Class 11: Thermal radiation

Size: px
Start display at page:

Download "Class 11: Thermal radiation"

Transcription

1 Class : Thermal radiation By analyzing the results from a number of eperiments, Planck found the energy density of the radiation emitted by a black body in wavelength interval (, d + was well described by the formula hc u ( d = d, 5 hc ( kt e (. where T is the temperature of the black body and h and k are constants. Planck, a short time later, developed a theory that eplained this result. Before considering Planck s theory, it is useful to see what classical physics predicts for black body radiation. As a preliminary we need a result from statistical mechanics due to Boltzmann. The Boltzmann factor Consider a physical system that can be in a number of states. Associated with each state is an energy. Boltzmann showed that when the system is thermal equilibrium with a heat reservoir of temperature T, the probability, p, that the system is in a particular state of energy, E, is E ( kt =, (. p Ae where k is a constant, now known as the Boltzmann constant, and A is a constant normalization factor E ( kt that is determined by the requirement that the probabilities sum to unity. The term e is called the Boltzmann factor. As an eample of application of the Boltzmann factor consider a system that has two states: a ground state of energy and an ecited state of energy E. The probabilities that the system is one of the two states are E ( kt A for the ground state and Ae for the ecited state. By summing the probabilities, we find A =. (.3 + E ( kt We see that at low temperature ( kt E, the probability that the system is in its ground state is close to, and the ecited state has a very low probability. At high temperatures( kt E, the Boltzmann factors are equal and the two states have equal probability. The average energy of the system is e ( kt E + Ee E E = =. E ( kt E ( kt + e e + (.

2 For a system with many states, it is likely that some states have the same energy. The number of states with a particular energy is called the statistical weight if the energies are discrete. For a continuous energy distribution, the corresponding quantity is called the density of states. The Rayleigh-Jeans law To develop an epression for the energy density of black body radiation, Rayleigh considered the radiation emitted through a small hole in a cubical cavity with walls kept at temperature, T. The walls contain classical harmonic oscillators that can absorb and emit radiation. This provides the coupling between the system, i.e. the radiation in the cavity, and the heat reservoir, i.e. the cavity walls, needed for the system to be in thermal equilibrium, so that we can use the Boltzmann factor. The first step in the calculation is determine the density of states. To do this, it is assumed that the walls of the cavity are perfect electrical conductors. This means that the electrical field associated with the electromagnetic waves in the cavity must be zero on the cavity walls to avoid generating currents of infinite magnitude. The electromagnetic waves are then standing waves with nodes at the cavity walls. A D analogy is standing waves on a string of length L with fied ends. The allowed wavelengths for these waves are where n is a positive integer. Treating n as a continuous variable, so that the number of waves with wavelengths in the interval (, d L n =, (.5 n L n =, (.6 + is L dn = d. (.7 Note that dn is taken to be positive. We see that the density of states is higher at shorter wavelengths. The generalization of equation (.5 to three dimensions is = ( L ( n + ny + nz, (.8 where n, n y, and n z are independent positive integers. To determine the density of states, we treat the integers as continuous variables and note that once we restrict to positive integers the volume element in n-space is ( n π dn, where n = n + n + n. Because there are two independent polarizations of y z light, the number of waves in this volume element is

3 where V is the volume of the cavity. ( π L L V = π = (.9 n dn d d, The second step is to consider the mean energy of a wave of wavelength. In classical physics, the energy of the wave is proportional to the square of the amplitude of the wave, and there are no other state variables, i.e. the statistical weight is. The mean energy can be found by employing the Boltzmann factor: E = = kt. Ee e E kt E kt de de (. Combining these results, we find that the energy density per unit wavelength is u = kt. (. This is the Rayleigh-Jeans law. Integration over all wavelengths gives the troubling result that the cavity should contain an infinity amount of energy! Since the epression for the energy density diverges as the wavelength becomes shorter, this result was called the ultraviolet catastrophe. Note that at long wavelengths (low frequencies, the Planck formula gives u hc hc = = kt, 5 5 e hc + + kt ( hc ( kt (. which agrees with the Rayleigh-Jeans result. Note that the Rayleigh-Jeans law is independent of h. Planck s theory Planck s approach to avoiding the ultraviolet catastrophe was to find a way to make the average energy of a high frequency oscillator less than kt, yet leave the energy of a low frequency oscillator close to kt to get correct low frequency limit. He postulated that the oscillators could emit or absorb energy in discrete packets, with the energy in a packet being an integer multiple of a constant times the frequency En = nhf, (.3 where h is Planck s constant, and n =,,,. The mean energy of a wave is now 3

