Comparison of head and thorax cadaver and Hybrid III responses to a frontal sled deceleration for the validation of a car occupant mathematical model

Size: px
Start display at page:

Download "Comparison of head and thorax cadaver and Hybrid III responses to a frontal sled deceleration for the validation of a car occupant mathematical model"

Transcription

1 Comparison of head and thorax cadaver and Hybrid III responses to a frontal sled deceleration the validation of a car occupant mathematical model Philippe Vezin, Karine Bruyère, François Bermond INRETS-LBMC Biomechanics and Impact Mechanics Laboratory, France

2 PLAN Introduction and context of this study Methods and Instrumentation Results Discussion Conclusion

3 Introduction and context of this study Validation of a car occupant mathematical model? HUMOS MODEL : Whole Human Body Finite Element Model Geometry Acquisition Meshing Constitutive Law Validation Data Acquisition Validation of the Model

4 Introduction and context of this study Validation data and boundary conditions Validation of a Numerical Model : Imposed Constraints Simplified Geometry and Position Simplified Impact Conditions

5 Introduction and context of this study Validation data and boundary conditions Simplified Geometry and Position Geometry imposed Experimental set up

6 Introduction and context of this study Validation data and impact conditions Simplified impact conditions Velocity : km/h Stopping distance 6mm Deceleration close to the R44-3 Regulation H_1 H_1 H_2 H_2 H_3 H_3 H_4 H_4 D_1 D_1 D_2 D_2 D_3 D_3 D_4 D_4-3 -3

7 Methods and Instrumentation Surrogates : Post Mortem Human Subject Hybrid III Two series of tests : 1 st with a Load Limiting Shoulder Belt 2 nd with a Load Limiting Shoulder Belt

8 Methods and Instrumentation Instrumentation : Accelerometers Head Chest Pelvis Data Processing : Sample rate : 1 khz Filter : 6Hz Scaling parameter : λ = ( 7/ M i 1/3 )

9 Methods and Instrumentation Data analysis : Longitudinal (x) and vertical (z) acceleration component Resultant acceleration Head Injury Criterion - 3ms : HIC t 2 = γ t1 2 1 t 1 t ( t) dt 2. ( t t ) Thoracic Injury description with AIS quotation () compared with the injury risk curve (dummy) 2 1

10 RESULTS Pelvis HIII deceleration > > HIII deceleration < longitudinal vertical

11 RESULTS Pelvis HIII > Not the same distribution Not the same resultant Greater rigidity of the dummy pelvis resultant

12 RESULTS Pelvis longitudinal vertical

13 RESULTS Pelvis Change of load limit : Not a great influence on the dynamics of the dummy pelvis. Change of belt load limit increases the Z deceleration of the Pelvis 1 1 The resultant acceleration is higher with the belt, resultant it is a consequence of the greater rotation of the thorax due to his lower deceleration

14 RESULTS Chest HIII deceleration > HIII acceleration> > longitudinal vertical

15 RESULTS Chest HIII > Not the same distribution Not the same resultant Differences are not significant than the pelvis resultant

16 RESULTS Chest Longitudinal T8 Longitudinal T1

17 RESULTS Chest 3 3 Change of load limit : Not a great influence on the dynamics of the dummy thorax. Change of belt load limit decreases the x deceleration of the thorax 1 1 The resultant acceleration is higher with the belt, The x deceleration of T1 is reduced with the belt, Resultant T8

18 RESULTS Head HIII deceleration deceleration > HIII acceleration > longitudinal vertical

19 RESULTS Head HIII > resultant z and resultant accelerations are higher x deceleration are higher This difference increases the lower belt load value. Greater rigidity of the dummy neck?

20 RESULTS Head longitudinal vertical

21 RESULTS Head resultant Change of load limit : Not a great influence on the dynamics of the dummy head. Change of belt load limit decreases the Z acceleration of the head The resultant acceleration is lower with the belt It is a consequence of the lower load on the thorax

22 Hybrid III RESULTS Injury description Test AIS AIS AIS MAIS Thorax Sternum Clavicle H_1 () 2 2 H_2 () 2 2 H_3 () H_4 () 4 4 Test AIS Thorax deflection V*C D_1 () <2 21mm.4 D_2 () <2 31mm.8 D_3 () <1 1mm.2 D_4 () <1 16mm.2

23 RESULTS Injury description are massively injured Severity of the impact Rigidity of the seat Results distorted by the objective of the numerical model Dummies are not representative of the impact severity Rigidity of the thorax, pelvis, neck... Response of the sensor

24 DISCUSSION Comparison Hybrid III - To use these data the validation of a numerical model, The test configuration was simplified The influence of the configuration parameters was limited to the effect of the belt loading. Caution in applying results to living persons is necessary Due to the lack of muscle tone in. Variability in behaviour can not be avoided due to anthropometry and properties of the biological tissues. Considering these difficulties, the results presented in this paper allowed us to compare the Hybrid III and behaviours

25 DISCUSSION Comparison Hybrid III - The differences between dummy and cadaver behaviours, show that the biofidelity of Hybrid dummies is not ensured during injuring tests Difference has been observed between cadaver and dummy : For the resultant : higher the dummy Differences are also observed on the components The longitudinal acceleration is lower the PHMS than the dummy and the opposite is observed the vertical acceleration. An explanation is the greater rigidity of the dummy pelvis compared to a cadaver pelvis.

