Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Size: px
Start display at page:

Download "Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem"

Transcription

1 Network Interdiction Stochastic Network Interdiction and to Solve a Stochastic Network Interdiction Problem Udom Janjarassuk Jeff Linderoth ISE Department COR@L Lab Lehigh University jtl3@lehigh.edu informs Annual Meeting San Francisco, CA November 15, 2005

2 Network Interdiction Stochastic Network Interdiction Network Interdiction Problem Elements Capacitated network, good guys, bad guys Good Guy:

3 Network Interdiction Stochastic Network Interdiction Network Interdiction Problem Elements Capacitated network, good guys, bad guys Bad Guy:

4 Network Interdiction Stochastic Network Interdiction Network Interdiction Bad Guy Says: I want to flow as much as possible from r to t r t Drugs, Enemy Supplies, Nuclear Material

5 Network Interdiction Stochastic Network Interdiction Network Interdiction r t Good Guy Says Not So Fast My Friend

6 Network Interdiction Stochastic Network Interdiction Mathematical Formulation Interdiction is a binary decision: { 1 if interdiction occurs on arc (i, j) A, x ij = 0 otherwise. f(x): maximum flow in network if I intervene on arcs x Budget Constraint: X = x {0, 1} A h ij x ij K Network Interdiction Problem min f(x) x X (i,j) A

7 Network Interdiction Stochastic Network Interdiction Stochastic Network Interdiction r t Jeff Is An Idiot Jeff s interdictions are not always successful

8 Network Interdiction Stochastic Network Interdiction Stochastic Network Interdiction S: Set of scenarios ξ ijs : Bernoulli random variable if interdiction on arc (i, j) would be successful in scenario s f s (x): maximum flow if Dudley intervenes on arcs x and scenario s S occurs Stochastic Network Interdiction Problem () min Ef s(x) = min p s f s (x) x X x X s S

9 Duality Linearization Max Flow Formulate Max Flow f s (x) as an LP: A = A {(t, r)} Primal f s (x) = max y R A + y tr y ij u ij (1 ξ ijs x ij ) (i, j) A Ny = 0 Dual min u ij (1 ξ ijs x ij )ρ ij (i,j) A π r π t 1 ρ ij π i + π j 0 (i, j) A ρ ij 0 (i, j) A

10 Duality Linearization Strong Duality For fixed ^x, if Dudley can find (primal) feasible y and (dual) feasible (π, ρ ) such that y tr = u ij (1 ξ ijs^x ij )ρ ij (1) (i,j) A then max flow f s (^x) = y tr Formulation Idea 1 Duplicate (primal and dual) flow variables (y, π, ρ) for each scenario 2 Enforce primal feasibility, dual feasibility, and equality (1) for each scenario

11 Duality Linearization A min min Formulation subject to y trs (i,j) A min s S p s y trs u ij (1 ξ ijs x ij )ρ ijs = 0 s S (i,j) A h ij x ij K y ijs u ij (1 ξ ijs x ij ) 0 (i, j) A, s S Ny s = 0 s S π rs π ts 1 s S ρ ijs π is + π js 0 (i, j) A, s S (x, y, π, ρ) B A R A S + R N S R A S +

12 Duality Linearization Good and Bad Some nice things about the formulation It s a pure minimization problem There are not too many integer variables: (x B A ) If x is fixed, it is decomposible by scenario Integer variables appear only in the first stage! A BAD thing about the formulation y trs u ij (1 ξ ijs x ij )ρ ijs = 0 (i,j) A x ij ρ ijs are nonlinear terms

13 Duality Linearization Linearization Trick Introduce auxiliary variables z ijs Let M be an upper bound on ρ ijs Then z ijs = x ij ρ ijs if and only if 1 z ijs Mx ij 2 z ijs ρ ijs 3 z ijs ρ ijs + M(x ij 1) Lemma In any optimal solution to the dual max flow problem, ρ ijs 1, (i, j) A.

