Variable metric approach for multi-skill staffing problem in call center

Size: px
Start display at page:

Download "Variable metric approach for multi-skill staffing problem in call center"

Transcription

1 Variable metric approach for multi-skill staffing problem in call center A. El Mouatasim Faculty of Science - Jazan University P.B Jazan Saudi Arabia. aelmouatasim@jazanu.edu.sa CIRO 10: Marrakech Mai 2010

2 Plan of Presentation 1 Introduction Algorithm of Variable Metrics 5

3 The aim of this research is minimizing the staffing costs of a multi skill call center subject to service-level requirements which are estimated by simulation or approximation, that give nonlinear integer programming [1]. In this research we propose random perturbation of variable metrics method (RPVM) via penalty function method for solving scheduling and staffing problem in call center.

4 The aim of this research is minimizing the staffing costs of a multi skill call center subject to service-level requirements which are estimated by simulation or approximation, that give nonlinear integer programming [1]. In this research we propose random perturbation of variable metrics method (RPVM) via penalty function method for solving scheduling and staffing problem in call center.

5 Call types k=1,...,k ; Agent types (or skill groups) i=1,...,i ; Periods p=1,...,p ; Shift types q=1,...,q. The vectors c, x and y are costs, decision variables and auxiliary variables respectively. Details

6 We have y = Ax where A is a block diagonal matrix with i blocks Ã, and element (p, q) of à is 1 if shift q covers period p, 0 otherwise. g k,p (y) = long-run service level for call type k in period p. g p (y) = aggregated long-run service level over period p. g k (y) = aggregated long-run service level for call type k. g(y) = aggregated long-run service level overall.

7 Scheduling Problem Minimize : c t x = I i=1 q=1 Q c i,q x i,q Subject to : Ax = y, g k,p (y) l k,p for all k, p, g p (y) l p for all p, g k (y) l k for all k, g(y) l, x 0, and integer. (1)

8 Staffing Problem Relaxation : forget about the admissibility of schedules ; just assume that any staffing is admissible. Costs : c = (c 1,1,.., c 1,P,.., c I,1,.., c I,P ) where c i,p = cost of an agent of type i in period p. Minimize : c t y = I P c i,p y i,p i=1 p=1 Subject to : g k,p (y) l k,p for all k, p, g p (y) l p for all p, g k (y) l k for all k, g(y) l, y 0, and integer. (2)

9 We consider the integer programming problem with nonlinear constraint in the form of scheduling problem (1). Let S sch and S sch be the sets defined by S sch = {x R IQ Ax = y, g k,p (y) l k,p, g p (y) l p, g k (y) l k for all k, p, g(y) l, x 0} S sch = {x x S sch, x i is integer, i = 1, 2,..., IQ}.

10 We consider the integer programming problem with nonlinear constraint in the form of staffing problem (2). Let S sta and S sta be the sets defined by S sta = {y R IP g k,p (y) l k,p, g p (y) l p, g k (y) l k for all k, p, g(y) l, y 0} S sta = {y y S sta, y i is integer, i = 1, 2,..., IP}.

11 Definition For an integer point x, the set N(x ) = {x : x x 1 5 } is called a 1 5 -cubic neighborhood of the integer point x.

12 Define the penalty function of scheduling problem φ sch (x, y, r, k) = c t x + r[ax y + K k=1 p=1 P max{0, l k,p g k,p (y)}+ + P max{0, l p g p (y)} + K max{0, l k g k (y)}+ p=1 k=1 + max{0, l g(y)}] k IQ cos 2πx i then the sample constraints global optimization problems associated to scheduling problem is i=1 min φ sch (x, y, r, k) (3) x R IQ+

13 Define the penalty function of staffing problem φ sta (y, r, k) = c t y + r[ K k=1 p=1 P max{0, l k,p g k,p (y)}+ + P max{0, l p g p (y)} + K max{0, l k g k (y)}+ p=1 k=1 + max{0, l g(y)}] k IP cos 2πy i then the sample constraints global optimization problems associated to staffing problem is where r and k are large enough. i=1 min y R IP+ φ sta (y, r, k), (4)

14 Lemma Suppose that x is a global minimizer of optimization problem (3) in S sch and if x is in a 1 5- cubic neighborhood of an integer point x S sch, then x is a solution of the scheduling problem (1).

15 Lemma Suppose that y is a global minimizer of optimization problem (4) in S sta and if y is in a 1 5- cubic neighborhood of an integer point ȳ S sta, then ȳ is a solution of the staffing problem (2). [3].

16 Lemma Suppose that y is a global minimizer of optimization problem (4) in S sta and if y is in a 1 5- cubic neighborhood of an integer point ȳ S sta, then ȳ is a solution of the staffing problem (2). [3].

