Principle. Equations of state. Systems

More information

Material Properties & Characterization - Surfaces

Material Properties & Characterization - Surfaces 1) XPS Spectrum analysis: The figure below shows an XPS spectrum measured on the surface of a clean insoluble homo-polyether. Using the formulas and tables in this document, answer the following questions:

More information

Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation

Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation Supporting Information Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: Competing routes to C C bond formation Andrea Hamza, a Gábor Schubert, a Tibor Soós b and Imre

More information

Supporting Information

Supporting Information Supporting Information Conflict in the Mechanism and Kinetics of the Barrierless Reaction between SH and NO 2 Radicals Ramanpreet Kaur and Vikas * Quantum Chemistry Group, Department of Chemistry & Centre

More information

Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) Part B III. Prediction of Electronic Transitions (UV-Vis) IV.

Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) Part B III. Prediction of Electronic Transitions (UV-Vis) IV. Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) II. Thermochemistry Part B III. Prediction of Electronic Transitions (UV-Vis) IV. NMR Predictions 1 I. Prediction of Vibrational

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Homework Assignment 2 ATM 507 Fall 2014

Homework Assignment 2 ATM 507 Fall 2014 Due Tuesday, September 30th Homework Assignment ATM 507 Fall 014 1. Calculate H for the following reactions. Express your answer in kj/mole and kcal/mole: i) NO NO + O( 3 P) ii) NO + O 3 NO + O iii) H

More information

Exploring the potential of the nano-köhler theory to describe the growth of atmospheric molecular clusters by organic vapors

Exploring the potential of the nano-köhler theory to describe the growth of atmospheric molecular clusters by organic vapors Atmos. Chem. Phys. Discuss., https://doi.org/.194/acp-18-393 Exploring the potential of the nano-köhler theory to describe the growth of atmospheric molecular clusters by organic vapors Jenni Kontkanen

More information

Computational and spectroscopic investigation of 7-azaindole: Solvation and intermolecular interactions

Computational and spectroscopic investigation of 7-azaindole: Solvation and intermolecular interactions Computational and spectroscopic investigation of 7-azaindole: Solvation and intermolecular interactions Michael Kamrath, Krista Cruse, Nathan Erickson, Molly Beernink Abstract We report results of an experimental

More information

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours

FIRST PUBLIC EXAMINATION. Trinity Term Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY. Time allowed: 2 ½ hours FIRST PUBLIC EXAMINATION Trinity Term 004 Preliminary Examination in Chemistry SUBJECT 3: PHYSICAL CHEMISTRY Wednesday, June 9 th 004, 9.30 a.m. to 1 noon Time allowed: ½ hours Candidates should answer

More information

Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth s Atmosphere. A Theoretical Study

Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth s Atmosphere. A Theoretical Study Cite This: pubs.acs.org/jpca Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth s Atmosphere. A Theoretical Study Chun-Yu Wang,, Shuai Jiang, Yi-Rong Liu, Hui Wen, Zhong-Quan Wang,,

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Polymer Chemistry SUPPORTING INFORMATION

Polymer Chemistry SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2015 Polymer Chemistry Thiol-Maleimide Click Chemistry: Evaluating the Influence of Solvent,

More information

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water

Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Supporting Information for Atmospheric Hydroxyl Radical Source: Reaction of Triplet SO 2 and Water Authors: Jay A. Kroll 1,2,#, Benjamin N. Frandsen 3,#, Henrik G. Kjaergaard 3,*, and Veronica Vaida 1,2,*

More information

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1

INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID. Kalyan Dhar 1 * and Syed Fahim 1 Bangladesh J. Sci. Res. 29(1): 41-46, 2016 (June) INVESTIGATION OF THE ABSORPTION OF CO 2 IN IONIC LIQUID Kalyan Dhar 1 * and Syed Fahim 1 Dept. di Chimica Materiali e Ingegneria chimica G. Natta, Politecnico

More information

Title Super- and subcritical hydration of Thermodynamics of hydration Author(s) Matubayasi, N; Nakahara, M Citation JOURNAL OF CHEMICAL PHYSICS (2000), 8109 Issue Date 2000-05-08 URL http://hdl.handle.net/2433/50350

More information

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers

Hydration of Nucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers http://bowers.chem.ucsb.edu/ ydration of ucleotides Thomas Wyttenbach, Dengfeng Liu, and Michael T. Bowers ASMS 2006 Why study hydration? Is a certain property of a molecule (e.g. conformation) inherent

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

Effect of polarizability of halide anions on the ionic salvation in water clusters

Effect of polarizability of halide anions on the ionic salvation in water clusters University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 9-22-2003 Effect of polarizability of halide anions

More information

Shenggang Li, Hua-Jin Zhai, Lai-Sheng Wang,*, and David A. Dixon*,

Shenggang Li, Hua-Jin Zhai, Lai-Sheng Wang,*, and David A. Dixon*, J. Phys. Chem. A 2009, 113, 11273 11288 11273 Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M 3 O 8 and M 3 O 8 (M ) Cr, W), from Photoelectron Spectroscopy and Quantum

