Foundations of algebra

Size: px
Start display at page:

Download "Foundations of algebra"

Transcription

1 Foundations of algebra Equivalence relations - suggested problems - solutions P1: There are several relations that you are familiar with: Relations on R (or any of its subsets): Equality. Symbol: x = y. Less than. Symbol: x < y. Less than or equal to. Symbol: x y. Greater than. Symbol: x > y. Greater than or equal to. Symbol: x y. Relations on the set of possible sets: Subset. Symbol: A B. Proper subset. Symbol: A B. Set equality. Symbol: A = B. Logical relations: Logical equivalence. Symbol: p q. For each of these, you should know which of the four properties the relation has [reflexive, symmetric, transitive, anti-symmetric], and be able to identify if it s an equivalence relation or a partial ordering. You can use your intutive understanding of those relations on the reals - we haven t looked at the truly formal definition of less than, for example - but should know the formal definitions for those set relations and the logical equivalence relation. Some of these were covered in the lecture. I ll run through a few here (in the solutions to the suggested problems), and leave a couple for the graded assignment. Equality: Reflexive: yes. x = x for all x R. Symmetric: yes. If x = y, then y = x for all x, y R. Transitive: yes. If x = y and y = z, then x = z for all x, y, z R. Anti-symmetric: yes. If x = y and y = x, then x = y for all x, y R. Trivially true, of course, but true nonetheless! Equivalence relation: yes, since reflexive, symmetric, transitive. Partial order: yes, since reflexive, antisymmetric, transitive.

2 Note that the idea with these is simply to be sure you can translate the xry notation into the notation associated with each relation. There s no real proof that these hold...because equality is defined as the relation on the reals for which these hold. Fortunately, this fits with our intuitive idea of how we d expect equality to work. Less than: Reflexive: no. x < x for all x R is a false statement. Symmetric: no. If x < y, then y < x for all x, y R is a false statement. Transitive: yes. If x < y and y < z, then x < z for all x, y, z R is true. Anti-symmetric: yes. If x < y and y < x, then x = y for all x, y R is (vacuously) true since x < y and y < x is always false, and F anything is true. This was noted in the lecture. Equivalence relation: no. Partial order: no. Less than or equal to: Reflexive: yes. x x for all x R is a true statement. Symmetric: no. If x y, then y x for all x, y R is a false statement (it s not impossible, but it s not true for all x, y R). Transitive: yes. If x y and y z, then x z for all x, y, z R is true. Anti-symmetric: yes. If x y and y x, then x = y for all x, y R is true. Equivalence relation: no. Partial order: yes. Reflexive, anti-symmetric, transitive. Greater than: Greater than or equal to: Are analogous to their counterparts. They re also redundant - if we have a relation less than, we really don t need a greater than relation - just flip the numbers you re comparing around.

3 Subset: Is similar to less than or equal to, but in the context of sets. You should know the formal definition for the subset relation: (Every element of A is also an element of B.) A B iff x A implies x B. Reflexive: yes. A A for all A K is a true statement. Symmetric: no. If A B, then B A for all A, B K is a false statement (it s not impossible, but it s not true for all A, B K). Transitive: yes. If A B and B C, then A C for all A, B, C K is true. Anti-symmetric: yes. If A B and B A, then A = B for all A, B K is true. By definition - that is how we define equality for sets. Equivalence relation: no. Partial order: yes. Reflexive, anti-symmetric, transitive. Proper subset: Is similar to less than. Formal definition is A B iff x A implies x B, and A B. Neither an equivalence relation nor a partial order, since not reflexive. Equality (of sets): A = B iff A B and B A Both an equivalence relation and a partial order, as you d expect from the use of equals. Logical equivalence: Two logical expressions are logically equivalent if they have the same truth table; formally p q iff p q is a tautology For example, you should recall that (p q) p q (DeMorgan s Law). So, Reflexive: yes. p p is a tautology, so p p. Symmetric: yes. If p q is a tautology, then so is q p (the operator is commutative). p q implies q p. Transitive: yes. If p q and q r, then p r (they would all have the same pattern of trues and falses). Anti-symmetric: doesn t make sense in this context. We don t have an idea of equality for logical expressions in the abstract. Equivalence relation: yes. Partial order: no (non-sensical).