14 Duality Linearization : MILP Formulation min s S p s y trs subject to y trs (i,j) A u ij ρ ijs + (i,j) A u ij ξ ijs z ijs = 0 s S z ijs x ij 0 (i, j) A, s S z ijs ρ ijs 0 (i, j) A, s S ρ ijs z ijs + x ij 1 (i, j) A, s S Primal Feasibility Dual Feasibility (x, y, π, ρ, z) B A R A S + R N S R A S + R A S +

15 Good News and Bad News Problem is just an IP But it s big Name K N A B S 4x x x x x x10 has a mere XX variables and XX constraints

16 Monte Carlo Methods min {f(x) E Pg(x; ξ) g(x; ξ)dp(ξ)} x S Ω Draw ξ 1, ξ 2,... ξ N from P Sample Average Approximation: f N (x) N 1 N j=1 g(x, ξ j ) f N (x) is an unbiased estimator of f(x) (E[ f N (x)] = f(x)). We instead minimize the Sample Average Approximation: min { f N (x)} x S

17 Lower Bound on the Optimal Objective Function Value v = min x S {f(x)} Thm: ^v N = min x S { f N (x)} E[^v N ] v The expected optimal solution value for a sampled problem of size N is the optimal solution value.

18 Estimating E[^v N ] Generate M independent SAA problems of size N. Solve each to get v j N M L N,M 1 M j=1 v j N The estimate L N,M is an unbiased estimate of E[ v N ]. M [LN,M E( v N )] N (0, σ 2 L ) σ 2 L Var( v N) This variance depends on the sample!

19 Confidence Interval s 2 L (M) 1 M 1 M j=1 ( ) 2 v j N L N,M [ L N,M z αs L (M), L N,M + z ] αs L (M) M M These only apply if the v j N are i.i.d. random variables.

20 Upper Bounds f(^x) v ^x S Generate T independent batches of samples of size N E f j N(x) := N 1 N i=1 g(x, ξ i,j ) = f(x), for all x X. T U N,T (^x) := T 1 f j N(^x) j=1

21 More Confidence Intervals T [U N,T (^x) f(^x)] N(0, σ 2 U (^x)), as T, σ 2 U (^x) Var [ f N(^x) ] Estimate σ 2 U (^x) by the sample variance estimator s2 U (^x, T) s 2 1 T ] 2 U (^x, T) [ f T 1 j N (^x) U N,T (^x). j=1 [ U N,T (^x) z αs U (^x; T), U N,T (^x) + z ] αs U (^x; T) T T

22 Solution Times Table of sizes Table of CPLEX times

23 Use a Approach ATR: A parallel solver for two-stage stochastic linear programs, engineered to run a collection of (Condor provided) non-dedicated CPUs Uses MW: Master-Worker framework for parallelization Master: Solves master problem (to determine ^x) Workers: Evaluate f s (^x s S by solving (indepedent) linear programs Since f s (x) is still convex in x, the same cutting plane-based decomposition approach works to solve the problem, but we need just solve the master problem as an integer program For many small instances, the solution of the linear relaxation comes out to be nearly integer

24 1 Solve LP Relaxation of (using ATR) 2 Round (or keep track of relaxed iterations) to get an UB 3 Remove all (most) inactive optimality cuts 4 Solve IP using ATR

25 Computational Details Run an very small configuration of < 50 workstations in lab and Grid lab at Lehigh Run each instance M = 10 times Upper Bound: N =? Did not use any variance reduction techniques in the sampling, which can greatly speed the convergence rate!

26 10x10 K = x10 Example with budget size 10 Upper Bound Lower Bound Value N

27 10x10 K = x10 Example with budget size 15 Upper Bound Lower Bound Value N

28 10x10 K = x10 Example with budget size 20 Upper Bound Lower Bound Value N

29 CPU Times: 10x10, K = 10 Sample size Master (avg) Stdev Wall Clk Stdev

30 Solution Times: 10x10 K = 15 Sample size Master avg Stdev Wall Clk Stdev

31 Solution Times: 10x10 K = 20 Sample size Master avrg Stdev Wall Clk Stdev

32 Conclusions Jeff didn t finish Continuing work: Solve bigger instances! Parallelize (grid-ify) IP master solve Thanks to XPRESS-SP Instances available Acknowledge grants