4 E = n= n= nhfe e nhf kt nhf kt. (. To perform the summations, let = hf kt. The denominator is The numerator is Hence nhf kt n n Z = e = e = ( e = e n= n= n= nhf kt n d n d e nhfe = hf ne = hf e = hf = hf d d e e n= n= n=. (. E e = =. kt e e (.5 We see that when = hf kt, the mean energy is close to kt, but when, the eponential term in the denominator dominates and the mean energy is much less than kt. Also note that the classical result is recovered if Planck s constant is replaced by. Using equation (.5 in place of equation (., we find that the energy density per unit wavelength is u hf hc, hf kt hc kt e e ( = = 5 (.6 which is the Planck result. Planck s postulate that the oscillator could absorb or emit only in discrete packets of energy was revolutionary, and marks the beginning of quantum physics. Radiation intensity The radiation from a small hole in a cavity wall is emitted not in a single direction but over one hemisphere of directions (i.e. into solid angle π steradians. By averaging over all possible directions, it is found that ¼ of the radiation flu is directed outward perpendicular to the wall. The radiation intensity (or flu per unit wavelength is then Integrating over all wavelengths gives the total flu I =. (.7 ( cu (

5 hc F = c u ( d = c d. 5 hc kt e (.8 Making the substitution = hc ( kt, we have ( kt 3 ( hc 3 π F = c d. (.9 e Hence the radiative flu is proportional to the th power of the temperature of the black body, in agreement with Stefan s law (also called the Stefan-Boltzmann law: On evaluating the integral, we find that the Stefan-Boltzmann constant is F = σt. (. 5 π k σ =. (. 3 5 c h The Wien displacement law The figure below shows the Planck function plotted against wavelength for a temperature equal to the effective temperature of the Sun. 3. B (erg cm -3 s - sr K blackbody Rayleigh - Jeans law UV Visible Infra-red (nm 5

6 We see that, by no coincidence, the peak of the black body radiation lies in the visible part of the electromagnetic spectrum, near a wavelength of 5 nm. The figure below shows the Planck function for three temperatures. We see the wavelength of the peak 6 T / B (erg cm -3 s - sr nm 5 nm nm T T depends inversely on the temperature of the black body. This is Wien s displacement law, which can also be found by differentiation of the energy density given in equation (.6. Again let = hc ( kt, so that where (nm ( ( kt ( hc 5 u = H, (. ( ( H 5 =. e (.3 The function H( has a maimum at =.965, and so the peak occurs at wavelength peak 6 hc.898 =. = nm K. (. kt T 6

Lecture 2 Blackbody radiation

Lecture 2 Blackbody radiation Lecture 2 Blackbody radiation Absorption and emission of radiation What is the blackbody spectrum? Properties of the blackbody spectrum Classical approach to the problem Plancks suggestion energy quantisation

More information

Planck s Hypothesis of Blackbody

Planck s Hypothesis of Blackbody Course : Bsc Applied Physical Science (Computer Science) Year Ist (Sem IInd) Paper title : Thermal Physics Paper No : 6 Lecture no. 20. Planck s Hypothesis of Blackbody Hello friends, in the last lecture

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

Modern Physics (Lec. 1)

Modern Physics (Lec. 1) Modern Physics (Lec. 1) Physics Fundamental Science Concerned with the fundamental principles of the Universe Foundation of other physical sciences Has simplicity of fundamental concepts Divided into five

More information

Planck s Hypothesis of Blackbody

Planck s Hypothesis of Blackbody Course : Bsc Applied Physical Science (Computer Science) Year Ist (Sem IInd) Paper title : Thermal Physics Paper No : 6 Lecture no. 20. Planck s Hypothesis of Blackbody FAQs Q1. What were the shortcomings

More information

Determination of Stefan-Boltzmann Constant.