17 Algorithm of Variable Metrics Stochastic Perturbation We denote that ϕ(x) = φ(x, r, K ). Step 0. Parameters : α 1 = 1.5, α 2 = 0.8, α 3 = Data : x, ρ,, G. Step 1. Initialization. Set s = 1,, l = 0, B = I. Step 2. Function and subgradient calculation : ϕ = ϕ(x), h ϕ(x). Step 3. If h G, then stop. Step 4. Subgradient normalization : h = h/ h.

18 Algorithm of Variable Metrics Stochastic Perturbation Step 5. Set h d = h. Step 6. Set h b = B t h, h m = Bh b, d s = hm h b. Step 7. Set x p = x, ϕ p = ϕ. Step 8. Set Step 9. If x x p, then stop. Step 10. Function computation : ϕ = ϕ(x). x = ω(x) = x ρd s. (5) Step 11. If ϕ < ϕ p, then set l = l + 1 ; if s = 1, then set ρ = 1.5ρ ; if l > 1 and s > 1, then set ρ = α 1 ρ ; go to Step 7.

19 Algorithm of Variable Metrics Stochastic Perturbation Step 12. If l = 0, then set ρ = α 2 ρ. Step 13. Set h ϕ(x). Step 14. If h G, then stop. Step 15. Subgradient normalization : h = h/ h. Step 16. Set B = B + α 3 (h d h t B + hhd t B). Step 17. Set x = x p, ϕ = ϕ p. Step 18. If l = 0, then h = h d. Step 19. Set l = 0, s = s + 1. Step 20. Go to Step 7.

20 Algorithm of Variable Metrics Stochastic Perturbation The main difficulty remains the lack of convexity : if the objective function is not convex (e.g., g is not concave), the Kuhn- Tucker points may be not correspond to global minimum. In the sequel, we shall improve this point by using an appropriate random perturbation.

21 Algorithm of Variable Metrics Stochastic Perturbation The sequence of real numbers {x k } k 0 is replaced by a sequence of random variables {X k } k 0 involving a random perturbation P k of the deterministic iteration (5). A simple way for the generation of a convenient sequence of perturbations {P k } k 0 is where P k = ζ k Z k 1 {ζ k } k 0 is non increasing sequence of strictly positive real numbers converging to 0 and such that ζ {Z} k 0 is a sequence of random vectors taking their values on R n,

22 Algorithm of Variable Metrics Stochastic Perturbation The sequence of real numbers {x k } k 0 is replaced by a sequence of random variables {X k } k 0 involving a random perturbation P k of the deterministic iteration (5). A simple way for the generation of a convenient sequence of perturbations {P k } k 0 is where P k = ζ k Z k 1 {ζ k } k 0 is non increasing sequence of strictly positive real numbers converging to 0 and such that ζ {Z} k 0 is a sequence of random vectors taking their values on R n,

23 Algorithm of Variable Metrics Stochastic Perturbation and a simple strategy consists in X 0 = x 0 ; k 0 X k+1 = Q k (X k )+P k (6) Equation (6) can be viewed as perturbation of the descent direction d k, which is replaced by a new direction D k = d k + P k /µ k and the iterations (5) become X k+1 = X k + µ k D k.

24 Algorithm of Variable Metrics Stochastic Perturbation and a simple strategy consists in X 0 = x 0 ; k 0 X k+1 = Q k (X k )+P k (6) Equation (6) can be viewed as perturbation of the descent direction d k, which is replaced by a new direction D k = d k + P k /µ k and the iterations (5) become X k+1 = X k + µ k D k.

25 Algorithm of Variable Metrics Stochastic Perturbation The procedure generates a sequence U k = f (X k ). By construction this sequence is decreasing and lower bounded by l = min x R +φ (x, r, k). k 0 : l U k+1 U k (7) Thus, there exists U l such that U k U for k + [2] Theorem Let Z k = Z, where Z is a random variable following N(0, σid), σ > 0 and let a ζ k = (8) log(k + d) where a > 0, d > 0 and k is the iteration number. Then, for a large enough, U = l almost surely.

26 Algorithm of Variable Metrics Stochastic Perturbation The procedure generates a sequence U k = f (X k ). By construction this sequence is decreasing and lower bounded by l = min x R +φ (x, r, k). k 0 : l U k+1 U k (7) Thus, there exists U l such that U k U for k + [2] Theorem Let Z k = Z, where Z is a random variable following N(0, σid), σ > 0 and let a ζ k = (8) log(k + d) where a > 0, d > 0 and k is the iteration number. Then, for a large enough, U = l almost surely.