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem

Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem Reformulation and Sampling to Solve a Stochastic Network Interdiction Problem UDOM JANJARASSUK, JEFF LINDEROTH Department of Industrial and Systems Engineering, Lehigh University, 200 W. Packer Ave. Bethlehem,

More information

Monte Carlo Methods for Stochastic Programming

Monte Carlo Methods for Stochastic Programming IE 495 Lecture 16 Monte Carlo Methods for Stochastic Programming Prof. Jeff Linderoth March 17, 2003 March 17, 2003 Stochastic Programming Lecture 16 Slide 1 Outline Review Jensen's Inequality Edmundson-Madansky

More information

Stochastic Integer Programming

Stochastic Integer Programming IE 495 Lecture 20 Stochastic Integer Programming Prof. Jeff Linderoth April 14, 2003 April 14, 2002 Stochastic Programming Lecture 20 Slide 1 Outline Stochastic Integer Programming Integer LShaped Method

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

Stochastic Network Interdiction / October 2001

Stochastic Network Interdiction / October 2001 Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2001-10 Stochastic Networ Interdiction / October 2001 Sanchez, Susan M. Monterey, California.

More information

Multiobjective Mixed-Integer Stackelberg Games

Multiobjective Mixed-Integer Stackelberg Games Solving the Multiobjective Mixed-Integer SCOTT DENEGRE TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu EURO XXI, Reykjavic, Iceland July 3, 2006 Outline Solving the 1 General

More information

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse

A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse A Benders Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial

More information

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018 Section Notes 9 Midterm 2 Review Applied Math / Engineering Sciences 121 Week of December 3, 2018 The following list of topics is an overview of the material that was covered in the lectures and sections

More information

Stochastic Decomposition

Stochastic Decomposition IE 495 Lecture 18 Stochastic Decomposition Prof. Jeff Linderoth March 26, 2003 March 19, 2003 Stochastic Programming Lecture 17 Slide 1 Outline Review Monte Carlo Methods Interior Sampling Methods Stochastic

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Yuping Huang, Dr. Qipeng Phil Zheng Department of Industrial and Management Systems Engineering West Virginia University IENG 593G Nonlinear Programg, Spring 2012 Yuping Huang (IMSE@WVU)

More information

Chance Constrained Programming

Chance Constrained Programming IE 495 Lecture 22 Chance Constrained Programming Prof. Jeff Linderoth April 21, 2003 April 21, 2002 Stochastic Programming Lecture 22 Slide 1 Outline HW Fixes Chance Constrained Programming Is Hard Main

More information

Stochastic Sequencing and Scheduling of an Operating Room

Stochastic Sequencing and Scheduling of an Operating Room Stochastic Sequencing and Scheduling of an Operating Room Camilo Mancilla and Robert H. Storer Lehigh University, Department of Industrial and Systems Engineering, November 14, 2009 1 abstract We develop

More information

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs A Branch-and-cut Algorithm for Integer Bilevel Linear Programs S.T. DeNegre and T.K. Ralphs Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015 COR@L Technical Report

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 38 1 / 38 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 38 1 The L-Shaped Method 2 Example: Capacity Expansion Planning 3 Examples with Optimality Cuts [ 5.1a of BL] 4 Examples

More information

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization

Lagrangean Decomposition for Mean-Variance Combinatorial Optimization Lagrangean Decomposition for Mean-Variance Combinatorial Optimization Frank Baumann, Christoph Buchheim, and Anna Ilyina Fakultät für Mathematik, Technische Universität Dortmund, Germany {frank.baumann,christoph.buchheim,anna.ilyina}@tu-dortmund.de

More information

Software for Integer and Nonlinear Optimization

Software for Integer and Nonlinear Optimization Software for Integer and Nonlinear Optimization Sven Leyffer, leyffer@mcs.anl.gov Mathematics & Computer Science Division Argonne National Laboratory Roger Fletcher & Jeff Linderoth Advanced Methods and

