Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Size: px
Start display at page:

Download "Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products"

Transcription

1 Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing them, we will discuss properties that a relation may or may not have. These are defined only in terms of elements that must belong to the subset in certain situations. In situations like this where things are defined abstractly, it pays to learn to do a couple of things. The first is to always test the definitions and see what they mean, that is, to get a feeling for which things satisfy the definitions and which don t, and why. The second is to keep in mind a few concrete examples. These can be used when exploring what the definitions are saying. 3.1 Cartesian Products In the Cartesian plane (or x-y plane), we associate the set of points in the plane with the set of all ordered points (x, y), where x and y are both real numbers. The idea of a Cartesian product of sets replaces R in the description by some other set(s), and drops the geometric interpretation. If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. 1

2 2 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS The following points are worth special attention: The Cartesian product of two sets is a set. The elements of that set are ordered pairs. In each ordered pair, the first component is an element of A, and the second component is an element of B. The points in the x-y plane correspond to the elements of the set R R. For example, if A = {1, 2, 3} and B = {a, b}, then A B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} and B A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}. Suppose A has m elements and B has n elements. Then, each element of A is the first component of n ordered pairs in A B: one for each element of B. Thus the number of elements in A B equals m n, the number of elements in A times the number of elements in B. This is one way in which the symbol is suggestive notation for the Cartesian product. What should A be? By definition, it is the set of all ordered pairs (a, b) where a A and b. There are no such pairs, as there are no elements b. Hence A =. Similarly, B =. We says that two ordered pairs are equal if the first components are identical and so are the second components. That is, (a, b) = (c, d) if and only if a = c and b = d. This corresponds to (and generalizes) our idea of equality for ordered pairs of real numbers. The example above shows that A B B A in general. This leads to the question of when they are equal. Certainly they are equal if A = B because then A B = A A = B A. They are also equal when A = or B = because, then A B = = B A. We now show that these are the only possibilities where equality can hold. Proposition Let A and B be sets. Then A B = B A if and only if A = B, or A =, or B =. Proof. ( ) We prove the contrapositive. Suppose A and B are non-empty sets such that A B. Then one of them has an element which does not belong to the other. Suppose first that there exists x A such that x B.

3 3.1. CARTESIAN PRODUCTS 3 Since B, the set A B has an ordered pair with first component x, whereas B A has no such ordered pair. Thus A B B A. The argument is similar in the other case, when there exists y B such that y A. ( ). If A = B then A B = A A = B A. If A =, then A B = = B A. The case where B = is similar. The set A (B C) is the set of all ordered pairs where the first component is an element of A, and the second component is an element of B C. That is, the second component is an element of B or an element of C. This is the same collection that would be obtained from the union (A B) (A C), which is made from the union of the set of all ordered pairs where the first component is an element of A and the second component is an element of B, and the set of all ordered pairs where the first component is an element of A, and the second component is an element of C. This is the outline of the proof of the following proposition. Proposition Let A, B and C be sets. Then, A (B C) = (A B) (A C). Proof. (LHS RHS) Let (x, y) A (B C). Then x A and y (B C). That is, y B or y C. This leads to two cases. If y B, then (x, y) A B, and so (x, y) (A B) (A C). If y C, then (x, y) A C, and so (x, y) (A B) (A C). Therefore, A (B C) (A B) (A C). (RHS LHS) Let (x, y) (A B) (A C). Then (x, y) A B or (x, y) A C. This leads to two cases. If (x, y) A B, then x A and y B. Since y B, we have y B C, so (x, y) A (B C). If (x, y) A C, then x A and y C. Since y C, we have y B C, so (x, y) A (B C). Therefore, (A B) (A C) A (B C). The proposition above can also be proved using set builder notation and showing that the two sets are described by logically equivalent expressions. One hint that this is so is in the informal proof outline that precedes the proposition. Another one is in the proof of the proposition: the second part of the proof above is essentially the first part written from bottom to top. Each step is an equivalence rather than just an implication. The same methods can be used to prove the following similar statements:

4 4 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS A (B C) = (A B) (A C); (A B) C = (A C) (B C); (A B) C = (A C) (B C). It is a good exercise to investigate, then prove or disprove as appropriate, similar statements involving the Cartesian product and operations like set difference, A \ B, and symmetric difference, A B. 3.2 Relations Suppose A is the set of all students registered at UVic this term, and B is the set of all courses offered at UVic this term. Then A B is the set of all ordered pairs (s, c), where s is a student registered at UVic this term, and c is a course offered at UVic this term. The set A B represents all possible registrations by a current student in a current course. Certain subsets of A B may be of interest, for example the subset consisting of the pairs where the course is in Science and the student is actually registered in the course, or the subset consisting of the pairs where completion of the course would make the student eligible to receive a degree from the Faculty of Fine Arts. The idea is that relationships between the elements of A and the elements of B can be represented by subsets of A B. A binary relation from a set A to a set B is a subset R A B. A binary relation on a set A is a subset of R A A. The word binary arises because the relation contains pairs of objects. Ternary relations (on A, say) would contain triples of elements, quaternary relations would contain quadruples of elements, and in general n-are relations would contain ordered n-tuples of elements. We will only consider binary relations, so we will drop the adjective binary. When we talk about relations, we mean binary relations. We will focus almost exclusively on relations on a set A. A relation may or may not express a particular type of relationship between its elements. The definition says that a relation is simply a subset. Any subset. It could be that the only relationship between x and y is that