27 Example A topologically small center In our first example, there are 5 call types and 4 skill groups. The arrival rates and service rates per hour are : (λ j ) 5 j=1 = (1290, 659, 350, 202, 673) and (µ j) 5 j=1 = (6.2, 6.2, 16.6, 14, 5.1). We have target service-levels (l j ) 5 j=1 = (.80,.80,.80,.75,.75), agent skill (s i) 4 i=1 = (2, 2, 1, 2). The routing policy is as follows. Overflow routing data are : R 1 = {2}, R 2 = {1}, R 3 = {3, 4, 2}, R 4 = {4} and R 5 = {1}. The RPVM approach furnish the following optimal vector solution see also Table 1, staff opt = (252, 229, 4, 24), CPU time = 2284, k sto = 40.

28 Example A medium-size center There are 7 call types and 10 skill groups. The arrival rates and service rates per hour are (λ j ) 7 j=1 = (200, 133, 323, 760, 95, 10, 380) and (µ j) 7 j=1 = (7.7, 7.7, 7.5, 7.7, 15, 7.7, 15). We have target service-levels (l j ) 7 j=1 = (.80,.80,.80,.75,.60,.60,.60), agent skill (s i ) 10 i=1 = (2, 1, 2, 2, 1, 2, 1, 2, 2, 1). Overflow routing data are : R 1 = {1}, R 2 = {1, 3}, R 3 = {2, 4}, R 4 = {5, 4, 3, 6}, R 5 = {7, 6, 8, 9}, R 6 = {9} and R 7 = {10, 8}. The initial point x 0 = (42, 40, 15, 25, 80, 15, 5, 10, 5, 25). The RPVM approach furnish the following optimal vector solution see also Table 1, staff opt = (43, 37, 13, 24, 76, 10, 2, 8, 3, 21) CPU time = 4545, k sto = 35.

29 A.N. Avramidis, W. Chan, M. Gendreau, P. L Ecuyer and O. Pisacaneand, Optimizing daily agent scheduling in a multiskill call center, European Journal of Operational Research 200, , A. El Mouatasim, R. Ellaia and J.E. Souza de Cursi, Random perturbation of variable metric method for unconstraint nonsmooth nonconvex optimization, Applied Mathematic and Computer Science, 16(4), , G. Zhang, A note on : A continuous approach to nonlinear integer programming, Applied Mathematics and Computation 215, , 2009.

30 Merci pour votre attention

31 Call types k=1,...,k ; Agent types (or skill groups) i=1,...,i ; Periods p=1,...,p ; Shift types q=1,...,q. The vectors c, x and y are costs, decision variables and auxiliary variables respectively. The shift specifies the time when the agent starts working, when he/she finishes, and all the lunch and coffee breaks. c = (c 1,1,.., c 1,Q,.., c I,1,.., c I,Q ) where c i,q = cost of an agent of type i having shift q. x = (x 1,1,.., x 1,Q,.., x I,1,.., x I,Q ) where x i,q = number of an agent of type i having shift q. y = (y 1,1,.., y 1,P,.., y I,1,.., y I,P ) where y i,q = number of an agent of type i in period p. Return

SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS. Athanassios N. Avramidis, Michel Gendreau, Pierre L Ecuyer

SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS. Athanassios N. Avramidis, Michel Gendreau, Pierre L Ecuyer Submitted to: 2007 Industrial Simulation Conference SIMULATION-BASED OPTIMIZATION OF AGENT SCHEDULING IN MULTISKILL CALL CENTERS Athanassios N. Avramidis, Michel Gendreau, Pierre L Ecuyer Département d

More information

The Multi-Path Utility Maximization Problem

The Multi-Path Utility Maximization Problem The Multi-Path Utility Maximization Problem Xiaojun Lin and Ness B. Shroff School of Electrical and Computer Engineering Purdue University, West Lafayette, IN 47906 {linx,shroff}@ecn.purdue.edu Abstract

More information

Improved Algorithms for Machine Allocation in Manufacturing Systems

Improved Algorithms for Machine Allocation in Manufacturing Systems Improved Algorithms for Machine Allocation in Manufacturing Systems Hans Frenk Martine Labbé Mario van Vliet Shuzhong Zhang October, 1992 Econometric Institute, Erasmus University Rotterdam, the Netherlands.

More information

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling.

Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING. Outline. Workforce Scheduling. 1. Workforce Scheduling. Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 17 Workforce Scheduling 2. Crew Scheduling and Roering Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Workforce Scheduling

More information

Utility Maximization for Communication Networks with Multi-path Routing

Utility Maximization for Communication Networks with Multi-path Routing Utility Maximization for Communication Networks with Multi-path Routing Xiaojun Lin and Ness B. Shroff School of Electrical and Computer Engineering Purdue University, West Lafayette, IN 47906 {linx,shroff}@ecn.purdue.edu

More information

Sharpening the Karush-John optimality conditions

Sharpening the Karush-John optimality conditions Sharpening the Karush-John optimality conditions Arnold Neumaier and Hermann Schichl Institut für Mathematik, Universität Wien Strudlhofgasse 4, A-1090 Wien, Austria email: Arnold.Neumaier@univie.ac.at,

More information

Utility Maximization for Communication Networks with Multi-path Routing

Utility Maximization for Communication Networks with Multi-path Routing Utility Maximization for Communication Networks with Multi-path Routing Xiaojun Lin and Ness B. Shroff Abstract In this paper, we study utility maximization problems for communication networks where each

More information

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement

Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Near-Optimal Control of Queueing Systems via Approximate One-Step Policy Improvement Jefferson Huang March 21, 2018 Reinforcement Learning for Processing Networks Seminar Cornell University Performance

More information

Mathematical Programming Involving (α, ρ)-right upper-dini-derivative Functions

Mathematical Programming Involving (α, ρ)-right upper-dini-derivative Functions Filomat 27:5 (2013), 899 908 DOI 10.2298/FIL1305899Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Mathematical Programming Involving

More information

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

Stochastic Decision Diagrams

Stochastic Decision Diagrams Stochastic Decision Diagrams John Hooker CORS/INFORMS Montréal June 2015 Objective Relaxed decision diagrams provide an generalpurpose method for discrete optimization. When the problem has a dynamic programming

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Wyean Chan DIRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, CANADA,

More information

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY Martin Hjelmeland NTNU Norwegian University of Science and Technology, Trondheim, Norway. martin.hjelmeland@ntnu.no

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Research Article Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming

Research Article Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming Discrete Dynamics in Nature and Society Volume 20, Article ID 7697, pages doi:0.55/20/7697 Research Article Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming Wei-Xiang

More information

A heuristic algorithm for the Aircraft Landing Problem

A heuristic algorithm for the Aircraft Landing Problem 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A heuristic algorithm for the Aircraft Landing Problem Amir Salehipour

More information

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints

A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints A Low Complexity Algorithm with O( T ) Regret and Finite Constraint Violations for Online Convex Optimization with Long Term Constraints Hao Yu and Michael J. Neely Department of Electrical Engineering

More information

Appendix: Simple Methods for Shift Scheduling in Multi-Skill Call Centers

Appendix: Simple Methods for Shift Scheduling in Multi-Skill Call Centers Appendix: Simple Methods for Shift Scheduling in Multi-Skill Call Centers Sandjai Bhulai, Ger Koole & Auke Pot Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands Supplementary Material

More information

A random perturbation approach to some stochastic approximation algorithms in optimization.

A random perturbation approach to some stochastic approximation algorithms in optimization. A random perturbation approach to some stochastic approximation algorithms in optimization. Wenqing Hu. 1 (Presentation based on joint works with Chris Junchi Li 2, Weijie Su 3, Haoyi Xiong 4.) 1. Department

More information

On the fast convergence of random perturbations of the gradient flow.

On the fast convergence of random perturbations of the gradient flow. On the fast convergence of random perturbations of the gradient flow. Wenqing Hu. 1 (Joint work with Chris Junchi Li 2.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department of Operations

More information

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Network Interdiction Stochastic Network Interdiction and to Solve a Stochastic Network Interdiction Problem Udom Janjarassuk Jeff Linderoth ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu informs

More information

Stochastic Equilibrium Problems arising in the energy industry

Stochastic Equilibrium Problems arising in the energy industry Stochastic Equilibrium Problems arising in the energy industry Claudia Sagastizábal (visiting researcher IMPA) mailto:sagastiz@impa.br http://www.impa.br/~sagastiz ENEC workshop, IPAM, Los Angeles, January

More information

On a Bicriterion Server Allocation Problem in a Multidimensional Erlang Loss System

On a Bicriterion Server Allocation Problem in a Multidimensional Erlang Loss System On a icriterion Server Allocation Problem in a Multidimensional Erlang Loss System Jorge Sá Esteves José Craveirinha December 05, 2010 Abstract. In this work an optimization problem on a classical elementary

More information

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way.

Penalty and Barrier Methods. So we again build on our unconstrained algorithms, but in a different way. AMSC 607 / CMSC 878o Advanced Numerical Optimization Fall 2008 UNIT 3: Constrained Optimization PART 3: Penalty and Barrier Methods Dianne P. O Leary c 2008 Reference: N&S Chapter 16 Penalty and Barrier

More information

Hill climbing: Simulated annealing and Tabu search

Hill climbing: Simulated annealing and Tabu search Hill climbing: Simulated annealing and Tabu search Heuristic algorithms Giovanni Righini University of Milan Department of Computer Science (Crema) Hill climbing Instead of repeating local search, it is

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Uniqueness of Generalized Equilibrium for Box Constrained Problems and Applications

Uniqueness of Generalized Equilibrium for Box Constrained Problems and Applications Uniqueness of Generalized Equilibrium for Box Constrained Problems and Applications Alp Simsek Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Asuman E.