4 P2: A set A is given below: A = {a, b, c, d} Several relations are defined on set A. For each relation, determine which of the four properties it satisfies, and whether it is an equivalence relation, a partial order, or both. If it is an equivalence relation, give the equivalence class for each element of A under that relation. (a) R 1 = {(a, a), (b, b), (c, c), (d, d)} Reflexive: yes. For every x A, we have xrx (the ordered pair (x, x) appears for x = a, b, c, d - every element of A. Symmetric: yes. If xr 1 y, then yr 1 x. For every pair (x, y) in the relation, we also have the pair (y, x)...because every pair has x and y equal. Transitive: yes. If xr 1 y and yr 1 z, then xr 1 z. For this one, trivially true - we don t have any pairs that connect with each other. Anti-symmetric: yes. If xr 1 y and yr 1 x, then x = y. Note ar 1 a and ar 1 a, and a = a. br 1 b and br 1 b, and b = b, etc. Equivalence relation: yes. Equivalence class of each element: Partial order: yes. [a] = {a} [b] = {b} [c] = {c} [d] = {d} Note that this relation defines equality as a relation on A. (b) R 2 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b,a), (a,c)} Reflexive: yes. For every x A, we have xr 2 x Symmetric: no. Since ar 2 c, we need cr 2 a for it to be symmetric, but the ordered pair (c, a) is not in the relation. Transitive: no. Since br 2 a and ar 2 c, we need br 2 c, but the ordered pair (b, c) is not in the relation. Anti-symmetric: no. ar 2 b and br 2 a, but b a. Equivalence relation: no. Equivalence class of each element: N/A. Partial order: no.

5 (c) R 3 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b,a), (a,c), (c, a)} Reflexive: yes. For every x A, we have xr 3 x Symmetric: yes. If xr 3 y, then yr 3 x. Every pair also has its mirror image in the relation. Transitive: no. Since br 3 a and ar 3 c, we need br 3 c, but the ordered pair (b, c) is not in the relation. Anti-symmetric: no. ar 3 b and br 3 a, but b a. Equivalence relation: no. Equivalence class of each element: N/A. Partial order: no. (d) R 4 = {(a, a), (b, b), (c, c), (d, d), (a, b), (b,a), (a,c), (c, a),(b, c), (c,b)} Reflexive: yes. For every x A, we have xr 4 x Symmetric: yes. If xr 4 y, then yr 4 x. Every pair also has its mirror image in the relation. Transitive: yes. You need to consider all possible pairings; for example: Since ar 4 c and cr 4 b, we must have ar 4 b. Check. Since cr 4 b and br 4 c, we must have cr 4 c. Check. And so on. Too many to list them all out; the thing to observe is that you can t find a counterexample (I hope). Anti-symmetric: no. ar 4 b and br 4 a, but b a. Equivalence relation: yes. Equivalence class of each element: [a] = [b] = [c] = {a, b, c} [d] = {d} Partial order: no.

6 P3: Let A be the set of integers Z and let R = {(x, y) x y = 1}. Is R an equivalence relation on A? State explicitly which properties it passes and which it fails. Reflexive: no. x x 1 for any x A, so x Rx. Symmetric: no. If x y = 1, then y x = 1, not 1. xry does not imply yrx. Transitive: no. If x y = 1 and y z = 1, then (x y)+(y z) = 2, and therefore x z = 2. xry and yrz does not imply xrz. R is not an equivalence relation. P4: Let A be the set of integers Z and let R = {(x, y) x y = 0}. Is R an equivalence relation on A? State explicitly which properties it passes and which it fails. Reflexive: yes. x x = 0 for all x A, so xrx. Symmetric: yes. If x y = 0, then y x = 0, not 1. xry implies yrx. Transitive: yes. If x y = 0 and y z = 0, then (x y) + (y z) = 0, and therefore x z = 0. xry and yrz implies xrz. R is an equivalence relation.