5 3.3. PROPERTIES OF RELATIONS 5 the pair (x, y) belongs to the subset. Subsets like R 1 = and R 2 = A A are perfectly good relations on A. On the other hand, familiar things can be seen as relations. As a sample: Equality between integers is represented by the relation R on Z where (x, y) R if and only if x = y. Strict inequality between real numbers is represented by the relation S on R where (x, y) S if and only if x > y. The property of being a subset is represented by the relation C on P(U) where (X, Y ) C if and only if X Y. Logical implication between statements p and q is represented by the relation I on the set of all statements (say involving a certain set of Boolean variables) where (p, q) I if and only if p q. Because of these examples, and many others like them involving common mathematical symbols (that express particular relationships), infix notation is used: sometimes we write xry instead of (x, y) R, and say that x is related to y (under R). 3.3 Properties of Relations The relation = on the set of real numbers has the following properties: Every number is equal to itself. If x is equal to y, then y is equal to x. Numbers that are equal to the same number are equal to each other. That is, if x = y and y = z, then x = z. The relation on the set of all propositions (in a finite number of variables) has properties that look strongly similar to these. Every proposition is logically equivalent to itself.

6 6 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS If p is logically to q, then q is logically equivalent to p. Propositions that are logically equivalent to the same proposition are logically equivalent to each other to each other. That is, if p q and q r, then p r. Similarly, the relation on the set of real numbers has the following properties: x x for every x R. If x y and y x, then x = y. If x y and y z, then x z. The relation on the the power set of a set S has similar properties: X X for every X P(S). If X Y and Y X, then X = Y. If X Y and Y Z, then X Z. The relation on the set of all propositions (in a finite number of variables) looks to have the same properties as the previous two, so long as we accept playing the role of =. There is, however, something subtle and beyond the scope of this discussion, going on in the second bullet point because we use instead of =. p p for every proposition x. If p q and q p, then p q. If p q and q r, then p r. It may or may not be clear that the first bullet point in each of the five collections describes the same abstract property. And the same for the third bullet point. The middle bullet point describes the same abstract property in the first two collections and in the first two of the last three, but these two properties are fundamentally different.

7 3.3. PROPERTIES OF RELATIONS 7 The first property in the five collections above is reflexivity. The dictionary defines reflexive as meaning directed back on itself. In a relation, we interpret that as meaning every element is related to itself. Thus, each of the relations described above is reflexive. The second property in the first two collections, but not the last three, is symmetry : if x is related to y, then y is related to x. The third property in all five collections is transitivity : if x is related to y, and y is related to z, then x is related to z. The second property in collection three and four is anti-symmetry : if x is related to y and y is related to x, then x is the same as y. Later, we will see that being anti-symmetric is very different from being not symmetric. We will also get a hint of the origin of the (unfortunate) term anti-symmetric. Formal definitions of these properties follow. It is important to realize that each of these is a property that a particular relation might, or might not, have. A relation R on a set A is: reflexive if (x, x) R for every x A. (Written in infix notation, the condition is xrx for every x A.) symmetric if (y, x) R whenever (x, y) R, for all x, y A. (Written in infix notation, the condition is if xry then yrx, for all x, y A.) transitive if (x, z) R whenever (x, y), (y, z) R, for all x, y, z A. (Written in infix notation, the condition is if xry and yrz, then xrz, for all x, y, z A.) anti-symmetric if x = y whenever (x, y) R and (y, x) R, for all x, y A. (Written in infix notation, the condition is if xry and yrx, then x = y, for all x, y A.) Why are we doing this? Relations that are reflexive, symmetric and transitive behave a lot like equals : they partition the set A into disjoint collections of elements that are the same (equivalent) with respect to whatever property