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace

An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace An Alternative Proof of Primitivity of Indecomposable Nonnegative Matrices with a Positive Trace Takao Fujimoto Abstract. This research memorandum is aimed at presenting an alternative proof to a well

More information

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization

A Sparsity Preserving Stochastic Gradient Method for Composite Optimization A Sparsity Preserving Stochastic Gradient Method for Composite Optimization Qihang Lin Xi Chen Javier Peña April 3, 11 Abstract We propose new stochastic gradient algorithms for solving convex composite

More information

Solution Methods for Stochastic Programs

Solution Methods for Stochastic Programs Solution Methods for Stochastic Programs Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University ht88@cornell.edu August 14, 2010 1 Outline Cutting plane methods

More information

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization

Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Primal-dual relationship between Levenberg-Marquardt and central trajectories for linearly constrained convex optimization Roger Behling a, Clovis Gonzaga b and Gabriel Haeser c March 21, 2013 a Department

More information

A Distributed Newton Method for Network Utility Maximization, I: Algorithm

A Distributed Newton Method for Network Utility Maximization, I: Algorithm A Distributed Newton Method for Networ Utility Maximization, I: Algorithm Ermin Wei, Asuman Ozdaglar, and Ali Jadbabaie October 31, 2012 Abstract Most existing wors use dual decomposition and first-order

More information

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control

ALADIN An Algorithm for Distributed Non-Convex Optimization and Control ALADIN An Algorithm for Distributed Non-Convex Optimization and Control Boris Houska, Yuning Jiang, Janick Frasch, Rien Quirynen, Dimitris Kouzoupis, Moritz Diehl ShanghaiTech University, University of

More information

Quantifying Stochastic Model Errors via Robust Optimization

Quantifying Stochastic Model Errors via Robust Optimization Quantifying Stochastic Model Errors via Robust Optimization IPAM Workshop on Uncertainty Quantification for Multiscale Stochastic Systems and Applications Jan 19, 2016 Henry Lam Industrial & Operations

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information

Network Capacity Management Under Competition

Network Capacity Management Under Competition Network Capacity Management Under Competition Houyuan Jiang 1 and Zhan Pang 2 1 Judge Business School, University of Cambridge, Trumpington Street, Cambridge CB2 1AG, UK. Email: h.jiang@jbs.cam.ac.uk 2

More information

Lecture Note 1: Introduction to optimization. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 1: Introduction to optimization. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 1: Introduction to optimization Xiaoqun Zhang Shanghai Jiao Tong University Last updated: September 23, 2017 1.1 Introduction 1. Optimization is an important tool in daily life, business and

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

On the Moreau-Yosida regularization of the vector k-norm related functions

On the Moreau-Yosida regularization of the vector k-norm related functions On the Moreau-Yosida regularization of the vector k-norm related functions Bin Wu, Chao Ding, Defeng Sun and Kim-Chuan Toh This version: March 08, 2011 Abstract In this paper, we conduct a thorough study

More information

Written Examination

Written Examination Division of Scientific Computing Department of Information Technology Uppsala University Optimization Written Examination 202-2-20 Time: 4:00-9:00 Allowed Tools: Pocket Calculator, one A4 paper with notes

More information

New Class of duality models in discrete minmax fractional programming based on second-order univexities

New Class of duality models in discrete minmax fractional programming based on second-order univexities STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING Stat., Optim. Inf. Comput., Vol. 5, September 017, pp 6 77. Published online in International Academic Press www.iapress.org) New Class of duality models

More information

Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence

Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence Palestine Journal of Mathematics Vol. 3(1) (2014), 113 119 Palestine Polytechnic University-PPU 2014 Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence M.A. Hafiz

More information

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS

OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS OPTIMALITY OF RANDOMIZED TRUNK RESERVATION FOR A PROBLEM WITH MULTIPLE CONSTRAINTS Xiaofei Fan-Orzechowski Department of Applied Mathematics and Statistics State University of New York at Stony Brook Stony

More information

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement

Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement Submitted to imanufacturing & Service Operations Management manuscript MSOM-11-370.R3 Dynamic Call Center Routing Policies Using Call Waiting and Agent Idle Times Online Supplement (Authors names blinded

More information

A Dynamic model for requirements planning with application to supply chain optimization