7 P5: [#7 on p. 7] Define the relation R on the set of all ordered pairs of real numbers as follows: (x, y)r(s, t) if and only if 2(x s) = (y t). Prove that R is an equivalence relation. Find the equivalence class of the point (1, 1). Reflexive: We need to see if (x, y)r(x, y) - let s = x and y = t in the defining formula. It is true that 2(x x) = (y y), as both sides are 0, so the R is reflexive. Symmetric: We need to see if (x, y)r(s, t) implies (s, t)r(x, y). Suppose that (x, y)r(s, t) and see if the algebra takes you where it needs to go: (x, y)r(s, t) 2(x s) = (y t) ( 1)2(x s) = ( 1)(y t) 2( x + s) = ( y + t) 2(s x) = (t y) (s, t)r(x, y) Transitive: We need to see if (x, y)r(s, t) and (s, t)r(m, n) imply (x, y)r(m, n). Suppose (x, y)r(s, t) and (s, t)r(m, n). Then 2(x s) = (y t) and 2(s m) = (t n). Adding the equations gives 2(x s) + 2(s m) = (y t) + (t n) and simplifying gives and therefore (x, y)r(m, n). 2x 2s + 2s 2m = y t + t n 2x 2m = y n 2(x m) = y n Since R is reflexive, symmetric, and transitive, it is an equivalence relation. The equivalence class of the point (1, 1) is all pairs (x, y) such that (x, y)r(1, 1); all pairs such that 2(x 1) = (y 1) This can be expressed as all points on the line y = 2x 1.

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730

Relations MATH Relations. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Benjamin V.C. Collins James A. Swenson among integers equals a = b is true for some pairs (a, b) Z Z, but not for all pairs. is less than a < b is true for some pairs (a, b) Z Z, but not for

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

Relations and Equivalence Relations

Relations and Equivalence Relations Relations and Equivalence Relations In this section, we shall introduce a formal definition for the notion of a relation on a set. This is something we often take for granted in elementary algebra courses,

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

Sets, Logic, Relations, and Functions

Sets, Logic, Relations, and Functions Sets, Logic, Relations, and Functions Andrew Kay September 28, 2014 Abstract This is an introductory text, not a comprehensive study; these notes contain mainly definitions, basic results, and examples.

More information

In mathematics there are endless ways that two entities can be related

In mathematics there are endless ways that two entities can be related CHAPTER 16 Relations In mathematics there are endless ways that two entities can be related to each other. Consider the following mathematical statements. 5 < 10 5 5 6 = 30 5 5 80 7 > 4 x y 8 3 a b ( mod

More information

Relations (3A) Young Won Lim 3/27/18

Relations (3A) Young Won Lim 3/27/18 Relations (3A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics

9 RELATIONS. 9.1 Reflexive, symmetric and transitive relations. MATH Foundations of Pure Mathematics MATH10111 - Foundations of Pure Mathematics 9 RELATIONS 9.1 Reflexive, symmetric and transitive relations Let A be a set with A. A relation R on A is a subset of A A. For convenience, for x, y A, write

More information

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler

Chapter VI. Relations. Assumptions are the termites of relationships. Henry Winkler Chapter VI Relations Assumptions are the termites of relationships. Henry Winkler Studying relationships between objects can yield important information about the objects themselves. In the real numbers,

More information

Lecture 7: Relations

Lecture 7: Relations Lecture 7: Relations 1 Relation Relation between two objects signify some connection between them. For example, relation of one person being biological parent of another. If we take any two people at random,

More information

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ]

Definitions: A binary relation R on a set X is (a) reflexive if x X : xrx; (f) asymmetric if x, x X : [x Rx xr c x ] Binary Relations Definition: A binary relation between two sets X and Y (or between the elements of X and Y ) is a subset of X Y i.e., is a set of ordered pairs (x, y) X Y. If R is a relation between X

More information

Lecture 4: Constructing the Integers, Rationals and Reals

Lecture 4: Constructing the Integers, Rationals and Reals Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 4: Constructing the Integers, Rationals and Reals Week 5 UCSB 204 The Integers Normally, using the natural numbers, you can easily define

More information

Reading 11 : Relations and Functions

Reading 11 : Relations and Functions CS/Math 240: Introduction to Discrete Mathematics Fall 2015 Reading 11 : Relations and Functions Instructor: Beck Hasti and Gautam Prakriya In reading 3, we described a correspondence between predicates

More information

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010)

Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics Lecture notes in progress (27 March 2010) http://math.sun.ac.za/amsc/sam Seminaar Abstrakte Wiskunde Seminar in Abstract Mathematics 2009-2010 Lecture notes in progress (27 March 2010) Contents 2009 Semester I: Elements 5 1. Cartesian product

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related.