26 DISCUSSION Influence of the load limit Differences have been observed on dynamics of the : s lessened with the decreasing of the load This decreasing of accelerations lead to lower value of HIC HIC : 4 17 HIC : > 4 These effects on the dummy dynamics is less obvious.

27 DISCUSSION Influence of the load limit Rigidity of the dummy neck might filter the effect of the load-limiting system This rigidity simulates the muscle tone of living human - without considering any reaction time- The dummy is generally calibrated on slow speed volunteer tests. The influence of the reaction time in case of high speed is not clear. Concerning the, the absence of muscle tone is not a problem because the impact time is very short.

28 DISCUSSION Injury Location of the rib fractures corresponds to the contact area of the shoulder belt The load limiting system reduces the fractures Despite the use of a low deceleration of the sled (2g to 24g, the impact appeared severe in terms of injuries of the rib cage. For the subjects aged 7, a shoulder load corresponds to a 1% probability of AIS>3. These injury observations show the interest of the shoulder belt load as injury indicator, contrary to the chest acceleration measurements

29 CONCLUSION Two series, each comprising two cadavers and two Hybrid III dummy tests, were carried out The first series used a seat equipped with a load-limiting limiting shoulder belt The second used a load-limiting limiting belt. Concerning the effect of the shoulder loading Reducing load belt reducing the injury risks Dummies are less sensitive to the change of load than

30 CONCLUSION Biofidelity 1. biofidelity is not ensured in the case of injuring tests 2. This test device does not allow a precise analysis of the injury levels and mechanisms. 3. Numerical Models could reproduce the human behaviour 4. Biomechanical knowledge is needed to validate the model

31 CONCLUSION Some interrogations How is close to living driver? Importance of the muscle tone?

32 Acknowledgement The HUMOS project is supported by European Community (DG XII) and co-ordinated ordinated by LAB PSA Peugeot-Citroën Renault The partners involved in the HUMOS program are : PSA Peugeot-Citroën FR), Renault (FR), Volvo (SE), VW (DE), BMW (DE), ESI (FR), ISAM Gmbh (DE), TNO Automotive (NL), FAURECIA (FR), University of Chalmers (SE), University of Heidelberg (DE), University of Marseille (FR), National Technical University of Athens (GR). The authors would like to thank Doctor Eric J. Voiglïo (surgeon of the Hospital of Lyon) from the Faculty of Medicine, Lyon, Doctor Michelle Ramet from the INRETS-LBMC their contributions to the experiments, the autopsy and the injury description.

INFLUENCE OF THE IMPACT AND RESTRAINT CONDITIONS ON HUMAN SURROGATE HEAD RESPONSE TO A FRONTAL DECELERATION

INFLUENCE OF THE IMPACT AND RESTRAINT CONDITIONS ON HUMAN SURROGATE HEAD RESPONSE TO A FRONTAL DECELERATION INFLUENCE OF THE IMPACT AND RESTRAINT CONDITIONS ON HUMAN SURROGATE HEAD RESPONSE TO A FRONTAL DECELERATION Philippe Vezin, Jean Pierre Verriest INRETS - Institut National de Recherche sur les Transports

More information

METHODOLOGY FOR ESTIMATING THORACIC IMPACT RESPONSE IN FRONTAL CRASH TESTS

METHODOLOGY FOR ESTIMATING THORACIC IMPACT RESPONSE IN FRONTAL CRASH TESTS METHODOLOGY FOR ESTIMATING THORACIC IMPACT RESPONSE IN FRONTAL CRASH TESTS Craig P. Thor, Hampton C. Gabler Virginia Tech-Wake Forest, Center for Injury Biomechanics ABSTRACT This study has investigated

More information

Estimating Q Dummy Injury Criteria Using the CASPER Project Results and Scaling Adult Reference Values

Estimating Q Dummy Injury Criteria Using the CASPER Project Results and Scaling Adult Reference Values IRC-- IRCOBI Conference Estimating Q Dummy Injury Criteria Using the CASPER Project Results and Scaling Adult Reference Values Heiko Johannsen, Xavier Trosseille, Philippe Lesire², Philippe Beillas³ Abstract

More information

EXPERIMENTAL VERIFICATION OF THE USE OF DUMMIES FOR TESTS IN EMPIRICAL RESEARCH

EXPERIMENTAL VERIFICATION OF THE USE OF DUMMIES FOR TESTS IN EMPIRICAL RESEARCH Journal of KONES Powertrain and Transport, Vol., No. 1 17 EXPERIMENTAL VERIFICATION OF THE USE OF DUMMIES FOR TESTS IN EMPIRICAL RESEARCH Dariusz Więckowski Automotive Industry Institute (PIMOT) Jagiellonska

More information

Road vehicles Dummies for restraint system testing Part 1: Adult dummies

Road vehicles Dummies for restraint system testing Part 1: Adult dummies ISO 2013 All rights reserved ISO TC 22/SC 12/WG 5 N1019 Date: 2013-02-20 ISO/PDTR 12349-1/WD 12349-1 ISO TC 22/SC 12/WG 5 Secretariat: AFNOR Road vehicles Dummies for restraint system testing Part 1: Adult

More information

Development of Rotational Brain Injury Criterion (BRIC) Human Injury Research Division

Development of Rotational Brain Injury Criterion (BRIC) Human Injury Research Division Development of Rotational Brain Injury Criterion (BRIC) Human Injury Research Division Procedure Develop validated human brain FE model (SIMon) Use CSDM as a biomechanical rotational injury criterion Use