A Dynamic model for requirements planning with application to supply chain optimization This summary presentation is based on: Graves, Stephen, D.B. Kletter and W.B. Hetzel. "A Dynamic Model for Requirements Planning with Application to Supply Chain Optimization." Operations Research 46,

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Handout 1: Introduction to Dynamic Programming. 1 Dynamic Programming: Introduction and Examples

Handout 1: Introduction to Dynamic Programming. 1 Dynamic Programming: Introduction and Examples SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 1: Introduction to Dynamic Programming Instructor: Shiqian Ma January 6, 2014 Suggested Reading: Sections 1.1 1.5 of Chapter

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

A Smoothing Newton Method for Solving Absolute Value Equations

A Smoothing Newton Method for Solving Absolute Value Equations A Smoothing Newton Method for Solving Absolute Value Equations Xiaoqin Jiang Department of public basic, Wuhan Yangtze Business University, Wuhan 430065, P.R. China 392875220@qq.com Abstract: In this paper,

More information

Markov Chain Monte Carlo. Simulated Annealing.

Markov Chain Monte Carlo. Simulated Annealing. Aula 10. Simulated Annealing. 0 Markov Chain Monte Carlo. Simulated Annealing. Anatoli Iambartsev IME-USP Aula 10. Simulated Annealing. 1 [RC] Stochastic search. General iterative formula for optimizing

More information

A filled function method for finding a global minimizer on global integer optimization

A filled function method for finding a global minimizer on global integer optimization Journal of Computational and Applied Mathematics 8 (2005) 200 20 www.elsevier.com/locate/cam A filled function method for finding a global minimizer on global integer optimization You-lin Shang a,b,,,

More information

ON PROBABILISTIC CONSTRAINED PROGRAMMING

ON PROBABILISTIC CONSTRAINED PROGRAMMING Proceedings of the Princeton Symposium on Mathematical Programming Princeton University Press, Princeton, NJ 1970. pp. 113 138 ON PROBABILISTIC CONSTRAINED PROGRAMMING András Prékopa Technical University

More information

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year

MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2. Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year MATHEMATICS FOR COMPUTER VISION WEEK 8 OPTIMISATION PART 2 1 Dr Fabio Cuzzolin MSc in Computer Vision Oxford Brookes University Year 2013-14 OUTLINE OF WEEK 8 topics: quadratic optimisation, least squares,

More information

WHEN ARE THE (UN)CONSTRAINED STATIONARY POINTS OF THE IMPLICIT LAGRANGIAN GLOBAL SOLUTIONS?

WHEN ARE THE (UN)CONSTRAINED STATIONARY POINTS OF THE IMPLICIT LAGRANGIAN GLOBAL SOLUTIONS? WHEN ARE THE (UN)CONSTRAINED STATIONARY POINTS OF THE IMPLICIT LAGRANGIAN GLOBAL SOLUTIONS? Francisco Facchinei a,1 and Christian Kanzow b a Università di Roma La Sapienza Dipartimento di Informatica e

More information

Computational Finance

Computational Finance Department of Mathematics at University of California, San Diego Computational Finance Optimization Techniques [Lecture 2] Michael Holst January 9, 2017 Contents 1 Optimization Techniques 3 1.1 Examples

More information

On the Midpoint Method for Solving Generalized Equations

On the Midpoint Method for Solving Generalized Equations Punjab University Journal of Mathematics (ISSN 1016-56) Vol. 40 (008) pp. 63-70 On the Midpoint Method for Solving Generalized Equations Ioannis K. Argyros Cameron University Department of Mathematics

More information

Dynamic Control of Parallel-Server Systems

Dynamic Control of Parallel-Server Systems Dynamic Control of Parallel-Server Systems Jim Dai Georgia Institute of Technology Tolga Tezcan University of Illinois at Urbana-Champaign May 13, 2009 Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality

More information

1. f(β) 0 (that is, β is a feasible point for the constraints)

1. f(β) 0 (that is, β is a feasible point for the constraints) xvi 2. The lasso for linear models 2.10 Bibliographic notes Appendix Convex optimization with constraints In this Appendix we present an overview of convex optimization concepts that are particularly useful

More information

Cut-Generating Functions for Integer Linear Programming

Cut-Generating Functions for Integer Linear Programming Cut-Generating Functions for Integer Linear Programming By: Masumi Sugiyama Faculty advisor: Matthias Köppe Senior thesis June 2015 UNIVERSITY OF CALIFORNIA, DAVIS COLLEGE OF LETTERS AND SCIENCE DEPARTMENT

More information

WE consider an undirected, connected network of n

WE consider an undirected, connected network of n On Nonconvex Decentralized Gradient Descent Jinshan Zeng and Wotao Yin Abstract Consensus optimization has received considerable attention in recent years. A number of decentralized algorithms have been

More information

An Introduction to Perturbation Methods in Macroeconomics. Jesús Fernández-Villaverde University of Pennsylvania

An Introduction to Perturbation Methods in Macroeconomics. Jesús Fernández-Villaverde University of Pennsylvania An Introduction to Perturbation Methods in Macroeconomics Jesús Fernández-Villaverde University of Pennsylvania 1 Introduction Numerous problems in macroeconomics involve functional equations of the form:

More information

Could Nash equilibria exist if the payoff functions are not quasi-concave?