8 8 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS is used to define the relation. These are called equivalence relations. Relations that are that reflexive, anti-symmetric and transitive behave a lot like less than or equal to in the sense that they imply an ordering of some of the elements of A. To interpret this for the subset relation, think of X Y as reading X precedes or equals Y (there are some pairs of sets for which neither precedes or equals the other). These are called partial orders. What follows are six examples of determining whether or not a relation has the properties defined above. Consider the relation R 1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3)} on the set A = {1, 2, 3}. R 1 is reflexive: A = {1, 2, 3} and (1, 1), (2, 2), (3, 3) R 1. R 1 is not symmetric: (2, 3) R 1 but (3, 2) R 1. R 1 is not anti-symmetric: (1, 2), (2, 1) R 1 but 1 2. R 1 is not transitive: (1, 2), (2, 3) R 1 but (1, 3) R 1. The definition says that a relation is symmetric if, whenever a pair (x, y) is in the relation, so is its reversal (y, x). This means that when x y, either both of (x, y) and (y, x) are in the relation, or neither are. The definition says that a relation is anti-symmetric if, when x y, we never have both of (x, y) and (y, x) in the relation. (The definition is phrased in a way that makes it easy to use in proofs.) This means that x y, either (x, y) is in the relation and (y, x) is not in it, or (y, x) is in the relation and (x, y) is not in it, or neither pair is in it. The only possibility that is not permitted to arise in an anti-symmetric relation is for it to contain both (x, y) and (y, x), where x y. (There is no pair of different elements which are related in a symmetric way.) It is possible for a relation to be both symmetric and anti-symmetric, for example A = {(1, 1), (2, 2)} on the set {1, 2, 3}. The relation R 1 above shows that it is also possible for a relation to be neither symmetric nor antisymmetric. Consider the relation R 2 = on any non-empty set A. R 2 is not reflexive. Since A, there exists x A. The ordered pair (x, x) R 2.

9 3.3. PROPERTIES OF RELATIONS 9 R 2 is symmetric. The implication if (x, y) R 2, then (y, x) R 2 is true because its hypothesis is always false. R 2 is anti-symmetric. The implication if (x, y), (y, x) R 2, then x = y is true because its hypothesis is always false. R 2 is transitive. The implication if (x, y), (y, z) R 2, then (x, z) R 2 is true because its hypothesis is always false. If A =, then what above changes slightly because R 2 is reflexive. Can you explain why? Let R 3 be the subset relation on P(S), the set of all subsets of S = {1, 2, 3, 4}, that is, (X, Y ) R 3 if and only X Y. R 3 is reflexive because X X for every X S (for every X P(S)). R 2 is not symmetric: (, {1}) R 3 because {1} but ({1}, ) R 3 because {1}. R 3 is anti-symmetric. Suppose (X, Y ), (Y, X) R 3. Then X Y and Y X. We proved before that this means X = Y. R 3 is transitive. Suppose (X, Y ), (Y, Z) R 3. Then X Y and Y Z. We proved before that this means X Z, that is (X, Z) R 3. If S =, then what above changes slightly because R 3 is symmetric. Can you explain why? Let R 4 be the relation on N defined by (m, n) R 4 if and only if m n is even. R 4 is reflexive. Let k N. Then k k = 0. Since 0 is even, (k, k) R 4. R 4 is symmetric. Suppose (m, n) R 4. Then m n is even. Since n m = (m n), and the negative of an even number is even, (n, m) R 4. R 4 not anti-symmetric: (1, 3), (3, 1) R 4 but 1 3. R 4 is transitive. Suppose (k, m), (m, n) R 4. Then k m is even, and m n is even. Hence, (k m) + (m n) = k n is even it is the sum of two even numbers. Therefore (k, n) R 4.

10 10 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS Let A be a set with at least two elements, and let R 5 be the relation A A on A. R 5 is reflexive. It contains all possible ordered pairs of elements of A, so it contains (x, x) for every x A. R 5 is symmetric. It contains all possible ordered pairs of elements of A, so it contains (y, x) whenever it contains (x, y). R 5 not anti-symmetric: since A has at least two elements, there exist a, b A such that a b. Since (a, b), (b, a) A A, the statement follows. R 5 is transitive. It contains all possible ordered pairs of elements of A, so it contains (x, z) whenever it contains (x, y) and (y, z). If A has at most one element, then the above changes. In that case, R 5 is anti-symmetric. Can you explain why? Finally, let R 6 be the relation on Z Z defined by (a, b)r 6 (c, d) if and only if a c and b d. Notice that, here, it is pairs of elements that are being related (to each other) under R 6, so technically R 6 is an set of ordered pairs, of which the components are ordered pairs. The infix notation (a, b)r 6 (c, d) is far less cumbersome that writing ((a, b), (c, d)) R 6. R 6 is reflexive. Let (a, b) Z Z. Since a a and b b, we have (a, b)r 6 (a, b). R 6 is not symmetric: (1, 2)R 6 (3, 4) but (3, 4)R 6 (1, 2). R 6 is anti-symmetric. Suppose (a, b)r 6 (c, d) and (c, d)r 6 (a, b). Then a c and b d, and c a and d b. Therefore a = c and b = d, so that (a, b) = (c, d). R 6 is transitive. Suppose (a, b)r 6 (c, d) and (c, d)r 6 (e, f). We want (a, b)r 6 (e, f). Since (a, b)r 6 (c, d), a c and b d. Since (c, d)r 6 (e, f), c e and d f. Therefore a e and b f, so that (a, b)r 6 (e, f). We close this section with a different sort of example. Suppose R is a relation on {1, 2, 3, 4} that is symmetric and transitive. Suppose also that (1, 2), (2, 3), (1, 4) R. What else must be in R?