Determination of Stefan-Boltzmann Constant. Determination of Stefan-Boltzmann Constant. An object at some non-zero temperature radiates electromagnetic energy. For the perfect black body, which absorbs all light that strikes it, it radiates energy

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

Physics 1C. Lecture 27A

Physics 1C. Lecture 27A Physics 1C Lecture 27A "Any other situation in quantum mechanics, it turns out, can always be explained by saying, You remember the experiment with the two holes? It s the same thing. " --Richard Feynman

More information

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

The term black body was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation. Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph

More information

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics 1 Modern physics 2 Gustav Kirchhoff (1824-1887) Surprisingly, the path to quantum mechanics begins with the work of German physicist Gustav Kirchhoff in 1859. Electron was discovered by J.J.Thomson in

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Quantum Mechanics: Blackbody Radiation

Quantum Mechanics: Blackbody Radiation Blackbody Radiation Quantum Mechanics Origin of Quantum Mechanics Raleigh-Jeans law (derivation)-ultraviolet catastrophe, Wien s Distribution Law & Wein s Displacement law, Planck s radiation law (calculation

More information

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics.

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics. Chapter One The Old Quantum Theory 1-1 Why Quantum Mechanics. The birth of quantum mechanics can be dated to 1925, when physicists such as Werner Heisenberg and Erwin Schrödinger invented mathematical

More information

Quantum Physics Lecture 6

Quantum Physics Lecture 6 Quantum Physics Lecture 6 Thermal Phenomena Specific Heats - Classical model, failure at low temperature - Einstein model Black Body radiation - Classical model, UV catastrophe - Planck model - Wien &

More information

Notes on Black body spectrum

Notes on Black body spectrum Notes on Black body spectrum Stefano Atzeni October 9, 216 1 The black body Radiation incident on a body can be absorbed, reflected, transmitted. We call black body an ideal body that absorbs all incident

More information

Modern physics. Historical introduction to quantum mechanics

Modern physics. Historical introduction to quantum mechanics 2012-0-08 Modern physics dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, C-1, office 17, rd floor, phone 617 29 01, mobile phone 0 601 51 5 e-mail: zak@agh.edu.pl, Internet site http://home.agh.edu.pl/~zak

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

Physics 1C. Chapter 28 !!!!

Physics 1C. Chapter 28 !!!! Physics 1C Chapter 28!!!! "Splitting the atom is like trying to shoot a gnat in the Albert Hall at night and using ten million rounds of ammunition on the off chance of getting it. That should convince

More information

Atomic Physics and Lasers. The idea of a photon. Light from a hot object... Example of a Blackbody. Example of a Blackbody

Atomic Physics and Lasers. The idea of a photon. Light from a hot object... Example of a Blackbody. Example of a Blackbody Atomic Physics and Lasers The idea of a photon Black body radiation Photoelectric Effect The structure of the atom How does a Laser work? Interaction of lasers with matter Laser safety Applications Spectroscopy,

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2013 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Satish Chandra. Blackbody. Unit IV, BLACK BODY RADIATION. Radiation in a Hollow Enclosure. Pure Temperature Dependence

Satish Chandra. Blackbody. Unit IV, BLACK BODY RADIATION. Radiation in a Hollow Enclosure. Pure Temperature Dependence Lecture Notes Dated: Jan 04, 013 Blackbody The ability of a body to radiate is closely related to its ability to absorb radiation. This is to be expected, since a body at a constant temperature is in thermal

More information

Quantum Physics Lecture 5

Quantum Physics Lecture 5 Quantum Physics Lecture 5 Thermal Phenomena - continued Black Body radiation - Classical model, UV catastrophe - Planck model, Wien & Stefan laws - Photoelectric effect revisited The hydrogen atom Planetary

More information

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom The Quantum Gang Problems with Classical Physics Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom Why this shape? Why the drop? Blackbody Radiation A black body is an ideal system

More information

The twin paradox. Star 20 lt-yrs away. 20 yrs 20 yrs 42 yrs 62 yrs

The twin paradox. Star 20 lt-yrs away. 20 yrs 20 yrs 42 yrs 62 yrs The twin paradox Star 20 lt-yrs away Speedo Nogo 20 yrs 20 yrs 42 yrs 62 yrs The twin paradox Star 20 lt-yrs away v = 0.95c Speedo Nogo 20 yrs 20 yrs 42 yrs 62 yrs The twin paradox Star 20 lt-yrs away

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Problem Solving 10: The Greenhouse Effect Section Table and Group Names Hand in one copy per group at the end of the Friday Problem Solving

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas:

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas: Blackbody Radiation A Blackbody is an ideal system that absorbs all radiation incident on it. Emission of radiation by a blackbody is independent of the properties of its wall, but depends only on its