Could Nash equilibria exist if the payoff functions are not quasi-concave? Could Nash equilibria exist if the payoff functions are not quasi-concave? (Very preliminary version) Bich philippe Abstract In a recent but well known paper (see [11]), Reny has proved the existence of

More information

IV. Violations of Linear Programming Assumptions

IV. Violations of Linear Programming Assumptions IV. Violations of Linear Programming Assumptions Some types of Mathematical Programming problems violate at least one condition of strict Linearity - Deterministic Nature - Additivity - Direct Proportionality

More information

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions

January 29, Introduction to optimization and complexity. Outline. Introduction. Problem formulation. Convexity reminder. Optimality Conditions Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis Dimensioning II Department of Electronics Communications Engineering Tampere University of Technology, Tampere, Finl January 29, 2014 1 2 3

More information

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018

Lecture 1. Stochastic Optimization: Introduction. January 8, 2018 Lecture 1 Stochastic Optimization: Introduction January 8, 2018 Optimization Concerned with mininmization/maximization of mathematical functions Often subject to constraints Euler (1707-1783): Nothing

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim Korean J. Math. 25 (2017), No. 4, pp. 469 481 https://doi.org/10.11568/kjm.2017.25.4.469 GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS Jong Kyu Kim, Salahuddin, and Won Hee Lim Abstract. In this

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Distributed Learning based on Entropy-Driven Game Dynamics

Distributed Learning based on Entropy-Driven Game Dynamics Distributed Learning based on Entropy-Driven Game Dynamics Bruno Gaujal joint work with Pierre Coucheney and Panayotis Mertikopoulos Inria Aug., 2014 Model Shared resource systems (network, processors)

More information

Near-Potential Games: Geometry and Dynamics

Near-Potential Games: Geometry and Dynamics Near-Potential Games: Geometry and Dynamics Ozan Candogan, Asuman Ozdaglar and Pablo A. Parrilo January 29, 2012 Abstract Potential games are a special class of games for which many adaptive user dynamics

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

On DC. optimization algorithms for solving minmax flow problems

On DC. optimization algorithms for solving minmax flow problems On DC. optimization algorithms for solving minmax flow problems Le Dung Muu Institute of Mathematics, Hanoi Tel.: +84 4 37563474 Fax: +84 4 37564303 Email: ldmuu@math.ac.vn Le Quang Thuy Faculty of Applied

More information

A Stochastic-Oriented NLP Relaxation for Integer Programming

A Stochastic-Oriented NLP Relaxation for Integer Programming A Stochastic-Oriented NLP Relaxation for Integer Programming John Birge University of Chicago (With Mihai Anitescu (ANL/U of C), Cosmin Petra (ANL)) Motivation: The control of energy systems, particularly

More information

A Filled Function Method with One Parameter for R n Constrained Global Optimization

A Filled Function Method with One Parameter for R n Constrained Global Optimization A Filled Function Method with One Parameter for R n Constrained Global Optimization Weixiang Wang Youlin Shang Liansheng Zhang Abstract. For R n constrained global optimization problem, a new auxiliary

More information

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY

DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY DUALIZATION OF SUBGRADIENT CONDITIONS FOR OPTIMALITY R. T. Rockafellar* Abstract. A basic relationship is derived between generalized subgradients of a given function, possibly nonsmooth and nonconvex,

More information

4y Springer NONLINEAR INTEGER PROGRAMMING

4y Springer NONLINEAR INTEGER PROGRAMMING NONLINEAR INTEGER PROGRAMMING DUAN LI Department of Systems Engineering and Engineering Management The Chinese University of Hong Kong Shatin, N. T. Hong Kong XIAOLING SUN Department of Mathematics Shanghai

More information

Gradient methods for minimizing composite functions

Gradient methods for minimizing composite functions Gradient methods for minimizing composite functions Yu. Nesterov May 00 Abstract In this paper we analyze several new methods for solving optimization problems with the objective function formed as a sum

More information

Math 273a: Optimization Subgradients of convex functions

Math 273a: Optimization Subgradients of convex functions Math 273a: Optimization Subgradients of convex functions Made by: Damek Davis Edited by Wotao Yin Department of Mathematics, UCLA Fall 2015 online discussions on piazza.com 1 / 42 Subgradients Assumptions