More information

FEA Information Engineering Journal

FEA Information Engineering Journal ISSN 2167-1273 Volume 2, Issue 7, July 213 FEA Information Engineering Journal Occupant Safety 9 th European LS-DYNA Users Conference FEA Information Engineering Journal Aim and Scope FEA Information Engineering

More information

Repeatability of high velocity crash tests

Repeatability of high velocity crash tests Repeatability of high velocity crash tests Author Fabien Breda, Expert in numerical crash simulation PSA Peugeot Citroën Vélizy Villacoublay (78) Phone : +331 57 59 53 12 / E-mail : fabien.breda@mpsa.com

More information

Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1

Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1 Development and Validation of the FAT Finite Element Model for the Side Impact Dummy EUROSID-1 Thomas Pyttel* *ESI GmbH, 65760 Eschborn, Frankfurter Str. 13-15, Germany ABSTRACT A new deformable model

More information

Evaluation of human thorax FE model in various impact scenarios

Evaluation of human thorax FE model in various impact scenarios Applied and Computational Mechanics 9 (2015) 5 20 Evaluation of human thorax FE model in various impact scenarios M. Jansová a,, L. Hynčík a,h.čechová a, J. Toczyski b, D. Gierczycka-Zbrozek b, P. Baudrit

More information

January 06 JAPAN MLIT

January 06 JAPAN MLIT January 6 JPN MLIT 1 Purpose Dynamic testing methods to reduce damage to the neck of the occupants from a rear-end collision is being studied internationally for head restraints GTR and other regulations.

More information

Comparison of crash tests and simulations for various vehicle restraint systems

Comparison of crash tests and simulations for various vehicle restraint systems Comparison of crash tests and simulations for various vehicle restraint systems C. Goubel ab, E. Di Pasquale c, M. Massenzio a, S. Ronel a a : Université de Lyon, F 69622, Lyon, France ; INRETS, UMR_T946,

More information

Technical Bulletin Data format and Injury Criteria Calculation Version 2.1 November 2017 TB 021

Technical Bulletin Data format and Injury Criteria Calculation Version 2.1 November 2017 TB 021 Technical Bulletin Data format and Injury Criteria Calculation TB 021 Title Data format and Injury Criteria Calculation Document Number TB021 Author R Schram Date Related Documents All test protocols Application

More information

Simulation of Occupant Posture Change during Autonomous Emergency Braking and Occupant Kinematics in Frontal Collision.

Simulation of Occupant Posture Change during Autonomous Emergency Braking and Occupant Kinematics in Frontal Collision. Simulation of Occupant Posture Change during Autonomous Emergency Braking and Occupant Kinematics in Frontal Collision. Katsunori Yamada, Mitsuaki Gotoh, Yuichi Kitagawa, Tsuyoshi Yasuki Abstract Occupant

More information

Can Delta-V be Adjusted with Structural and Occupant Restraint Performance to Improve Prediction of Chest Acceleration?

Can Delta-V be Adjusted with Structural and Occupant Restraint Performance to Improve Prediction of Chest Acceleration? Can Delta-V be Adjusted with Structural and Occupant Restraint Performance to Improve Prediction of Chest Acceleration? Douglas J. Gabauer, MSE, Hampton C. Gabler, PhD Center for Injury Biomechanics Virginia

More information

LPV Modeling of Vehicle Occupants

LPV Modeling of Vehicle Occupants AVEC '8-14 2854 LPV Modeling of Vehicle Occupants Ewout van der Laan, Frans Veldpaus and Maarten Steinbuch Eindhoven University of Technology, the Netherlands Contact address: Wh-1.131, PO Box 513, 56

More information

BioRID-II Dummy Model Development. Stochastic Investigations

BioRID-II Dummy Model Development. Stochastic Investigations BioRID-II Dummy Model Development -- Stochastic Investigations Sebastian Stahlschmidt*, Bastian Keding*, K. Witowski*, H. Müllerschön*, U. Franz* *DYNAmore GmbH, Stuttgart, Germany Abstract: Whiplash injuries

More information

A NOVEL CONTROL ALGORITHM FOR INTEGRATION OF ACTIVE AND PASSIVE VEHICLE SAFETY SYSTEMS IN FRONTAL COLLISIONS

A NOVEL CONTROL ALGORITHM FOR INTEGRATION OF ACTIVE AND PASSIVE VEHICLE SAFETY SYSTEMS IN FRONTAL COLLISIONS A NOVEL CONTROL ALGORITHM FOR INTEGRATION OF ACTIVE AND PASSIVE VEHICLE SAFETY SYSTEMS IN FRONTAL COLLISIONS Daniel WALLNER Arno EICHBERGER Wolfgang HIRSCHBERG Institute of Automotive Engineering, Graz

More information

The Effect of Inflated Backrest Stiffness on Shearing Loads Estimated with Articulated Total Body

The Effect of Inflated Backrest Stiffness on Shearing Loads Estimated with Articulated Total Body The Effect of Inflated Backrest Stiffness on Shearing Loads Estimated with Articulated Total Body Bob J. Scurlock, Ph.D., ACTAR *, James R. Ipser, Ph.D. *, Paul A. Borsa, Ph.D., ATC, FACSM # * Department

More information

2. Experiment Description

2. Experiment Description Acta Polytechnica CTU Proceedings 12:74 78, 2017 Czech Technical University in Prague, 2017 doi:10.14311/app.2017.12.0074 available online at http://ojs.cvut.cz/ojs/index.php/app CORRELATION ANALYSIS OF