11 3.3. PROPERTIES OF RELATIONS 11 Since R is symmetric, we must have (2, 1), (3, 2), (4, 1) R. Since R is transitive and (1, 2), (2, 1) R, we must have (1, 1) R. Similarly (2, 2), (3, 3), (4, 4) R. Since (1, 2), (2, 3) R, transitivity implies (1, 3) R. Symmetry gives (3, 1) R. Let s summarize what we have done so far in an array. The rows and columns are indexed by {1, 2, 3, 4}, and the entry in row i and column j is the truth value of the statement (i, j) R (that is, it is 1 if the pair (i, j) R and 0 otherwise Notice that the array is symmetric (in the matrix-theoretic sense): the (i, j)- entry equals the (j, i)-entry. Must (2, 4) be in R? We have (2, 1), (1, 4) R, so (2, 4) R. Thus (4, 2) R by symmetry. What about (3, 4)? We have (3, 1), (1, 4) R, so again the answer is (3, 4) R. Thus (4, 3) R. Therefore R = A A. An array of the type in the previous example rows and columns indexed by elements of A and (i, j)-entry the truth value of the statement (i, j) R denotes a reflexive relation when every entry on the main diagonal equals 1; symmetric relation when it is symmetric about the main diagonal: the (i, j)-entry equals the (j, i)-entry. anti-symmetric relation when there is no i j such that the (i, j)-entry and the (j, i)-entry are both equal to 1. (Entries on the main diagonal don t matter, and it acceptable for the (i, j)-entry and the (j, i)-entry to both equal 0.) It is not easily possible to look at the array and see if the relation is transitive. All of the possibilities need to be checked.

12 12 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS 3.4 Equivalence Relations An equivalence relation on a set A is a relation on A that is reflexive; symmetric; and transitive Relations with these three properties are similar to =. Suppose R is an equivalence relation on A. Instead of saying (x, y) R or x is related to y under R, for the sake of this discussion let s say x is the same as y. The reflexive property then says everything in A is the same as itself. The symmetric property says if x is the same as y, then y is the same as x. And the transitive property says things that are both the same as the same element are the same as each other. Another translation of these statements arises from replacing is the same as by is equivalent to. The following are examples of equivalence relations: logical equivalence on the set of all propositions; the relation R on Z defined by xry if and only if x y is even; the relation T on {0, 1,..., 24} defined by h 1 T h 2 if any only if h 1 hours is the same time as h 2 hours on a 12-hour clock; the relation S on the set of all computer programs defined by p 1 Sp 2 if and only if p 1 computes the same function at p 2 ; the relation E on the set of all algebraic expressions in x defined by p(x) E q(x) if and only if p(x) = q(x) for every real number x. For example, if p(x) = x 2 1 and q(x) = (x + 1)(x 1), then p(x) E q(x). It is a useful exercise to prove that each of these is an equivalence relation. Every equivalence relation carves up (mathematicians would say partitions ) the underlying set into collections (sets) of equivalent things (things that are the same ), where the meaning of equivalent depends on the definition of the relation. In the examples above:

13 3.4. EQUIVALENCE RELATIONS 13 logical equivalence partitions the universe of all statements into collections of statements that mean the same thing, and hence can be freely substituted for each other; R partitions the integers into the even integers and the odd integers; T partitions {0, 1,..., 24} into collections of hours that represent the same time on a 12-hour clock; S partitions the set of all computer programs into collections that do the same thing; E partitions the set of all algebraic expressions into collections that give the same numerical value for every real number x, and hence can be freely substituted for each other when manipulating equations. Each of these collections of equivalent things is an example of what is called an equivalence class. Let R be an equivalence relation on A, and x A. The equivalence class of x is the set [x] = {y : yrx}. Let A be a set. A partition of A is a collection of disjoint, non-empty subsets whose union is A. That is, it is a set of subsets of A such that the empty set is not in the collection; and every element of A belongs to exactly one set in the collection. Each set in the collection is called a cell, or block, or element of the partition. A: For example, if A = {a, b, c, d, e}, then the following are all partitions of {{a}, {b, e}, {c, d}}; {A}; {{a, c, e}, {b, d}}; {{a}, {b}, {c}, {d}, {e}}. None of the following are partitions of A:

14 14 CHAPTER 3. CARTESIAN PRODUCTS AND RELATIONS {{a}, {b, e}, {c, d}, }; {{a, c, e}, {d}}; {{a}, {b}, {c}, {a, d}, {e}}; {a}, {b}, {c}, {d}, {e}. The last example of something that isn t a partition is slippery. It isn t a set, hence it can t be a partition. But this is just a technicality mathematicians frequently write partitions in this way. The point of this example was to make sure you re aware of what happens sometimes, and what is intended. That equivalence relations and partitions are actually two sides of the same coin is the main consequence of the two theorems below. The first theorem says that the collection of equivalence classes is a partition of A (which is consistent with what we observed above). The second theorem says that for any possible partition of A there is an equivalence relation for which the subsets in the collection are exactly the equivalence classes. Theorem Let R be an equivalence relation on A. Then 1. x [x]; 2. if xry then [x] = [y]; and 3. if x is not related to y under R, then [x] [y] =. Proof. The first statement follows because R is reflexive. To see the second statement, suppose xry. If z [x] then (by definition of equivalence classes) zrx. By transitivity, zry. That is z [y]. Therefore [x] [y]. A similar argument proves that [y] [x], so that [x] = [y]. To see the third statement, we proceed by contradiction. Suppose x is not related to y under R, but [x] [y]. Let z [x] [y]. Then zrx and zry. By symmetry, xrz. And then by transitivity, xry, a contradiction. Therefore, [x] [y] =. Part 1 of the above theorem says that the equivalence classes are all nonempty, and parts 2 and 3 together say that every element of X belongs to exactly one equivalence class. Parts 2 and 3 also tell you how to determine