More information

Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs

Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs Decomposition Algorithms with Parametric Gomory Cuts for Two-Stage Stochastic Integer Programs Dinakar Gade, Simge Küçükyavuz, Suvrajeet Sen Integrated Systems Engineering 210 Baker Systems, 1971 Neil

More information

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed 0-1 Integer Programs Lewis Ntaimo and Matthew W. Tanner Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU,

More information

Bilevel Integer Linear Programming

Bilevel Integer Linear Programming Bilevel Integer Linear Programming TED RALPHS SCOTT DENEGRE ISE Department COR@L Lab Lehigh University ted@lehigh.edu MOPTA 2009, Lehigh University, 19 August 2009 Thanks: Work supported in part by the

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

Bilevel Integer Programming

Bilevel Integer Programming Bilevel Integer Programming Ted Ralphs 1 Joint work with: Scott DeNegre 1, Menal Guzelsoy 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University Norfolk Southern Ralphs, et al.

More information

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse

An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse An Adaptive Partition-based Approach for Solving Two-stage Stochastic Programs with Fixed Recourse Yongjia Song, James Luedtke Virginia Commonwealth University, Richmond, VA, ysong3@vcu.edu University

More information

Bilevel Integer Optimization: Theory and Algorithms

Bilevel Integer Optimization: Theory and Algorithms : Theory and Algorithms Ted Ralphs 1 Joint work with Sahar Tahernajad 1, Scott DeNegre 3, Menal Güzelsoy 2, Anahita Hassanzadeh 4 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

More information

Generation and Representation of Piecewise Polyhedral Value Functions

Generation and Representation of Piecewise Polyhedral Value Functions Generation and Representation of Piecewise Polyhedral Value Functions Ted Ralphs 1 Joint work with Menal Güzelsoy 2 and Anahita Hassanzadeh 1 1 COR@L Lab, Department of Industrial and Systems Engineering,

More information

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs

Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Scenario Grouping and Decomposition Algorithms for Chance-constrained Programs Siqian Shen Dept. of Industrial and Operations Engineering University of Michigan Joint work with Yan Deng (UMich, Google)

More information

Optimization Tools in an Uncertain Environment

Optimization Tools in an Uncertain Environment Optimization Tools in an Uncertain Environment Michael C. Ferris University of Wisconsin, Madison Uncertainty Workshop, Chicago: July 21, 2008 Michael Ferris (University of Wisconsin) Stochastic optimization

More information

A Stochastic-Oriented NLP Relaxation for Integer Programming

A Stochastic-Oriented NLP Relaxation for Integer Programming A Stochastic-Oriented NLP Relaxation for Integer Programming John Birge University of Chicago (With Mihai Anitescu (ANL/U of C), Cosmin Petra (ANL)) Motivation: The control of energy systems, particularly

More information

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini

Network Flows. 6. Lagrangian Relaxation. Programming. Fall 2010 Instructor: Dr. Masoud Yaghini In the name of God Network Flows 6. Lagrangian Relaxation 6.3 Lagrangian Relaxation and Integer Programming Fall 2010 Instructor: Dr. Masoud Yaghini Integer Programming Outline Branch-and-Bound Technique

More information

Integer Programming (IP)

Integer Programming (IP) Integer Programming (IP) An LP problem with an additional constraint that variables will only get an integral value, maybe from some range. BIP binary integer programming: variables should be assigned

More information

SMPS and the Recourse Function

SMPS and the Recourse Function IE 495 Lecture 8 SMPS and the Recourse Function Prof. Jeff Linderoth February 5, 2003 February 5, 2003 Stochastic Programming Lecture 8 Slide 1 Outline Formulating Stochastic Program(s). SMPS format Jacob

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 9 Non-linear programming In case of LP, the goal

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

Integer Linear Programming Modeling

Integer Linear Programming Modeling DM554/DM545 Linear and Lecture 9 Integer Linear Programming Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. Assignment Problem Knapsack Problem