More information

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia University of Groningen Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

dianions (n = 4 12) Received 8 April 2014; revised and accepted 13 April 2014

dianions (n = 4 12)   Received 8 April 2014; revised and accepted 13 April 2014 Indian Journal of Chemistry Vol. 53A, Aug-Sept 2014, pp. 978-984 Structural similarity between boron oxide B n (BO) n and boron hydride B n H n dianions (n = 4 12) Truong Ba Tai a, Nguyen Minh Tam a, b

More information

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force

The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Journal of Colloid and Interface Science 263 (2003) 156 161 www.elsevier.com/locate/jcis The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force Haohao

More information

Hands-on : Model Potential Molecular Dynamics

Hands-on : Model Potential Molecular Dynamics Hands-on : Model Potential Molecular Dynamics OUTLINE 0. DL_POLY code introduction 0.a Input files 1. THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics 2. Liquid THF 2.a Equilibration

More information

Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William A. Goddard III 1,2*

Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William A. Goddard III 1,2* Supporting Information for the Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO2 (110) Surface Yuan Ping 1,2,3*, Robert J. Nielsen 1,2, William

More information

highly sensitive luminescent sensing of alkylamines

highly sensitive luminescent sensing of alkylamines Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2018 3D Ln III -MOFs: displaying slow magnetic relaxation and highly sensitive luminescent sensing

More information

Electron tunneling through the repulsive Coulomb barrier in photodetachment of multiply charged anions

Electron tunneling through the repulsive Coulomb barrier in photodetachment of multiply charged anions 9 July 1999 Chemical Physics Letters 307 1999 391 396 www.elsevier.nlrlocatercplett Electron tunneling through the repulsive Coulomb barrier in photodetachment of multiply charged anions Xue-Bin Wang a,b,

More information

Awards and Fellowships 02/ Entropy Best Paper Award 01/ /2006 Research Fellowship, State University of New York, Albany, NY

Awards and Fellowships 02/ Entropy Best Paper Award 01/ /2006 Research Fellowship, State University of New York, Albany, NY CV Dr. Alexey B. Nadykto Tel Email 7 495 501-1346 (Russia) anadykto@gmail.com Education 2012 D.Sc. (Higher Doctorate/Research Professor Dissertation) in Mathematical Modeling (code 05.13.18) and Physical

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6.1: Introduction to Chemical Bonding Things That You Should Know What is a chemical bond? Why do atoms form chemical bonds? What is the difference between ionic and

More information

Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study

Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study Supporting Information Towards a Molecular Understanding of Energetics in Li-S Batteries using Non-Aqueous Electrolytes: A High-level Quantum Chemical Study Rajeev S. Assary a,b*, Larry A. Curtiss a,b,*,

More information

Basis Set for Molecular Orbital Theory

Basis Set for Molecular Orbital Theory Basis Set for Molecular Orbital Theory! Different Types of Basis Functions! Different Types of Atom Center Basis Functions! Classifications of Gaussian Basis Sets! Pseudopotentials! Molecular Properties

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photochemistry of N-Methylformamide: Matrix Isolation and Nonadiabatic Dynamics Rachel Crespo-Otero, [a] Artur Mardyukov,

More information

Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced. Interface Fluctuations: The Hydrophobic Nature of Ions?

Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced. Interface Fluctuations: The Hydrophobic Nature of Ions? Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies Supplemental Material: Solute Adsorption at Air-Water Interfaces and Induced Interface

More information

Supporting Information. Local decomposition of imaginary polarizabilities. and dispersion coefficients

Supporting Information. Local decomposition of imaginary polarizabilities. and dispersion coefficients Electronic Supplementary Material (ESI) for Physical hemistry hemical Physics. This journal is the Owner Societies 27 Supporting Information Local decomposition of imaginary polarizabilities and dispersion

More information

Quasi-unary homogeneous nucleation of H 2 SO 4 -H 2 O

Quasi-unary homogeneous nucleation of H 2 SO 4 -H 2 O THE JOURNAL OF CHEMICAL PHYSICS 122, 074501 2005 Quasi-unary homogeneous nucleation of H 2 SO 4 -H 2 O Fangqun Yu a Atmospheric Sciences Research Center, State University of New York at Albany, 251 Fuller

More information

Non-Equilibrium Reaction Rates in Hydrogen Combustion

Non-Equilibrium Reaction Rates in Hydrogen Combustion 25 th ICDERS August 2 7, 25 Leeds, UK Non-Equilibrium Reaction Rates in Hydrogen Combustion Stephen J. Voelkel, Venkat Raman 2, Philip Varghese The University of Texas at Austin, Austin, TX 7872, USA 2

More information

Mixed quantum-classical dynamics. Maurizio Persico. Università di Pisa Dipartimento di Chimica e Chimica Industriale

Mixed quantum-classical dynamics. Maurizio Persico. Università di Pisa Dipartimento di Chimica e Chimica Industriale Mixed quantum-classical dynamics. Maurizio Persico Università di Pisa Dipartimento di Chimica e Chimica Industriale Outline of this talk. The nuclear coordinates as parameters in the time-dependent Schroedinger

More information

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions Fei Ye,, Shuanglin Qu,, Lei Zhou,, Cheng Peng, Chengpeng Wang, Jiajia

More information