Relations. P. Danziger. We may represent a relation by a diagram in which a line is drawn between two elements if they are related. - 10 Relations P. Danziger 1 Relations (10.1) Definition 1 1. A relation from a set A to a set B is a subset R of A B. 2. Given (x, y) R we say that x is related to y and write xry. 3. If (x, y) R we say

More information

3. R = = on Z. R, S, A, T.

3. R = = on Z. R, S, A, T. 6 Relations Let R be a relation on a set A, i.e., a subset of AxA. Notation: xry iff (x, y) R AxA. Recall: A relation need not be a function. Example: The relation R 1 = {(x, y) RxR x 2 + y 2 = 1} is not

More information

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways:

irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: CH 2 VARIABLES INTRODUCTION F irst we need to know that there are many ways to indicate multiplication; for example the product of 5 and 7 can be written in a variety of ways: 5 7 5 7 5(7) (5)7 (5)(7)

More information

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017 Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

Chapter 6. Relations. 6.1 Relations

Chapter 6. Relations. 6.1 Relations Chapter 6 Relations Mathematical relations are an extremely general framework for specifying relationships between pairs of objects. This chapter surveys the types of relations that can be constructed

More information

Solutions to In Class Problems Week 4, Mon.

Solutions to In Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

Guide to Proofs on Discrete Structures

Guide to Proofs on Discrete Structures CS103 Handout 17 Spring 2018 Guide to Proofs on Discrete Structures In Problem Set One, you got practice with the art of proofwriting in general (as applied to numbers, sets, puzzles, etc.) Problem Set

More information

Week 4-5: Generating Permutations and Combinations

Week 4-5: Generating Permutations and Combinations Week 4-5: Generating Permutations and Combinations February 27, 2017 1 Generating Permutations We have learned that there are n! permutations of {1, 2,...,n}. It is important in many instances to generate

More information

Introduction. Foundations of Computing Science. Pallab Dasgupta Professor, Dept. of Computer Sc & Engg INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Introduction. Foundations of Computing Science. Pallab Dasgupta Professor, Dept. of Computer Sc & Engg INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1 Introduction Foundations of Computing Science Pallab Dasgupta Professor, Dept. of Computer Sc & Engg 2 Comments on Alan Turing s Paper "On Computable Numbers, with an Application to the Entscheidungs

More information

Generating Permutations and Combinations

Generating Permutations and Combinations Generating Permutations and Combinations March 0, 005 Generating Permutations We have learned that there are n! permutations of {,,, n} It is important in many instances to generate a list of such permutations

More information

Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan. Section: NetID: Multiple Choice Question (30 questions in total, 4 points each)

Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan. Section: NetID: Multiple Choice Question (30 questions in total, 4 points each) Discrete Mathematics Fall 2018 Midterm Exam Prof. Callahan Section: NetID: Name: Multiple Choice Question (30 questions in total, 4 points each) 1 Consider the following propositions: f: The student got

More information

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras

Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras V. Borschev and B. Partee, September 21-26, 2006 p. 1 Lecture 4. Algebra, continued Section 2: Lattices and Boolean algebras CONTENTS 1. Lattices.... 1 1.0. Why lattices?... 1 1.1. Posets... 1 1.1.1. Upper

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

Full file at

Full file at 1 Logic and Proofs 1.1 Propositions and Connectives 1. (a) true (b) false (c) true (d) false (e) false (f) false (g) false (h) false 2. (a) Not a proposition (b) False proposition (c) Not a proposition.

More information

1.1 Statements and Compound Statements

1.1 Statements and Compound Statements Chapter 1 Propositional Logic 1.1 Statements and Compound Statements A statement or proposition is an assertion which is either true or false, though you may not know which. That is, a statement is something

More information

Report 1 The Axiom of Choice

Report 1 The Axiom of Choice Report 1 The Axiom of Choice By Li Yu This report is a collection of the material I presented in the first round presentation of the course MATH 2002. The report focuses on the principle of recursive definition,

More information

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS

CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS CHAPTER 4 CLASSICAL PROPOSITIONAL SEMANTICS 1 Language There are several propositional languages that are routinely called classical propositional logic languages. It is due to the functional dependency

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

CA320 - Computability & Complexity

CA320 - Computability & Complexity CA320 - Computability & Complexity David Sinclair Overview In this module we are going to answer 2 important questions: Can all problems be solved by a computer? What problems be efficiently solved by

More information

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set.

Sets. A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. Sets A set is a collection of objects without repeats. The size or cardinality of a set S is denoted S and is the number of elements in the set. If A and B are sets, then the set of ordered pairs each

More information

Numbers, proof and all that jazz.