More information

Computational Stochastic Programming

Computational Stochastic Programming Computational Stochastic Programming Jeff Linderoth Dept. of ISyE Dept. of CS Univ. of Wisconsin-Madison linderoth@wisc.edu SPXIII Bergamo, Italy July 7, 2013 Jeff Linderoth (UW-Madison) Computational

More information

Decomposition Algorithms for Stochastic Programming on a Computational Grid

Decomposition Algorithms for Stochastic Programming on a Computational Grid Optimization Technical Report 02-07, September, 2002 Computer Sciences Department, University of Wisconsin-Madison Jeff Linderoth Stephen Wright Decomposition Algorithms for Stochastic Programming on a

More information

The Strong Duality Theorem 1

The Strong Duality Theorem 1 1/39 The Strong Duality Theorem 1 Adrian Vetta 1 This presentation is based upon the book Linear Programming by Vasek Chvatal 2/39 Part I Weak Duality 3/39 Primal and Dual Recall we have a primal linear

More information

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40

Optimization. Yuh-Jye Lee. March 28, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 40 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 28, 2017 1 / 40 The Key Idea of Newton s Method Let f : R n R be a twice differentiable function

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

A new primal-dual framework for European day-ahead electricity auctions

A new primal-dual framework for European day-ahead electricity auctions A new primal-dual framework for European day-ahead electricity auctions Mehdi Madani*, Mathieu Van Vyve** *Louvain School of management, ** CORE Catholic University of Louvain Mathematical Models and Methods

More information

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin

1 Outline Part I: Linear Programming (LP) Interior-Point Approach 1. Simplex Approach Comparison Part II: Semidenite Programming (SDP) Concludin Sensitivity Analysis in LP and SDP Using Interior-Point Methods E. Alper Yldrm School of Operations Research and Industrial Engineering Cornell University Ithaca, NY joint with Michael J. Todd INFORMS

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University COLGEN 2016, Buzios, Brazil, 25 May 2016 What Is This Talk

More information

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software

Second-Order Cone Program (SOCP) Detection and Transformation Algorithms for Optimization Software and Second-Order Cone Program () and Algorithms for Optimization Software Jared Erickson JaredErickson2012@u.northwestern.edu Robert 4er@northwestern.edu Northwestern University INFORMS Annual Meeting,

More information

Capacity Planning with uncertainty in Industrial Gas Markets

Capacity Planning with uncertainty in Industrial Gas Markets Capacity Planning with uncertainty in Industrial Gas Markets A. Kandiraju, P. Garcia Herreros, E. Arslan, P. Misra, S. Mehta & I.E. Grossmann EWO meeting September, 2015 1 Motivation Industrial gas markets

More information

Valid Inequalities for Optimal Transmission Switching

Valid Inequalities for Optimal Transmission Switching Valid Inequalities for Optimal Transmission Switching Hyemin Jeon Jeff Linderoth Jim Luedtke Dept. of ISyE UW-Madison Burak Kocuk Santanu Dey Andy Sun Dept. of ISyE Georgia Tech 19th Combinatorial Optimization

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization February 12, 2002 Overview The Practical Importance of Duality ffl Review of Convexity ffl A Separating Hyperplane Theorem ffl Definition of the Dual

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1

Separation, Inverse Optimization, and Decomposition. Some Observations. Ted Ralphs 1 Joint work with: Aykut Bulut 1 : Some Observations Ted Ralphs 1 Joint work with: Aykut Bulut 1 1 COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University MOA 2016, Beijing, China, 27 June 2016 What Is This Talk

More information

New Solution Approaches for the Maximum-Reliability Stochastic Network Interdiction Problem

New Solution Approaches for the Maximum-Reliability Stochastic Network Interdiction Problem New Solution Approaches for the Maximum-Reliability Stochastic Network Interdiction Problem Eli Towle and James Luedtke Department of Industrial and Systems Engineering, University of Wisconsin Madison

More information

Decomposition methods in optimization

Decomposition methods in optimization Decomposition methods in optimization I Approach I: I Partition problem constraints into two groups: explicit and implicit I Approach II: I Partition decision variables into two groups: primary and secondary