More information

Paulitz 1 FULLY-ADAPTIVE SEATBELTS FOR FRONTAL COLLLISIONS

Paulitz 1 FULLY-ADAPTIVE SEATBELTS FOR FRONTAL COLLLISIONS FULLY-ADAPTIVE SEATBELTS FOR FRONTAL COLLLISIONS Timothy J. Paulitz Donald M. Blackketter Karl K. Rink National Institute for Advanced Transportation Technology Department of Mechanical Engineering University

More information

Application of Binaural Transfer Path Analysis to Sound Quality Tasks

Application of Binaural Transfer Path Analysis to Sound Quality Tasks Application of Binaural Transfer Path Analysis to Sound Quality Tasks Dr.-Ing. Klaus Genuit HEAD acoustics GmbH 1. INTRODUCTION The Binaural Transfer Path Analysis was developed in order to predict the

More information

The goal of this study is to define the front crash protocol which responds the best at the following problem:

The goal of this study is to define the front crash protocol which responds the best at the following problem: CAR TO CAR FRONT CRASH EQUIVALENT PROTOCOL Marc Peru, Marie Estelle Caspar, Richard Zeitouni. PSA Groupe, France Marc Dieudonné, Pierre Couvidat, ACTOAT, France Paper number 17-0282 ABSTRACT The target

More information

Injury Biomechanics Workshop at IRCOBI Asia 2018

Injury Biomechanics Workshop at IRCOBI Asia 2018 Injury Biomechanics Workshop at IRCOBI Asia 018 Kai-Uwe Schmitt and Ciaran Simms Agenda Introduction Methods/ History/ Basic calculations Example: head injury Group work Summary 0 Accidentology Accident

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

EXPERIMENTAL STUDIES OF THE INFLUENCE OF HUMAN STANDING POSITIONS ON THE FEET-TO-HEAD TRANSMISSION OF VIBRATIONS

EXPERIMENTAL STUDIES OF THE INFLUENCE OF HUMAN STANDING POSITIONS ON THE FEET-TO-HEAD TRANSMISSION OF VIBRATIONS JOURNAL OF THEORETICAL AND APPLIED MECHANICS 52, 4, pp. 1107-1114, Warsaw 2014 EXPERIMENTAL STUDIES OF THE INFLUENCE OF HUMAN STANDING POSITIONS ON THE FEET-TO-HEAD TRANSMISSION OF VIBRATIONS Marek A.

More information

Egg Crash! Designing a Collision Safety Device

Egg Crash! Designing a Collision Safety Device TEACHER LESSON Key question(s) How do people survive major collisions? How does physics explain the effectiveness of seat belts and airbags? Crash Course Definitions impulse: product of force and time

More information

CORRELATION OF ACCIDENT STATISTICS TO WHIPLASH PERFORMANCE PARAMETERS USING THE RID 3D AND BIORID DUMMY

CORRELATION OF ACCIDENT STATISTICS TO WHIPLASH PERFORMANCE PARAMETERS USING THE RID 3D AND BIORID DUMMY CELATN F ACCENT STATSTCS T WHPLASH PEFMANCE PAAMETES USNG THE AN UMMY H. Cappon 1, W. Hell 2, H. Hoschopf, M. Muser 4, E. Song 5, J. Wismans 1 TN Automotive 1, Ludwig Maximilian University Munich 2, Graz

More information

Crash Analysis Criteria Description

Crash Analysis Criteria Description Crash Analysis Criteria Description Version 1.6.1 Crash Analysis Criteria Data Processing Vehicle Safety Workgroup Version 1.6.1 Arbeitskreis Messdatenverarbeitung Fahrzeugsicherheit April 2004 edition

More information

Mark scheme. 1 Forces and motion 1. Practical work. 1 Forces and motion 1

Mark scheme. 1 Forces and motion 1. Practical work. 1 Forces and motion 1 Forces and motion Mark scheme Forces and motion Practical work States a similarity, e.g. both experiments measure the fastest speed States a difference, e.g. one experiment takes readings using a data

More information

Real size experiments of car crash against building column

Real size experiments of car crash against building column Real size experiments of car crash against building column B. Ferrer 1, S. Ivorra 1, R. Irles 1, D. Mas 2 1 Universidad de Alicante, Departamento de ingeniería de la Construcción, San Vicente del Raspeig,

More information

Chapter 2 Section 2: Acceleration

Chapter 2 Section 2: Acceleration Chapter 2 Section 2: Acceleration Motion Review Speed is the rate that an object s distance changes Distance is how far an object has travelled Speed = distance/time Velocity is rate that an object s displacement

More information

Experimental measure of impact in temporary handrails

Experimental measure of impact in temporary handrails Structures Under Shock and Impact XII 121 Experimental measure of impact in temporary handrails J. C. Pomares 1, B. Ferrer 1, D. Más 2, C. Lozano 3, S. Bresó 3 & R. Irles 1 1 Civil Engineering Department,

More information

Fast and Broadbanded Car Interior Panel Noise Contribution Analysis

Fast and Broadbanded Car Interior Panel Noise Contribution Analysis 1 Fast and Broadbanded Car Interior Panel Noise Contribution Analysis Dr. Oliver Wolff, Open Technology Forum at Testing Expo Europe 2008, Stuttgart, 6 th 8 th May 2008 2 Contents Contents of presentation:

More information

Human Head-Neck Response to Impact Acceleration: Comparison of Oblique to Combined Frontal and Lateral Response

Human Head-Neck Response to Impact Acceleration: Comparison of Oblique to Combined Frontal and Lateral Response University of New Orleans ScholarWorks@UNO Electrical Engineering Faculty Publications Department of Electrical Engineering 6-21 Human Head-Neck Response to Impact Acceleration: Comparison of Oblique to

More information

Data Acquisition. Where am I? Photographs. Video Systems. Not covered in detail he Hamill text, nor in most texts on reserve.