More information

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering Dr. Jamie Sanchez-Fortún Stoker Department of Physics, University of Waterloo Fall 2005 1 Introduction to Modern Physics 1.1

More information

The first quantitative conjecture based on experimental observation of hole radiation was:

The first quantitative conjecture based on experimental observation of hole radiation was: Black Body Radiation Heated Bodies Radiate We shall now turn to another puzzle confronting physicists at the turn of the century (1900): just how do heated bodies radiate? There was a general understanding

More information

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010 Physics 2D Lecture Slides Lecture 10 Jan.25, 2010 Radiation from A Blackbody (a) Intensity of Radiation I =! R (#) d# " T 4 I =! T 4 (Area under curve) Stephan-Boltzmann Constant σ = 5.67 10-8 W / m 2

More information

QM all started with - - The Spectrum of Blackbody Radiation

QM all started with - - The Spectrum of Blackbody Radiation QM all started with - - The Spectrum of Blackbody Radiation Thermal Radiation: Any object, not at zero temperature, emits electromagnetic called thermal. When we measure the intensity of a real object,

More information

Chapter 1. Blackbody Radiation. Theory

Chapter 1. Blackbody Radiation. Theory Chapter 1 Blackbody Radiation Experiment objectives: explore radiation from objects at certain temperatures, commonly known as blackbody radiation ; make measurements testing the Stefan-Boltzmann law in

More information

BLACKB ODY RADIATION LAWS. Stefan-Boltzmann. Blackbody E = 1. T is Temperature (Kelvin) R(T) = EaT. R(T) = at4. a = 5.67x10.

BLACKB ODY RADIATION LAWS. Stefan-Boltzmann. Blackbody E = 1. T is Temperature (Kelvin) R(T) = EaT. R(T) = at4. a = 5.67x10. LAWS a = 5.67x10 8 (m2 1() T is Temperature (Kelvin) R(T) = at4 Blackbody E = 1 R(T) = EaT 4 Stefan-Boltzmann BLACKB ODY RADIATION Wien Displacement AmaxT = b b = 2.898x10 3m K CONSIDER TWO OPAQUE QBJECTS

More information

ATMOS 5140 Lecture 7 Chapter 6

ATMOS 5140 Lecture 7 Chapter 6 ATMOS 5140 Lecture 7 Chapter 6 Thermal Emission Blackbody Radiation Planck s Function Wien s Displacement Law Stefan-Bolzmann Law Emissivity Greybody Approximation Kirchhoff s Law Brightness Temperature

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2014 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

Einstein s Approach to Planck s Law

Einstein s Approach to Planck s Law Supplement -A Einstein s Approach to Planck s Law In 97 Albert Einstein wrote a remarkable paper in which he used classical statistical mechanics and elements of the old Bohr theory to derive the Planck

More information

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics Chemistry 4521 Time is flying by: only 15 lectures left!! Six quantum mechanics Four Spectroscopy Third Hour exam Three statistical mechanics Review Final Exam, Wednesday, May 4, 7:30 10 PM Quantum Mechanics

More information

Physics Lecture 6

Physics Lecture 6 Physics 3313 - Lecture 6 Monday February 8, 2010 Dr. Andrew Brandt 1. HW1 Due today HW2 weds 2/10 2. Electron+X-rays 3. Black body radiation 4. Compton Effect 5. Pair Production 2/8/10 3313 Andrew Brandt

More information

INFRAMET. 2.1 Basic laws

INFRAMET. 2.1 Basic laws tel: 048 60844873, fax 48 6668780. Basic laws.. Planck law All objects above the temperature of absolute zero emit thermal radiation due to thermal motion of the atoms and the molecules. The hotter they

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

With certain caveats (described later) an object absorbs as effectively as it emits

With certain caveats (described later) an object absorbs as effectively as it emits Figure 1: A blackbody defined by a cavity where emission and absorption are in equilibrium so as to maintain a constant temperature Blackbody radiation The basic principles of thermal emission are as follows:

More information

8 Wavefunctions - Schrödinger s Equation

8 Wavefunctions - Schrödinger s Equation 8 Wavefunctions - Schrödinger s Equation So far we have considered only free particles - i.e. particles whose energy consists entirely of its kinetic energy. In general, however, a particle moves under

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Michael Fowler, University of Virginia Einstein s Solution of the Specific Heat Puzzle The simple harmonic oscillator, a nonrelativistic particle in a potential ½C, is a