More information

Scenario grouping and decomposition algorithms for chance-constrained programs

Scenario grouping and decomposition algorithms for chance-constrained programs Scenario grouping and decomposition algorithms for chance-constrained programs Yan Deng Shabbir Ahmed Jon Lee Siqian Shen Abstract A lower bound for a finite-scenario chance-constrained problem is given

More information

Reformulation of chance constrained problems using penalty functions

Reformulation of chance constrained problems using penalty functions Reformulation of chance constrained problems using penalty functions Martin Branda Charles University in Prague Faculty of Mathematics and Physics EURO XXIV July 11-14, 2010, Lisbon Martin Branda (MFF

More information

On the Value Function of a Mixed Integer Linear Program

On the Value Function of a Mixed Integer Linear Program On the Value Function of a Mixed Integer Linear Program MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu AIRO, Ischia, Italy, 11 September 008 Thanks: Work supported

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Stochastic Decision Diagrams

Stochastic Decision Diagrams Stochastic Decision Diagrams John Hooker CORS/INFORMS Montréal June 2015 Objective Relaxed decision diagrams provide an generalpurpose method for discrete optimization. When the problem has a dynamic programming

More information

Designing the Distribution Network for an Integrated Supply Chain

Designing the Distribution Network for an Integrated Supply Chain Designing the Distribution Network for an Integrated Supply Chain Jia Shu and Jie Sun Abstract We consider an integrated distribution network design problem in which all the retailers face uncertain demand.

More information

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover

Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover duality 1 Dual fitting approximation for Set Cover, and Primal Dual approximation for Set Cover Guy Kortsarz duality 2 The set cover problem with uniform costs Input: A universe U and a collection of subsets

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

The Value function of a Mixed-Integer Linear Program with a Single Constraint

The Value function of a Mixed-Integer Linear Program with a Single Constraint The Value Function of a Mixed Integer Linear Programs with a Single Constraint MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University tkralphs@lehigh.edu OPT 008, Atlanta, March 4, 008 Thanks:

More information

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound

Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Interior-Point versus Simplex methods for Integer Programming Branch-and-Bound Samir Elhedhli elhedhli@uwaterloo.ca Department of Management Sciences, University of Waterloo, Canada Page of 4 McMaster

More information

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131

Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Discrete (and Continuous) Optimization Solutions of Exercises 2 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Electrotechniek, Wiskunde en Informatica Afdeling Informatie, Systemen en Algoritmiek

More information

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands Axel Nyberg Åbo Aademi University Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University,

More information

Indicator Constraints in Mixed-Integer Programming

Indicator Constraints in Mixed-Integer Programming Indicator Constraints in Mixed-Integer Programming Andrea Lodi University of Bologna, Italy - andrea.lodi@unibo.it Amaya Nogales-Gómez, Universidad de Sevilla, Spain Pietro Belotti, FICO, UK Matteo Fischetti,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 6, March 7, 2013 David Sontag (NYU) Graphical Models Lecture 6, March 7, 2013 1 / 25 Today s lecture 1 Dual decomposition 2 MAP inference

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming Antonio J. Conejo Enrique Castillo Roberto Minguez Raquel Garcia-Bertrand Decomposition Techniques in Mathematical Programming Engineering and Science Applications Springer Contents Part I Motivation and

More information

Stochastic Integer Programming An Algorithmic Perspective

Stochastic Integer Programming An Algorithmic Perspective Stochastic Integer Programming An Algorithmic Perspective sahmed@isye.gatech.edu www.isye.gatech.edu/~sahmed School of Industrial & Systems Engineering 2 Outline Two-stage SIP Formulation Challenges Simple

More information

Solution Methods for Stochastic Programs

Solution Methods for Stochastic Programs Solution Methods for Stochastic Programs Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University ht88@cornell.edu August 14, 2010 1 Outline Cutting plane methods

More information

Logic, Optimization and Data Analytics

Logic, Optimization and Data Analytics Logic, Optimization and Data Analytics John Hooker Carnegie Mellon University United Technologies Research Center, Cork, Ireland August 2015 Thesis Logic and optimization have an underlying unity. Ideas