Data Acquisition. Where am I? Photographs. Video Systems. Not covered in detail he Hamill text, nor in most texts on reserve. Data Acquisition Not covered in detail he Hamill text, nor in most texts on reserve. The best text to read if the lecture and slides are not clear to you is: Winter, D. Biomechanics of Human Movement.

More information

Research of Side Crash Sled Test based on Recursive Least Square Method

Research of Side Crash Sled Test based on Recursive Least Square Method International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014) Research of Side Crash Sled Test based on Recursive Least Square Method Dong Liping donglipingshamo@163.com

More information

EVALUATION OF HEAVY EQUIPMENT OPERATORS' SAFETY BELT RESTRAINT SYSTEM. PHASE 111. Joseph B. Elenson John W. Me1 vin Richard G.

EVALUATION OF HEAVY EQUIPMENT OPERATORS' SAFETY BELT RESTRAINT SYSTEM. PHASE 111. Joseph B. Elenson John W. Me1 vin Richard G. UMTRI -83-1 EVALUATION OF HEAVY EQUIPMENT OPERATORS' SAFETY BELT RESTRAINT SYSTEM. PHASE 111. Joseph B. Elenson John W. Me1 vin Richard G. Snyder Transportation Research Institute The University o f Michigan

More information

MODELLING AND ANALYSIS OF SOCCER HEADING AND PROTECTIVE HEADGEAR TO UNDERSTAND AND PREVENT MILD TRAUMATIC BRAIN INJURY

MODELLING AND ANALYSIS OF SOCCER HEADING AND PROTECTIVE HEADGEAR TO UNDERSTAND AND PREVENT MILD TRAUMATIC BRAIN INJURY MODELLING AND ANALYSIS OF SOCCER HEADING AND PROTECTIVE HEADGEAR TO UNDERSTAND AND PREVENT MILD TRAUMATIC BRAIN INJURY MOHD HASNUN ARIF HASSAN DOCTOR OF PHILOSOPHY UNIVERSITI MALAYSIA PAHANG UNIVERSITI

More information

Global Sensitivity Analysis in Industrial Application with LS-OPT

Global Sensitivity Analysis in Industrial Application with LS-OPT 9. LS-DYNA Forum, Bamberg 2010 Optimierung II Global Sensitivity Analysis in Industrial Application with LS-OPT Björn Hohage*, Anja Förderer**, Gordon Geißler**, Heiner Müllerschön** *Audi AG, Ingolstadt,

More information

PHYSICS LICENCE. 6 Marks

PHYSICS LICENCE. 6 Marks PHYSICS LICENCE 1. A SPEED CAMERA TAKES TWO PHOTOGRAPHS AT HALF-SECOND INTERVALS OF A MOTOR CYCLIST DRVING ALONG THE MOTORWAY. DESCRIBE HOW THESE COULD BE USED TO CALCULATE THE SPEED OF THE MOTOR CYCLIST.

More information

A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion

A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion International Journal of Crashworthiness Vol. 14, No. 2, April 2009, 125 138 A comparative study of design optimisation methodologies for side-impact crashworthiness, using injury-based versus energy-based

More information

CHARACTERIZATION OF THE THORAX VIA MECHANICAL IMPEDANCE

CHARACTERIZATION OF THE THORAX VIA MECHANICAL IMPEDANCE CHARACTERIZATION OF THE THORAX VIA MECHANICAL IMPEDANCE Nabih Alem University of Michigan Transportation Research Institute Ann Arbor, Michigan 46 10'3 Said Nakhla Bioengineering Center Wayne State University

More information

ARE SIDEBAGS DANGEROUS IN CERTAIN SEATING POSITIONS?

ARE SIDEBAGS DANGEROUS IN CERTAIN SEATING POSITIONS? ARE SIDEBAGS DANGEROUS IN CERTAIN SEATING POSITIONS? Günter Schroeder (Department of Forensic Medicine, Haver Medical School, Germany) Dimitrios Kallieris (Institute of Forensic Medicine of the University

More information

MODELLING THE SHAKEN BABY SYNDROME

MODELLING THE SHAKEN BABY SYNDROME MODELLING THE SHAKEN BABY SYNDROME I.C. Howard, E.A. Patterson, J. Langley Structural Integrity Research Institute of the University of Sheffield (SIRIUS) Introduction Physical child abuse is common. For

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

Typical impact tester.

Typical impact tester. 1-SHOCK ABSORPTION Gmax TEST To evaluate the surface s capacity to absorb head impacts, a mass of 9,8kg (20 pounds), which represents the weight of a human head and neck combined, is dropped from a standard

More information

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track.

Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. Q1. (a) The diagram shows an athlete at the start of a race. The race is along a straight track. In the first 2 seconds, the athlete accelerates constantly and reaches a speed of 9 m/s. (i) Use the equation

More information

ON THE KINEMATICS OF THE HEAD USING LINEAR ACCELERATION MEASUREMENTS*

ON THE KINEMATICS OF THE HEAD USING LINEAR ACCELERATION MEASUREMENTS* 1. Biomechanics, 1976, Vol, 9, pp, 67-611 Pergamon Press. Printed in Great Britain ON THE KINEMATICS OF THE HEAD USING LINEAR ACCELERATION MEASUREMENTS* e. e. CHOUand S. e. SINHA Biomechanics Research

More information

EGG CRASH! DESIGNING A COLLISION SAFETY DEVICE

EGG CRASH! DESIGNING A COLLISION SAFETY DEVICE T E AC H E R L E S S O N EGG CRASH! DESIGNING A COLLISION SAFETY DEVICE DEFINITIONS momentum: the inertia of moving objects; product of the mass and the velocity of an object (p = mv) impulse: product

More information

Intracranial Response in Helmet Oblique Impacts

Intracranial Response in Helmet Oblique Impacts Intracranial Response in Helmet Oblique Impacts M. Ghajari 1, U. Galvanetto 2, L. Iannucci 3, R. Willinger 4 Abstract The purpose of this work was to investigate the influence of the presence of the body

More information

QUASI-ANALYTIC ACCELERATION INJURY RISK FUNCTIONS: APPLICATION TO CAR OCCUPANT RISK IN FRONTAL COLLISIONS

QUASI-ANALYTIC ACCELERATION INJURY RISK FUNCTIONS: APPLICATION TO CAR OCCUPANT RISK IN FRONTAL COLLISIONS QUASI-ANALYTIC ACCELERATION INJURY RISK FUNCTIONS: APPLICATION TO CAR OCCUPANT RISK IN FRONTAL COLLISIONS Denis Wood 1, Ciaran Simms 2, Colin Glynn 3, Anders Kullgren 4 and Anders Ydenius 4 1. Denis Wood

More information

AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT)

AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT) AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT) Takahiro, Kikuchi Kaoru, Tatsu Chinmoy, Pal Shigeru, Hirayama Nissan Motor Co., Ltd. Japan Paper Number 17-2 ABSTRACT In 213, an

More information

Explicit Finite Element Method Applied to Impact Biomechanics Problems. Duane S. Cronin 1

Explicit Finite Element Method Applied to Impact Biomechanics Problems. Duane S. Cronin 1 Explicit Finite Element Method Applied to Impact Biomechanics Problems Duane S. Cronin 1 Abstract Biofidelic numerical models require accurate geometry, material properties, representative loading conditions,

More information

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT

BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT BIOMECHANICS AND MOTOR CONTROL OF HUMAN MOVEMENT Third Edition DAVID Α. WINTER University of Waterloo Waterloo, Ontario, Canada WILEY JOHN WILEY & SONS, INC. CONTENTS Preface to the Third Edition xv 1

More information

Mathematical Modelling of Car Crash Test

Mathematical Modelling of Car Crash Test REST Journal on Emerging trends in Modelling and Manufacturing Vol:3(3),2017 REST Publisher ISSN: 2455-4537 Website: www.restpublisher.com/journals/jemm Mathematical Modelling of Car Crash Test Abhinav

More information

Activity 4. Life (and Death) before Seat Belts. What Do You Think? For You To Do GOALS

Activity 4. Life (and Death) before Seat Belts. What Do You Think? For You To Do GOALS Activity 4 Life (and Death) before Seat Belts Activity 4 Life (and Death) before Seat Belts GOALS In this activity you will: Understand Newton s First Law of Motion. Understand the role of safety belts.

More information

A prestudy of the potential of using finite element analysis for understanding horse accidents

A prestudy of the potential of using finite element analysis for understanding horse accidents A prestudy of the potential of using finite element analysis for understanding horse accidents JACOB WASS, KARIN BROLIN Department of Applied Mechanics Division of Vehicle Safety CHALMERS UNIVERSITY OF

More information

MultimediaContent PrimalPictures3DAnatomySoftware

MultimediaContent PrimalPictures3DAnatomySoftware MultimediaContent PrimalPictures3DAnatomySoftware onanatomy.tv P a g e 2 Human Anatomy: Regional Edition Human Anatomy: Regional Edition total 257 individual 3D views, with 67,541 images 33 cross-sectional

More information

MAKING MEASUREMENTS. I walk at a rate of paces per...or...my pace =

MAKING MEASUREMENTS. I walk at a rate of paces per...or...my pace = MAKING MEASUREMENTS TIME: The times that are required to work out the problems can be measured using a digital watch with a stopwatch mode or a watch with a second hand. When measuring the period of a

More information

Ch.8: Forces as Interactions

Ch.8: Forces as Interactions Name: Lab Partners: Date: Ch.8: Forces as Interactions Investigation 1: Newton s Third Law Objective: To learn how two systems interact. To identify action/reaction pairs of forces. To understand and use

More information

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof.

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Which of the following has the smallest momentum? Draw a circle around your

More information

CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES

CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES CHARACTERISATION OF VIBRATORY, PULSATION AND NOISE SOURCES Goran Pavić INSA Lyon, France CAV April 2017 0/20 scope Objectives: predict the transmission source surroundings allow meaningful specs formulation

More information

Biomechanical Modelling of Musculoskeletal Systems

Biomechanical Modelling of Musculoskeletal Systems Biomechanical Modelling of Musculoskeletal Systems Lecture 6 Presented by Phillip Tran AMME4981/9981 Semester 1, 2016 The University of Sydney Slide 1 The Musculoskeletal System The University of Sydney

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

THE HEAD-ON COLLISIONS

THE HEAD-ON COLLISIONS THE HEAD-ON COLLISIONS What is the role of the mass in a head-on collision between two vehicles? What is the role of speed? What is the force produced by each of the two vehicles? Here are some answers

More information

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure 1. Which arrow represents the force pulling the skier up the slope?