15 3.4. EQUIVALENCE RELATIONS 15 if two equivalence classes are the same: [x] = [y] if and only if x is related to y (equivalently, since R is symmetric, y is related to x). For example, suppose R is the relation on R defined by xry if and only if x rounds to the same integer as y. Then R is an equivalence relation (exercise: prove it). The partition of R induced by R is {[n 0.5, n + 0.5) : n Z}, where each half-open interval [n 0.5, n + 0.5) = {x : n x < n + 0.5}. Among [1], [ 2], [ 3], [2], [e], [π] there are exactly three different equivalence classes because [1] = [ 2]; [ 3] = [2], and [e] = [π]. Theorem Let Π = {X 1, X 2,..., X t } be a partition of a set A. Then the relation R on A defined by xry if and only if x belongs to the same cell of Π as y is an equivalence relation; and Π is the partition of A induced by the set of equivalence classes of R. Proof. The argument that shows R is an equivalence relation is left as an exercise. We argue that Π is the partition of A induced by the set of equivalence classes of R. That is, it must be shown that, for any x A, the equivalence class of x equals the cell of the partition that contains x. Take any x A, and suppose x X i. We need to show that [x] = X i. On the one hand, if y X i then yrx by definition of R. Hence, y [x]. Therefore, X i [x]. On the other hand, if y [x] then yrx. By definition of R, the element y belongs to the same cell of Π as x. That is, y X i. Therefore [x] X i. It now follows that [x] = X i. For example, suppose we want an equivalence relation F on [0, ) for which the partition of R induced by F is {[n, n+1) : n N {0}}. According to the theorem statement, we define xfy if and only if there exists n N {0} such that x, y [n, n + 1). Looking at the definition of F we see that xfy if and only if the integer part of x (the part before the decimal point) is the same as the integer part of y, or equivalently that the greatest integer less than or equal to x (commonly known as the floor of x and denoted x ) is the same as the greatest integer less than or equal to y. In symbols xfy x = y.

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017 Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a

More information

Relations and Equivalence Relations

Relations and Equivalence Relations Relations and Equivalence Relations In this section, we shall introduce a formal definition for the notion of a relation on a set. This is something we often take for granted in elementary algebra courses,

More information

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010)

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010) http://math.sun.ac.za/amsc/sam Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics 2009-2010 Lecture notes in progress (27 March 2010) Contents 2009 Semester I: Elements 5 1. Cartesian product

More information

Guide to Proofs on Discrete Structures

Guide to Proofs on Discrete Structures CS103 Handout 17 Spring 2018 Guide to Proofs on Discrete Structures In Problem Set One, you got practice with the art of proofwriting in general (as applied to numbers, sets, puzzles, etc.) Problem Set

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. The following points are worth special

More information

Foundations of algebra

Foundations of algebra Foundations of algebra Equivalence relations - suggested problems - solutions P1: There are several relations that you are familiar with: Relations on R (or any of its subsets): Equality. Symbol: x = y.

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

Set theory. Math 304 Spring 2007

Set theory. Math 304 Spring 2007 Math 304 Spring 2007 Set theory Contents 1. Sets 2 1.1. Objects and set formation 2 1.2. Unions and intersections 3 1.3. Differences 4 1.4. Power sets 4 1.5. Ordered pairs and binary,amscdcartesian products

More information

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related.

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related. - 10 Relations P. Danziger 1 Relations (10.1) Definition 1 1. A relation from a set A to a set B is a subset R of A B. 2. Given (x, y) R we say that x is related to y and write xry. 3. If (x, y) R we say

More information

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler Chapter VI Relations Assumptions are the termites of relationships. Henry Winkler Studying relationships between objects can yield important information about the objects themselves. In the real numbers,

More information

Generating Permutations and Combinations

Generating Permutations and Combinations Generating Permutations and Combinations March 0, 005 Generating Permutations We have learned that there are n! permutations of {,,, n} It is important in many instances to generate a list of such permutations

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Mathematical Reasoning & Proofs

Mathematical Reasoning & Proofs Mathematical Reasoning & Proofs MAT 1362 Fall 2018 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) Contents 1 Sets 1 2 The Real Numbers 9 3 Sequences 29 4 Series 59 5 Functions 81 6 Power Series 105 7 The elementary functions 111 Chapter 1 Sets It is very convenient to introduce some notation and terminology

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

Sets, Logic, Relations, and Functions

Sets, Logic, Relations, and Functions Sets, Logic, Relations, and Functions Andrew Kay September 28, 2014 Abstract This is an introductory text, not a comprehensive study; these notes contain mainly definitions, basic results, and examples.