More information

System Planning Lecture 7, F7: Optimization

System Planning Lecture 7, F7: Optimization System Planning 04 Lecture 7, F7: Optimization System Planning 04 Lecture 7, F7: Optimization Course goals Appendi A Content: Generally about optimization Formulate optimization problems Linear Programming

More information

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs

Financial Optimization ISE 347/447. Lecture 21. Dr. Ted Ralphs Financial Optimization ISE 347/447 Lecture 21 Dr. Ted Ralphs ISE 347/447 Lecture 21 1 Reading for This Lecture C&T Chapter 16 ISE 347/447 Lecture 21 2 Formalizing: Random Linear Optimization Consider the

More information

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation!

i.e., into a monomial, using the Arithmetic-Geometric Mean Inequality, the result will be a posynomial approximation! Dennis L. Bricker Dept of Mechanical & Industrial Engineering The University of Iowa i.e., 1 1 1 Minimize X X X subject to XX 4 X 1 0.5X 1 Minimize X X X X 1X X s.t. 4 1 1 1 1 4X X 1 1 1 1 0.5X X X 1 1

More information

Stochastic Dual Dynamic Integer Programming

Stochastic Dual Dynamic Integer Programming Stochastic Dual Dynamic Integer Programming Jikai Zou Shabbir Ahmed Xu Andy Sun December 26, 2017 Abstract Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics,

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

Nonconvex Generalized Benders Decomposition Paul I. Barton

Nonconvex Generalized Benders Decomposition Paul I. Barton Nonconvex Generalized Benders Decomposition Paul I. Barton Process Systems Engineering Laboratory Massachusetts Institute of Technology Motivation Two-stage Stochastic MINLPs & MILPs Natural Gas Production

More information

Convex Stochastic and Large-Scale Deterministic Programming via Robust Stochastic Approximation and its Extensions

Convex Stochastic and Large-Scale Deterministic Programming via Robust Stochastic Approximation and its Extensions Convex Stochastic and Large-Scale Deterministic Programming via Robust Stochastic Approximation and its Extensions Arkadi Nemirovski H. Milton Stewart School of Industrial and Systems Engineering Georgia

More information

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Duality in Linear Programs. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Duality in Linear Programs Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: proximal gradient descent Consider the problem x g(x) + h(x) with g, h convex, g differentiable, and

More information

Math 273a: Optimization Overview of First-Order Optimization Algorithms

Math 273a: Optimization Overview of First-Order Optimization Algorithms Math 273a: Optimization Overview of First-Order Optimization Algorithms Wotao Yin Department of Mathematics, UCLA online discussions on piazza.com 1 / 9 Typical flow of numerical optimization Optimization

More information

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows

Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Branch-and-Price-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows Guy Desaulniers École Polytechnique de Montréal and GERAD Column Generation 2008 Aussois, France Outline Introduction

More information

Fenchel Decomposition for Stochastic Mixed-Integer Programming

Fenchel Decomposition for Stochastic Mixed-Integer Programming Fenchel Decomposition for Stochastic Mixed-Integer Programming Lewis Ntaimo Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College Station, TX 77843, USA, ntaimo@tamu.edu

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

0-1 Reformulations of the Network Loading Problem

0-1 Reformulations of the Network Loading Problem 0-1 Reformulations of the Network Loading Problem Antonio Frangioni 1 frangio@di.unipi.it Bernard Gendron 2 bernard@crt.umontreal.ca 1 Dipartimento di Informatica Università di Pisa Via Buonarroti, 2 56127

More information

Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations

Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations Network Flow Interdiction Models and Algorithms with Resource Synergy Considerations Brian J. Lunday 1 Hanif D. Sherali 2 1 Department of Mathematical Sciences, United States Military Academy at West Point

More information

Sample Average Approximation (SAA) for Stochastic Programs

Sample Average Approximation (SAA) for Stochastic Programs Sample Average Approximation (SAA) for Stochastic Programs with an eye towards computational SAA Dave Morton Industrial Engineering & Management Sciences Northwestern University Outline SAA Results for