More information

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization 1 Benjamin W. Wah 1, Yixin Chen 2 and Tao Wang 3 1 Department of Electrical and Computer Engineering and the Coordinated

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

Asynchronous Non-Convex Optimization For Separable Problem

Asynchronous Non-Convex Optimization For Separable Problem Asynchronous Non-Convex Optimization For Separable Problem Sandeep Kumar and Ketan Rajawat Dept. of Electrical Engineering, IIT Kanpur Uttar Pradesh, India Distributed Optimization A general multi-agent

More information

SOLVING A MINIMIZATION PROBLEM FOR A CLASS OF CONSTRAINED MAXIMUM EIGENVALUE FUNCTION

SOLVING A MINIMIZATION PROBLEM FOR A CLASS OF CONSTRAINED MAXIMUM EIGENVALUE FUNCTION International Journal of Pure and Applied Mathematics Volume 91 No. 3 2014, 291-303 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v91i3.2

More information

A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme

A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme A Constraint-Reduced MPC Algorithm for Convex Quadratic Programming, with a Modified Active-Set Identification Scheme M. Paul Laiu 1 and (presenter) André L. Tits 2 1 Oak Ridge National Laboratory laiump@ornl.gov

More information

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties

One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties One Mirror Descent Algorithm for Convex Constrained Optimization Problems with Non-Standard Growth Properties Fedor S. Stonyakin 1 and Alexander A. Titov 1 V. I. Vernadsky Crimean Federal University, Simferopol,

More information

A direct formulation for sparse PCA using semidefinite programming

A direct formulation for sparse PCA using semidefinite programming A direct formulation for sparse PCA using semidefinite programming A. d Aspremont, L. El Ghaoui, M. Jordan, G. Lanckriet ORFE, Princeton University & EECS, U.C. Berkeley Available online at www.princeton.edu/~aspremon

More information

On matrix equations X ± A X 2 A = I

On matrix equations X ± A X 2 A = I Linear Algebra and its Applications 326 21 27 44 www.elsevier.com/locate/laa On matrix equations X ± A X 2 A = I I.G. Ivanov,V.I.Hasanov,B.V.Minchev Faculty of Mathematics and Informatics, Shoumen University,

More information

The Dual Simplex Algorithm

The Dual Simplex Algorithm p. 1 The Dual Simplex Algorithm Primal optimal (dual feasible) and primal feasible (dual optimal) bases The dual simplex tableau, dual optimality and the dual pivot rules Classical applications of linear

More information

On the static assignment to parallel servers

On the static assignment to parallel servers On the static assignment to parallel servers Ger Koole Vrije Universiteit Faculty of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The Netherlands Email: koole@cs.vu.nl, Url: www.cs.vu.nl/

More information

4 Lecture Applications

4 Lecture Applications 4 Lecture 4 4.1 Applications We now will look at some of the applications of the convex analysis we have learned. First, we shall us a separation theorem to prove the second fundamental theorem of welfare

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1 Input-queued switches: Scheduling algorithms for a crossbar switch EE 84X Packet Switch Architectures Overview Today s lecture - the input-buffered switch architecture - the head-of-line blocking phenomenon

More information

Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings

Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (2016), 1129 1142 Research Article Fixed points and functional equation problems via cyclic admissible generalized contractive type mappings

More information

LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS

LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS LIMITED MEMORY BUNDLE METHOD FOR LARGE BOUND CONSTRAINED NONSMOOTH OPTIMIZATION: CONVERGENCE ANALYSIS Napsu Karmitsa 1 Marko M. Mäkelä 2 Department of Mathematics, University of Turku, FI-20014 Turku,

More information

Spatially Distributed Queues II. M/G/1 2 Servers N servers: Hypercube Queueing Model Approximations

Spatially Distributed Queues II. M/G/1 2 Servers N servers: Hypercube Queueing Model Approximations Spatially Distributed Queues II M/G/1 2 Servers N servers: Hypercube Queueing Model Approximations Setup: Hypercube Queueing Model Region comprised of geographical atoms or nodes Each node j is an independent

More information

CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE RESOURCE ALLOCATION

CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE RESOURCE ALLOCATION Proceedings of the 200 Winter Simulation Conference B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds. CONSTRAINED OPTIMIZATION OVER DISCRETE SETS VIA SPSA WITH APPLICATION TO NON-SEPARABLE

More information

Near-Potential Games: Geometry and Dynamics

Near-Potential Games: Geometry and Dynamics Near-Potential Games: Geometry and Dynamics Ozan Candogan, Asuman Ozdaglar and Pablo A. Parrilo September 6, 2011 Abstract Potential games are a special class of games for which many adaptive user dynamics

More information