More information

UMASS AMHERST MATH 300 SP 05, F. HAJIR HOMEWORK 8: (EQUIVALENCE) RELATIONS AND PARTITIONS

UMASS AMHERST MATH 300 SP 05, F. HAJIR HOMEWORK 8: (EQUIVALENCE) RELATIONS AND PARTITIONS UMASS AMHERST MATH 300 SP 05, F. HAJIR HOMEWORK 8: (EQUIVALENCE) RELATIONS AND PARTITIONS 1. Relations Recall the concept of a function f from a source set X to a target set Y. It is a rule for mapping

More information

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Outline 1 Logistics: Who, Where, When, What, How, Why, Stuff 2 Methods of Proof 3 Sets 4 Binary Relations

More information

Week 4-5: Generating Permutations and Combinations

Week 4-5: Generating Permutations and Combinations Week 4-5: Generating Permutations and Combinations February 27, 2017 1 Generating Permutations We have learned that there are n! permutations of {1, 2,...,n}. It is important in many instances to generate

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Topic 1: Propositional logic

Topic 1: Propositional logic Topic 1: Propositional logic Guy McCusker 1 1 University of Bath Logic! This lecture is about the simplest kind of mathematical logic: propositional calculus. We discuss propositions, which are statements

More information

For all For every For each For any There exists at least one There exists There is Some

For all For every For each For any There exists at least one There exists There is Some Section 1.3 Predicates and Quantifiers Assume universe of discourse is all the people who are participating in this course. Also let us assume that we know each person in the course. Consider the following

More information

3 The language of proof

3 The language of proof 3 The language of proof After working through this section, you should be able to: (a) understand what is asserted by various types of mathematical statements, in particular implications and equivalences;

More information

4.1 Real-valued functions of a real variable

4.1 Real-valued functions of a real variable Chapter 4 Functions When introducing relations from a set A to a set B we drew an analogy with co-ordinates in the x-y plane. Instead of coming from R, the first component of an ordered pair comes from

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Math 42, Discrete Mathematics

Math 42, Discrete Mathematics c Fall 2018 last updated 12/05/2018 at 15:47:21 For use by students in this class only; all rights reserved. Note: some prose & some tables are taken directly from Kenneth R. Rosen, and Its Applications,

More information

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating

More information

1.1 Statements and Compound Statements

1.1 Statements and Compound Statements Chapter 1 Propositional Logic 1.1 Statements and Compound Statements A statement or proposition is an assertion which is either true or false, though you may not know which. That is, a statement is something

More information

2 Equivalence Relations

2 Equivalence Relations 2 Equivalence Relations In mathematics, we often investigate relationships between certain objects (numbers, functions, sets, figures, etc.). If an element a of a set A is related to an element b of a

More information

Report 1 The Axiom of Choice

Report 1 The Axiom of Choice Report 1 The Axiom of Choice By Li Yu This report is a collection of the material I presented in the first round presentation of the course MATH 2002. The report focuses on the principle of recursive definition,

More information

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples.

Relations. We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations We have seen several types of abstract, mathematical objects, including propositions, predicates, sets, and ordered pairs and tuples. Relations use ordered tuples to represent relationships among

More information

Preliminaries to the Theory of Computation

Preliminaries to the Theory of Computation Preliminaries to the Theory of Computation 2 In this chapter, we explain mathematical notions, terminologies, and certain methods used in convincing logical arguments that we shall have need of throughout

More information

Topics in Logic and Proofs

Topics in Logic and Proofs Chapter 2 Topics in Logic and Proofs Some mathematical statements carry a logical value of being true or false, while some do not. For example, the statement 4 + 5 = 9 is true, whereas the statement 2

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

CA320 - Computability & Complexity

CA320 - Computability & Complexity CA320 - Computability & Complexity David Sinclair Overview In this module we are going to answer 2 important questions: Can all problems be solved by a computer? What problems be efficiently solved by

More information

Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound

Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound Abstract & Applied Linear Algebra (Chapters 1-2) James A. Bernhard University of Puget Sound Copyright 2018 by James A. Bernhard Contents 1 Vector spaces 3 1.1 Definitions and basic properties.................

More information

Notes on Sets for Math 10850, fall 2017

Notes on Sets for Math 10850, fall 2017 Notes on Sets for Math 10850, fall 2017 David Galvin, University of Notre Dame September 14, 2017 Somewhat informal definition Formally defining what a set is is one of the concerns of logic, and goes

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

1 Direct Proofs Technique Outlines Example Implication Proofs Technique Outlines Examples...

1 Direct Proofs Technique Outlines Example Implication Proofs Technique Outlines Examples... CSE 311: Foundations of Computing I Proof Techniques What Is This? Each of the following is as close as we can get to giving you a template (and a completely worked out example) for every proof technique

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

A Guide to Proof-Writing

A Guide to Proof-Writing A Guide to Proof-Writing 437 A Guide to Proof-Writing by Ron Morash, University of Michigan Dearborn Toward the end of Section 1.5, the text states that there is no algorithm for proving theorems.... Such

More information

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3.