Numbers, proof and all that jazz. CHAPTER 1 Numbers, proof and all that jazz. There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A law will remain a law,

More information

STRATEGIES OF PROBLEM SOLVING

STRATEGIES OF PROBLEM SOLVING STRATEGIES OF PROBLEM SOLVING Second Edition Maria Nogin Department of Mathematics College of Science and Mathematics California State University, Fresno 2014 2 Chapter 1 Introduction Solving mathematical

More information

2. Introduction to commutative rings (continued)

2. Introduction to commutative rings (continued) 2. Introduction to commutative rings (continued) 2.1. New examples of commutative rings. Recall that in the first lecture we defined the notions of commutative rings and field and gave some examples of

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

Logic: Propositional Logic Truth Tables

Logic: Propositional Logic Truth Tables Logic: Propositional Logic Truth Tables Raffaella Bernardi bernardi@inf.unibz.it P.zza Domenicani 3, Room 2.28 Faculty of Computer Science, Free University of Bolzano-Bozen http://www.inf.unibz.it/~bernardi/courses/logic06

More information

Discrete Structures May 13, (40 points) Define each of the following terms:

Discrete Structures May 13, (40 points) Define each of the following terms: Discrete Structures May 13, 2014 Prof Feighn Final Exam 1. (40 points) Define each of the following terms: (a) (binary) relation: A binary relation from a set X to a set Y is a subset of X Y. (b) function:

More information

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Typeset September 23, 2005 1 Statements or propositions Defn: A statement is an assertion

More information

Math 13, Spring 2013, Lecture B: Midterm

Math 13, Spring 2013, Lecture B: Midterm Math 13, Spring 2013, Lecture B: Midterm Name Signature UCI ID # E-mail address Each numbered problem is worth 12 points, for a total of 84 points. Present your work, especially proofs, as clearly as possible.

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page. Formal Methods Name: Key Midterm 2, Spring, 2007 Show Your Work! Point values are in square brackets. There are 35 points possible. Some facts about sets are on the last page.. Determine whether each of

More information

Proving logical equivalencies (1.3)

Proving logical equivalencies (1.3) EECS 203 Spring 2016 Lecture 2 Page 1 of 6 Proving logical equivalencies (1.3) One thing we d like to do is prove that two logical statements are the same, or prove that they aren t. Vocabulary time In

More information

Lecture 3: Latin Squares and Groups

Lecture 3: Latin Squares and Groups Latin Squares Instructor: Padraic Bartlett Lecture 3: Latin Squares and Groups Week 2 Mathcamp 2012 In our last lecture, we came up with some fairly surprising connections between finite fields and Latin

More information

UNIT-I: Propositional Logic

UNIT-I: Propositional Logic 1. Introduction to Logic: UNIT-I: Propositional Logic Logic: logic comprises a (formal) language for making statements about objects and reasoning about properties of these objects. Statements in a logical

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page.

Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page. Formal Methods Midterm 1, Spring, 2007 Name Show Your Work! Point values are in square brackets. There are 35 points possible. Tables of tautologies and contradictions are on the last page. 1. Use truth

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Math Introduction to Logic Final Exam

Math Introduction to Logic Final Exam Math 2283 - Introduction to Logic Final Exam Assigned: 2018.11.26 Due: 2018.12.10 at 08:00 Instructions: Work on this by yourself, the only person you may contact in any way to discuss or ask questions

More information

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10

Lecture 1. Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Econ 2001: Introduction to Mathematical Methods (a.k.a. Math Camp) 2015 August 10 Lecture 1 Outline 1 Logistics: Who, Where, When, What, How, Why, Stuff 2 Methods of Proof 3 Sets 4 Binary Relations

More information

FORMAL PROOFS DONU ARAPURA

FORMAL PROOFS DONU ARAPURA FORMAL PROOFS DONU ARAPURA This is a supplement for M385 on formal proofs in propositional logic. Rather than following the presentation of Rubin, I want to use a slightly different set of rules which

More information

TOPOLOGICAL ASPECTS OF YAO S ROUGH SET

TOPOLOGICAL ASPECTS OF YAO S ROUGH SET Chapter 5 TOPOLOGICAL ASPECTS OF YAO S ROUGH SET In this chapter, we introduce the concept of transmissing right neighborhood via transmissing expression of a relation R on domain U, and then we study

More information

1. Introduction to commutative rings and fields

1. Introduction to commutative rings and fields 1. Introduction to commutative rings and fields Very informally speaking, a commutative ring is a set in which we can add, subtract and multiply elements so that the usual laws hold. A field is a commutative