The drag lift pulls the skier from the bottom to the top of a ski slope. Figure 1. Which arrow represents the force pulling the skier up the slope? Q1.Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and her skis. Figure

More information

UNIT 2 ONE-DIMENSIONAL FORCES AND MOTION. Objectives. To devise a method for applying a constant force to an object.

UNIT 2 ONE-DIMENSIONAL FORCES AND MOTION. Objectives. To devise a method for applying a constant force to an object. UNIT 2 ONE-DIMENSIONAL FORCES AND MOTION Objectives To devise a method for applying a constant force to an object. To devise a scale for measuring force. To understand the relationship between force and

More information

MECHANICAL PROPERTIES OF POLYTETRAFLOUROETHYLENE ELASTOMER MEMBRANE FOR DYNAMIC CELL CULTURE TESTING ABSTRACT INTRODUCTION

MECHANICAL PROPERTIES OF POLYTETRAFLOUROETHYLENE ELASTOMER MEMBRANE FOR DYNAMIC CELL CULTURE TESTING ABSTRACT INTRODUCTION MECHANICAL PROPERTIES OF POLYTETRAFLOUROETHYLENE ELASTOMER MEMBRANE FOR DYNAMIC CELL CULTURE TESTING Carolyn Hampton 1, Gregory D. Webster 1, Beverly Rzigalinski 2, Hampton C. Gabler 1 1 Virginia Tech

More information

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL A.K. El Wahed Division of Mechanical Engineering & Mechatronics, Faculty of Engineering and Physical Sciences, University of Dundee, Dundee.

More information

Life (and Fewer Deaths) after Seat Belts

Life (and Fewer Deaths) after Seat Belts Activity 5 Life (and Fewer Deaths) after Seat Belts Activity 5 Life (and Fewer Deaths) after Seat Belts GOALS In this activity you will: Understand the role of safety belts. Compare the effectiveness of

More information

Written homework #5 due on Monday Online homework #5 due on Tuesday. Answer keys posted on course web site SPARK grades uploaded Average = 74.

Written homework #5 due on Monday Online homework #5 due on Tuesday. Answer keys posted on course web site SPARK grades uploaded Average = 74. Homework Written homework #5 due on Monday Online homework #5 due on Tuesday Exam 1 Answer keys posted on course web site SPARK grades uploaded Average = 74.3% 1 Chapter 4 Forces and Newton s Laws of Motion

More information

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc.

Car Lab: Results. Were you able to plot: Position versus Time? Velocity versus Time? Copyright 2010 Pearson Education, Inc. Car Lab: Results Were you able to plot: Position versus Time? Velocity versus Time? Chapter 2.2: Acceleration Acceleration Acceleration is the rate at which velocity changes with time. Average acceleration:

More information

Chapter 2 1D KINEMATICS

Chapter 2 1D KINEMATICS Chapter 2 1D KINEMATICS The motion of an American kestrel through the air can be described by the bird s displacement, speed, velocity, and acceleration. When it flies in a straight line without any change

More information

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment

Mechanics 1. Motion MEI, 20/10/08 1/5. Chapter Assessment Chapter Assessment Motion. A snail moving across the lawn for her evening constitutional crawl is attracted to a live wire. On reaching the wire her speed increases at a constant rate and it doubles from.

More information

DEVELOPMENT OF AN IMPROVED DUMMY HEAD FOR USE IN HELMET CERTIFICATION TESTS

DEVELOPMENT OF AN IMPROVED DUMMY HEAD FOR USE IN HELMET CERTIFICATION TESTS Proceedings of WAM2000 ASME Symposium on Crashworthiness, Occupant protection and Biomechanics in Transportation November 5-10, 2000, Orlando, Florida, USA DEVELOPMENT OF AN IMPROVED DUMMY HEAD FOR USE

More information

Modal Analysis of Automotive seating System

Modal Analysis of Automotive seating System Modal Analysis of Automotive seating System Uday M. Jamdade 1, Sandip H. Deshmukh 2, Sanjay S. Deshpande 3 1 Sinhgad college of engineering, pune. 2 Sinhgad college of engineering, Pune 3 Asian academy

More information

Development of an anthropomorphic model for vehicle-pedestrian crash test

Development of an anthropomorphic model for vehicle-pedestrian crash test NMV0728 Development of an anthropomorphic model for vehicle-pedestrian crash test Gaetano Bellavia, Gabriele Virzì Mariotti Dipartimento di Meccanica, Università di Palermo, Italy Abstract The purpose

More information

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads

Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads Determination of the actual ice mass on wind turbine blades Measurements and methods for avoiding excessive icing loads and threads Dr. Daniel Brenner Head of Monitoring Bosch Rexroth Monitoring Systems

More information

EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total)

EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total) AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total) Part I. Elevator Physics (10pts) (with lab partner, lab partner name: )

More information

Simulation and Test Validation of Windscreen Subject to Pedestrian Head Impact

Simulation and Test Validation of Windscreen Subject to Pedestrian Head Impact 12 th International LS-DYNA Users Conference Occupant Safety Simulation and Test Validation of Windscreen Subject to Pedestrian Head Impact Qi Liu, Junyong Liu, Qiang Miao, Dazhi Wang, Xiaodong Tang SAIC