THE LOGIC OF QUANTIFIED STATEMENTS. Predicates and Quantified Statements I. Predicates and Quantified Statements I CHAPTER 3 SECTION 3. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS SECTION 3.1 Predicates and Quantified Statements I Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Predicates

More information

chapter 11 ALGEBRAIC SYSTEMS GOALS

chapter 11 ALGEBRAIC SYSTEMS GOALS chapter 11 ALGEBRAIC SYSTEMS GOALS The primary goal of this chapter is to make the reader aware of what an algebraic system is and how algebraic systems can be studied at different levels of abstraction.

More information

Introduction to Basic Proof Techniques Mathew A. Johnson

Introduction to Basic Proof Techniques Mathew A. Johnson Introduction to Basic Proof Techniques Mathew A. Johnson Throughout this class, you will be asked to rigorously prove various mathematical statements. Since there is no prerequisite of a formal proof class,

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here.

Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. Chapter 2 Mathematics and Logic Before you get started, make sure you ve read Chapter 1, which sets the tone for the work we will begin doing here. 2.1 A Taste of Number Theory In this section, we will

More information

Relations (3A) Young Won Lim 3/27/18

Relations (3A) Young Won Lim 3/27/18 Relations (3A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

1.4 Equivalence Relations and Partitions

1.4 Equivalence Relations and Partitions 24 CHAPTER 1. REVIEW 1.4 Equivalence Relations and Partitions 1.4.1 Equivalence Relations Definition 1.4.1 (Relation) A binary relation or a relation on a set S is a set R of ordered pairs. This is a very

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set.

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. Sets A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. If A and B are sets, then the set of ordered pairs each

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

In this initial chapter, you will be introduced to, or more than likely be reminded of, a

In this initial chapter, you will be introduced to, or more than likely be reminded of, a 1 Sets In this initial chapter, you will be introduced to, or more than likely be reminded of, a fundamental idea that occurs throughout mathematics: sets. Indeed, a set is an object from which every mathematical

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4 .. Conditions for Injectivity and Surjectivity In this section, we discuss what we can say about linear maps T : R n R m given only m and n. We motivate this problem by looking at maps f : {,..., n} {,...,

More information

MATH 13 FINAL EXAM SOLUTIONS

MATH 13 FINAL EXAM SOLUTIONS MATH 13 FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers. T F

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.6 Indirect Argument: Contradiction and Contraposition Copyright Cengage Learning. All

More information

Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan. Section: NetID: Multiple Choice Question (30 questions in total, 4 points each)

Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan. Section: NetID: Multiple Choice Question (30 questions in total, 4 points each) Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan Section: NetID: Name: Multiple Choice Question (30 questions in total, 4 points each) 1 Consider the following propositions: f: The student got

More information

An analogy from Calculus: limits

An analogy from Calculus: limits COMP 250 Fall 2018 35 - big O Nov. 30, 2018 We have seen several algorithms in the course, and we have loosely characterized their runtimes in terms of the size n of the input. We say that the algorithm

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

SOME TRANSFINITE INDUCTION DEDUCTIONS

SOME TRANSFINITE INDUCTION DEDUCTIONS SOME TRANSFINITE INDUCTION DEDUCTIONS SYLVIA DURIAN Abstract. This paper develops the ordinal numbers and transfinite induction, then demonstrates some interesting applications of transfinite induction.

More information

CONSTRUCTION OF THE REAL NUMBERS.

CONSTRUCTION OF THE REAL NUMBERS. CONSTRUCTION OF THE REAL NUMBERS. IAN KIMING 1. Motivation. It will not come as a big surprise to anyone when I say that we need the real numbers in mathematics. More to the point, we need to be able to

More information

CM10196 Topic 2: Sets, Predicates, Boolean algebras

CM10196 Topic 2: Sets, Predicates, Boolean algebras CM10196 Topic 2: Sets, Predicates, oolean algebras Guy McCusker 1W2.1 Sets Most of the things mathematicians talk about are built out of sets. The idea of a set is a simple one: a set is just a collection

More information

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics MATH10111 - Foundations of Pure Mathematics 9 RELATIONS 9.1 Reflexive, symmetric and transitive relations Let A be a set with A. A relation R on A is a subset of A A. For convenience, for x, y A, write

More information

{x : P (x)} P (x) = x is a cat

{x : P (x)} P (x) = x is a cat 1. Sets, relations and functions. 1.1. Set theory. We assume the reader is familiar with elementary set theory as it is used in mathematics today. Nonetheless, we shall now give a careful treatment of

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Chapter 2 - Relations

Chapter 2 - Relations Chapter 2 - Relations Chapter 2: Relations We could use up two Eternities in learning all that is to be learned about our own world and the thousands of nations that have arisen and flourished and vanished