More information

CS 173: Discrete Structures. Eric Shaffer Office Hour: Wed. 1-2, 2215 SC

CS 173: Discrete Structures. Eric Shaffer Office Hour: Wed. 1-2, 2215 SC CS 173: Discrete Structures Eric Shaffer Office Hour: Wed. 1-2, 2215 SC shaffer1@illinois.edu Agenda Sets (sections 2.1, 2.2) 2 Set Theory Sets you should know: Notation you should know: 3 Set Theory -

More information

CS280, Spring 2004: Final

CS280, Spring 2004: Final CS280, Spring 2004: Final 1. [4 points] Which of the following relations on {0, 1, 2, 3} is an equivalence relation. (If it is, explain why. If it isn t, explain why not.) Just saying Yes or No with no

More information

Incompatibility Paradoxes

Incompatibility Paradoxes Chapter 22 Incompatibility Paradoxes 22.1 Simultaneous Values There is never any difficulty in supposing that a classical mechanical system possesses, at a particular instant of time, precise values of

More information

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3)

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) CmSc 365 Theory of Computation 1. Relations Definition: Let A and B be two sets. A relation R from A to B is any set of ordered pairs

More information

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Proofs. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Proofs Luay Nakhleh Computer Science Rice University 1 Reading Material Chapter 1, Section 3, 6, 7, 8 Propositional Equivalences The compound propositions p and q are called

More information

Set Basics. P. Danziger

Set Basics. P. Danziger - 5 Set Basics P. Danziger 1 Set Basics Definition 1 (Cantor) A set is a collection into a whole of definite and separate objects of our intuition or thought. (Russell) Such that given an object x and

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland Discrete Mathematics W. Ethan Duckworth Fall 2017, Loyola University Maryland Contents 1 Introduction 4 1.1 Statements......................................... 4 1.2 Constructing Direct Proofs................................

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false. Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency

More information

Example: This theorem is the easiest way to test an ideal (or an element) is prime. Z[x] (x)

Example: This theorem is the easiest way to test an ideal (or an element) is prime. Z[x] (x) Math 4010/5530 Factorization Theory January 2016 Let R be an integral domain. Recall that s, t R are called associates if they differ by a unit (i.e. there is some c R such that s = ct). Let R be a commutative

More information

PUZZLE. You meet A, B, and C in the land of knights and knaves. A says Either B and I are both knights or we are both knaves.

PUZZLE. You meet A, B, and C in the land of knights and knaves. A says Either B and I are both knights or we are both knaves. PUZZLE You meet A, B, and C in the land of knights and knaves. A says Either B and I are both knights or we are both knaves. B says C and I are the same type. C says Either A is a knave or B is a knave.

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

For all For every For each For any There exists at least one There exists There is Some

For all For every For each For any There exists at least one There exists There is Some Section 1.3 Predicates and Quantifiers Assume universe of discourse is all the people who are participating in this course. Also let us assume that we know each person in the course. Consider the following

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Today s Topics. Methods of proof Relationships to logical equivalences. Important definitions Relationships to sets, relations Special functions

Today s Topics. Methods of proof Relationships to logical equivalences. Important definitions Relationships to sets, relations Special functions Today s Topics Set identities Methods of proof Relationships to logical equivalences Functions Important definitions Relationships to sets, relations Special functions Set identities help us manipulate

More information

{x : P (x)} P (x) = x is a cat

{x : P (x)} P (x) = x is a cat 1. Sets, relations and functions. 1.1. Set theory. We assume the reader is familiar with elementary set theory as it is used in mathematics today. Nonetheless, we shall now give a careful treatment of

More information

Worksheet on Relations

Worksheet on Relations Worksheet on Relations Recall the properties that relations can have: Definition. Let R be a relation on the set A. R is reflexive if for all a A we have ara. R is irreflexive or antireflexive if for all

More information

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

Non-normal Worlds. Daniel Bonevac. February 5, 2012

Non-normal Worlds. Daniel Bonevac. February 5, 2012 Non-normal Worlds Daniel Bonevac February 5, 2012 Lewis and Langford (1932) devised five basic systems of modal logic, S1 - S5. S4 and S5, as we have seen, are normal systems, equivalent to K ρτ and K

More information

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction 59 CH 59 SQUARE ROOTS Introduction W e saw square roots when we studied the Pythagorean Theorem. They may have been hidden, but when the end of a right-triangle problem resulted in an equation like c =

More information

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B.