More information

Electric Vehicle Performance Power and Efficiency

Electric Vehicle Performance Power and Efficiency Electric Vehicle Performance Power and Efficiency 1 Assignment a) Examine measurement guide and electric vehicle (EV) arrangement. b) Drive the route according to teacher s instruction and download measured

More information

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS

FRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Loop-the-loop Drag force Terminal velocity Direction

More information

AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT)

AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT) AN INVESTIGATION OF BRAIN INJURY RISK IN VEHICLE CRASHES (SECOND REPORT) Takahiro, Kikuchi Kaoru, Tatsu Chinmoy, Pal Shigeru, Hirayama Nissan Motor Co., Ltd. Japan Paper Number 17-0002 ABSTRACT In 2013,

More information

INVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY- SCALE TRIBOMETER

INVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY- SCALE TRIBOMETER INVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY- SCALE TRIBOMETER P. D. Neis 1,2, P. De Baets 2, Y. Perez Delgado 2 and N. F. Ferreira 1 1 Federal University of Rio Grande do Sul, Brazil 2 Ghent

More information

A Strategy to Interpret Brand Switching Data with a Special Model for Loyal Buyer Entries

A Strategy to Interpret Brand Switching Data with a Special Model for Loyal Buyer Entries A Strategy to Interpret Brand Switching Data with a Special Model for Loyal Buyer Entries B. G. Mirkin Introduction The brand switching data (see, for example, Zufryden (1986), Colombo and Morrison (1989),

More information

The crash severity indicator - theoretical background and performance in real world crashes.

The crash severity indicator - theoretical background and performance in real world crashes. The crash severity indicator theoretical background and performance in real world crashes. Aldman B, Kullgren A, Nygren P, Tingvall C. Chalmers University of Technology, dep of Injury Prevention Göteborg,

More information

Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving

Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving Statistical Model Checking Applied on Perception and Decision-making Systems for Autonomous Driving J. Quilbeuf 1 M. Barbier 2,3 L. Rummelhard 3 C. Laugier 2 A. Legay 1 T. Genevois 2 J. Ibañez-Guzmán 3

More information

machine design, Vol.9(2017) No.3, ISSN pp

machine design, Vol.9(2017) No.3, ISSN pp machine design, Vol.9(2017) No.3, ISSN 1821-1259 pp. 81-86 DOI: 10.24867/MD.9.2017.3.81-86 Research paper GEOMETRY OF HUMAN BODY MODEL USED FOR SIMULATION OF THERMAL COMFORT IN AN AGRICULTURAL VEHICLE

More information

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Review of Kinematics in 1 Dimension: True or False? Mark each statement as T (true) or F (false). If

More information

FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS

FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS II European Conference BURIED FLEXIBLE STEEL STRUCTURES Rydzyna 3-4.4.1 FULL SCALE TESTS AND STRUCTURAL EVALUATION OF SOIL-STEEL FLEXIBLE CULVERTS FOR HIGH-SPEED RAILWAYS Andreas ANDERSSON*, Håkan SUNDQUIST**,

More information

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12 Forces and Motion Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12 What is Force? A push or pull that acts on an object Can cause a resting object to move Can accelerate a moving

More information

Lab 3 Momentum Change and Impulse

Lab 3 Momentum Change and Impulse Lab 3 Momentum Change and Impulse Objectives: < To measure the change in momentum of a cart in a collision and the impulse acting on it during the collision and to compare these values as a test of the

More information

Bumper Cars. Question

Bumper Cars. Question Bumper Cars 1 You are riding on the edge of a spinning playground merry-goround. If you pull yourself to the center of the merry-go-round, what will happen to its rotation? A. It will spin faster. B. It

More information

Tremor Detection for Accuracy Enhancement in Microsurgeries Using Inertial Sensor

Tremor Detection for Accuracy Enhancement in Microsurgeries Using Inertial Sensor International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 12 (2014), pp. 1161-1166 International Research Publications House http://www. irphouse.com Tremor Detection

More information

PhysicsAndMathsTutor.com. Question Answer Acceptable answers Mark. 1(ai) B momentum (1) (1) Answer Acceptable answers Mark. Question Number.

PhysicsAndMathsTutor.com. Question Answer Acceptable answers Mark. 1(ai) B momentum (1) (1) Answer Acceptable answers Mark. Question Number. Question 1(ai) Question 1(aii) B momentum power 1 (bi) Substitution: ½ x0.8 x 25 2 Allow both marks for correct answer with no method shown. Evaluation 250 0.25 kj scores 3 marks Ignore power of 10 until

More information

RESEARCH ARTICLE. Reference Governors for Controlled Belt Restraint Systems

RESEARCH ARTICLE. Reference Governors for Controlled Belt Restraint Systems Vehicle System Dynamics Vol., No. 1, February 29, 1 2 RESEARCH ARTICLE Reference Governors for Controlled Belt Restraint Systems E.P. van der Laan, W.P.M.H. Heemels, H. Luijten, F.E. Veldpaus and M. Steinbuch

More information

Collision Safety for Physical Human-Robot Collaboration

Collision Safety for Physical Human-Robot Collaboration Collision Safety for Physical Human-Robot Collaboration IROS 2015 Workshop Physical Human-Robot Collaboration Jae-Bok Song School of Mechanical Engineering Korea University Seoul, Korea Outline 2 Human-Robot

More information