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Chapter 1 The Real Numbers

Chapter 1 The Real Numbers Chapter 1 The Real Numbers In a beginning course in calculus, the emphasis is on introducing the techniques of the subject;i.e., differentiation and integration and their applications. An advanced calculus

More information

Handout on Logic, Axiomatic Methods, and Proofs MATH Spring David C. Royster UNC Charlotte

Handout on Logic, Axiomatic Methods, and Proofs MATH Spring David C. Royster UNC Charlotte Handout on Logic, Axiomatic Methods, and Proofs MATH 3181 001 Spring 1999 David C. Royster UNC Charlotte January 18, 1999 Chapter 1 Logic and the Axiomatic Method 1.1 Introduction Mathematicians use a

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Relations Graphical View

Relations Graphical View Introduction Relations Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Recall that a relation between elements of two sets is a subset of their Cartesian

More information

4.1 Induction: An informal introduction

4.1 Induction: An informal introduction Chapter 4 Induction and Recursion 4.1 Induction: An informal introduction This section is intended as a somewhat informal introduction to The Principle of Mathematical Induction (PMI): a theorem that establishes

More information

Math 38: Graph Theory Spring 2004 Dartmouth College. On Writing Proofs. 1 Introduction. 2 Finding A Solution

Math 38: Graph Theory Spring 2004 Dartmouth College. On Writing Proofs. 1 Introduction. 2 Finding A Solution Math 38: Graph Theory Spring 2004 Dartmouth College 1 Introduction On Writing Proofs What constitutes a well-written proof? A simple but rather vague answer is that a well-written proof is both clear and

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Introduction to Logic and Axiomatic Set Theory

Introduction to Logic and Axiomatic Set Theory Introduction to Logic and Axiomatic Set Theory 1 Introduction In mathematics, we seek absolute rigor in our arguments, and a solid foundation for all of the structures we consider. Here, we will see some

More information

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox A BRIEF INTRODUCTION TO ZFC CHRISTOPHER WILSON Abstract. We present a basic axiomatic development of Zermelo-Fraenkel and Choice set theory, commonly abbreviated ZFC. This paper is aimed in particular

More information

In mathematics there are endless ways that two entities can be related

In mathematics there are endless ways that two entities can be related CHAPTER 16 Relations In mathematics there are endless ways that two entities can be related to each other. Consider the following mathematical statements. 5 < 10 5 5 6 = 30 5 5 80 7 > 4 x y 8 3 a b ( mod

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017

MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 MATH 220 (all sections) Homework #12 not to be turned in posted Friday, November 24, 2017 Definition: A set A is finite if there exists a nonnegative integer c such that there exists a bijection from A

More information

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ]

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ] Binary Relations Definition: A binary relation between two sets X and Y (or between the elements of X and Y ) is a subset of X Y i.e., is a set of ordered pairs (x, y) X Y. If R is a relation between X

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Proof Templates 1

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Proof Templates 1 Math 300 Introduction to Mathematical Reasoning Autumn 2017 Proof Templates 1 In its most basic form, a mathematical proof is just a sequence of mathematical statements, connected to each other by strict

More information

Math 13, Spring 2013, Lecture B: Midterm

Math 13, Spring 2013, Lecture B: Midterm Math 13, Spring 2013, Lecture B: Midterm Name Signature UCI ID # E-mail address Each numbered problem is worth 12 points, for a total of 84 points. Present your work, especially proofs, as clearly as possible.

More information

Elementary Linear Algebra, Second Edition, by Spence, Insel, and Friedberg. ISBN Pearson Education, Inc., Upper Saddle River, NJ.

Elementary Linear Algebra, Second Edition, by Spence, Insel, and Friedberg. ISBN Pearson Education, Inc., Upper Saddle River, NJ. 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. APPENDIX: Mathematical Proof There are many mathematical statements whose truth is not obvious. For example, the French mathematician

More information

14 Equivalence Relations

14 Equivalence Relations 14 Equivalence Relations Tom Lewis Fall Term 2010 Tom Lewis () 14 Equivalence Relations Fall Term 2010 1 / 10 Outline 1 The definition 2 Congruence modulo n 3 Has-the-same-size-as 4 Equivalence classes

More information

Numbers, proof and all that jazz.

Numbers, proof and all that jazz. CHAPTER 1 Numbers, proof and all that jazz. There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A law will remain a law,

More information

RELATIONS PROPERTIES COMPATIBILITY

RELATIONS PROPERTIES COMPATIBILITY RELATIONS PROPERTIES COMPATIBILITY Misha Mikhaylov E-mail address: misha59mikhaylov@gmail.com ABSTRACT. Thoughts expressed in previous paper [3] were developed. There was shown formally that collection

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 1 Dr. Hyunyoung Lee 1 Topics Propositional Logic (Sections 1.1, 1.2 and 1.3) Predicate Logic (Sections 1.4 and 1.5) Rules of Inferences and Proofs

More information