Section 7.1 Relations and Their Properties. Definition: A binary relation R from a set A to a set B is a subset R A B. Section 7.1 Relations and Their Properties Definition: A binary relation R from a set A to a set B is a subset R A B. Note: there are no constraints on relations as there are on functions. We have a common

More information

Truth-Functional Logic

Truth-Functional Logic Truth-Functional Logic Syntax Every atomic sentence (A, B, C, ) is a sentence and are sentences With ϕ a sentence, the negation ϕ is a sentence With ϕ and ψ sentences, the conjunction ϕ ψ is a sentence

More information

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence

CSE 311: Foundations of Computing. Lecture 3: Digital Circuits & Equivalence CSE 311: Foundations of Computing Lecture 3: Digital Circuits & Equivalence Homework #1 You should have received An e-mail from [cse311a/cse311b] with information pointing you to look at Canvas to submit

More information

Propositional Logic and Semantics

Propositional Logic and Semantics Propositional Logic and Semantics English is naturally ambiguous. For example, consider the following employee (non)recommendations and their ambiguity in the English language: I can assure you that no

More information

1. Foundations of Numerics from Advanced Mathematics. Mathematical Essentials and Notation

1. Foundations of Numerics from Advanced Mathematics. Mathematical Essentials and Notation 1. Foundations of Numerics from Advanced Mathematics Mathematical Essentials and Notation Mathematical Essentials and Notation, October 22, 2012 1 The main purpose of this first chapter (about 4 lectures)

More information

More on Finite Automata and Regular Languages. (NTU EE) Regular Languages Fall / 41

More on Finite Automata and Regular Languages. (NTU EE) Regular Languages Fall / 41 More on Finite Automata and Regular Languages (NTU EE) Regular Languages Fall 2016 1 / 41 Pumping Lemma is not a Sufficient Condition Example 1 We know L = {b m c m m > 0} is not regular. Let us consider

More information

Almost Sure Convergence of a Sequence of Random Variables

Almost Sure Convergence of a Sequence of Random Variables Almost Sure Convergence of a Sequence of Random Variables (...for people who haven t had measure theory.) 1 Preliminaries 1.1 The Measure of a Set (Informal) Consider the set A IR 2 as depicted below.

More information

Math From Scratch Lesson 37: Roots of Cubic Equations

Math From Scratch Lesson 37: Roots of Cubic Equations Math From Scratch Lesson 7: Roots of Cubic Equations W. Blaine Dowler September 1, 201 Contents 1 Defining Cubic Equations 1 2 The Roots of Cubic Equations 1 2.1 Case 1: a 2 = a 1 = 0.........................

More information

The main limitation of the concept of a. function

The main limitation of the concept of a. function Relations The main limitation of the concept of a A function, by definition, assigns one output to each input. This means that a function cannot model relationships between sets where some objects on each

More information

Logic and Truth Tables

Logic and Truth Tables Logic and Truth Tables What is a Truth Table? A truth table is a tool that helps you analyze statements or arguments in order to verify whether or not they are logical, or true. There are five basic operations

More information

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras

Relations --- Binary Relations. Debdeep Mukhopadhyay IIT Madras Relations --- Binary Relations Debdeep Mukhopadhyay IIT Madras What is a relation? The mathematical concept of relation is based on the common notion of relationships among objects: One box is heavier

More information

Math.3336: Discrete Mathematics. Propositional Equivalences

Math.3336: Discrete Mathematics. Propositional Equivalences Math.3336: Discrete Mathematics Propositional Equivalences Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Automata Theory and Formal Grammars: Lecture 1

Automata Theory and Formal Grammars: Lecture 1 Automata Theory and Formal Grammars: Lecture 1 Sets, Languages, Logic Automata Theory and Formal Grammars: Lecture 1 p.1/72 Sets, Languages, Logic Today Course Overview Administrivia Sets Theory (Review?)

More information

CHAPTER 11. Introduction to Intuitionistic Logic

CHAPTER 11. Introduction to Intuitionistic Logic CHAPTER 11 Introduction to Intuitionistic Logic Intuitionistic logic has developed as a result of certain philosophical views on the foundation of mathematics, known as intuitionism. Intuitionism was originated

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of Computer Science Boolean Algebra Fall 2018 Introduction 3 Problem................................................................. 3 Boolean algebra...........................................................

More information