More information

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs

Computational Integer Programming. Lecture 2: Modeling and Formulation. Dr. Ted Ralphs Computational Integer Programming Lecture 2: Modeling and Formulation Dr. Ted Ralphs Computational MILP Lecture 2 1 Reading for This Lecture N&W Sections I.1.1-I.1.6 Wolsey Chapter 1 CCZ Chapter 2 Computational

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 13: Learning in Gaussian Graphical Models, Non-Gaussian Inference, Monte Carlo Methods Some figures

More information

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA

Gestion de la production. Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA Gestion de la production Book: Linear Programming, Vasek Chvatal, McGill University, W.H. Freeman and Company, New York, USA 1 Contents 1 Integer Linear Programming 3 1.1 Definitions and notations......................................

More information

Lagrange Relaxation: Introduction and Applications

Lagrange Relaxation: Introduction and Applications 1 / 23 Lagrange Relaxation: Introduction and Applications Operations Research Anthony Papavasiliou 2 / 23 Contents 1 Context 2 Applications Application in Stochastic Programming Unit Commitment 3 / 23

More information

Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs

Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs Shabbir Ahmed, James Luedtke, Yongjia Song & Weijun Xie Mathematical Programming A Publication of the Mathematical

More information

CS 6820 Fall 2014 Lectures, October 3-20, 2014

CS 6820 Fall 2014 Lectures, October 3-20, 2014 Analysis of Algorithms Linear Programming Notes CS 6820 Fall 2014 Lectures, October 3-20, 2014 1 Linear programming The linear programming (LP) problem is the following optimization problem. We are given

More information

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 16. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 16 Dr. Ted Ralphs ISE 418 Lecture 16 1 Reading for This Lecture Wolsey, Chapters 10 and 11 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.3.7, II.5.4 CCZ Chapter 8

More information

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger

Overview of course. Introduction to Optimization, DIKU Monday 12 November David Pisinger Introduction to Optimization, DIKU 007-08 Monday November David Pisinger Lecture What is OR, linear models, standard form, slack form, simplex repetition, graphical interpretation, extreme points, basic

More information

arxiv: v3 [math.oc] 25 Apr 2018

arxiv: v3 [math.oc] 25 Apr 2018 Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure Jamie Fairbrother *, Amanda Turner *, and Stein W. Wallace ** * STOR-i Centre for Doctoral Training,

More information

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming

Modeling Uncertainty in Linear Programs: Stochastic and Robust Linear Programming Modeling Uncertainty in Linear Programs: Stochastic and Robust Programming DGA PhD Student - PhD Thesis EDF-INRIA 10 November 2011 and motivations In real life, Linear Programs are uncertain for several

More information

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University Determinant maximization with linear matrix inequality constraints S. Boyd, L. Vandenberghe, S.-P. Wu Information Systems Laboratory Stanford University SCCM Seminar 5 February 1996 1 MAXDET problem denition

More information

arxiv: v1 [math.oc] 8 Aug 2017

arxiv: v1 [math.oc] 8 Aug 2017 BCOL RESEARCH REPORT 17.05 Industrial Engineering & Operations Research University of California, Berkeley, CA 94720 1777 arxiv:1708.02371v1 [math.oc] 8 Aug 2017 SUCCESSIVE QUADRATIC UPPER-BOUNDING FOR

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Enhancing Fathoming Rules in Branch-and-Bound for Biobjective Mixed-Integer Programming

Enhancing Fathoming Rules in Branch-and-Bound for Biobjective Mixed-Integer Programming Enhancing Fathoming Rules in Branch-and-Bound for Biobjective Mixed-Integer Programming Nathan Adelgren Clemson University MIP - July 21, 2014 Joint Work with: Dr. Pietro Belotti - FICO (Birmingham, UK)

More information

Advanced Linear Programming: The Exercises

Advanced Linear Programming: The Exercises Advanced Linear Programming: The Exercises The answers are sometimes not written out completely. 1.5 a) min c T x + d T y Ax + By b y = x (1) First reformulation, using z smallest number satisfying x z

More information