More information

Physics 280 Quantum Mechanics Lecture

Physics 280 Quantum Mechanics Lecture Spring 2015 1 1 Department of Physics Drexel University August 3, 2016 Objectives Review Early Quantum Mechanics Objectives Review Early Quantum Mechanics Schrödinger s Wave Equation Objectives Review

More information

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 We report on experiments investigating the thermal radiation from a blackbody. By finding the electromagnetic spectra emitted

More information

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Phys 2435: Chap. 38, Pg 1 Blackbody radiation New Topic Phys 2435: Chap. 38,

More information

Blackbody Radiation. George M. Shalhoub

Blackbody Radiation. George M. Shalhoub Blackbody Radiation by George M. Shalhoub LA SALLE UNIVERSIY 900 West Olney Ave. Philadelphia, PA 94 shalhoub@lasalle.edu Copyright 996. All rights reserved. You are welcome to use this document in your

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles

CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles CHAPTER NUMBER 7: Quantum Theory: Introduction and Principles Art PowerPoints Peter Atkins & Julio De Paula 2010 1 mm 1000 m 100 m 10 m 1000 nm 100 nm 10 nm 1 nm 10 Å 1 Å Quantum phenomena 7.1 Energy quantization

More information

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect Modern Physics Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect Ron Reifenberger Professor of Physics Purdue University 1 I. Blackbody

More information

AT622 Section 3 Basic Laws

AT622 Section 3 Basic Laws AT6 Section 3 Basic Laws There are three stages in the life of a photon that interest us: first it is created, then it propagates through space, and finally it can be destroyed. The creation and destruction

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

I. INTRODUCTION AND HISTORICAL PERSPECTIVE

I. INTRODUCTION AND HISTORICAL PERSPECTIVE I. INTRODUCTION AND HISTORICAL PERSPECTIVE A. Failures of Classical Physics At the end of the 19th century, physics was described via two main approaches. Matter was described by Newton s laws while radiation

More information

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases Radiation in the Earth's Atmosphere Part 1: Absorption and Emission by Atmospheric Gases Electromagnetic Waves Electromagnetic waves are transversal. Electric and magnetic fields are perpendicular. In

More information

Experimental Basis for QM Ch3

Experimental Basis for QM Ch3 Experimental Basis for QM Ch3 This chapter describes the early evidence for quantization including Blackbody radiation Photoelectric effect Compton scattering X-rays and their spectra We ll see how early

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

Lecture 2 Global and Zonal-mean Energy Balance

Lecture 2 Global and Zonal-mean Energy Balance Lecture 2 Global and Zonal-mean Energy Balance A zero-dimensional view of the planet s energy balance RADIATIVE BALANCE Roughly 70% of the radiation received from the Sun at the top of Earth s atmosphere

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 2 Radiation

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 2 Radiation Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 2 Radiation Reading/Homework Assignment Read chapter 1, sections 1.1, 1.2, 1.5 Homework will be assigned on Thursday. Radiation Radiation A

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne Lehman McGill College University City University of New York Thermodynamics Charged Particle and Correlations Statistical Mechanics in Minimum Bias Events at ATLAS Statistical

More information

Lecture 4 Introduction to Quantum Mechanical Way of Thinking.

Lecture 4 Introduction to Quantum Mechanical Way of Thinking. Lecture 4 Introduction to Quantum Mechanical Way of Thinking. Today s Program 1. Brief history of quantum mechanics (QM). 2. Wavefunctions in QM (First postulate) 3. Schrodinger s Equation Questions you

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester. Chapter 13 Phys 322 Lecture 34 Modern optics Note: 10 points will be given for attendance today and for the rest of the semester. Presentation schedule Name Topic Date Alip, Abylaikhan lasers Nov. 30th

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

B. Sc. Physics (H.R.K) Chapter 49: Light and Quantum Physics LIGHT AND QUANTUM PHYSICS

B. Sc. Physics (H.R.K) Chapter 49: Light and Quantum Physics LIGHT AND QUANTUM PHYSICS LIGHT AND QUANTUM PHYSICS 49.1 Thermal Radiations The radiations emitted by a body due to its temperature are called thermal radiations. All bodies not only emit the thermal radiations, but also absorb

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

Solar radiation - the major source of energy for almost all environmental flows

Solar radiation - the major source of energy for almost all environmental flows Solar radiation - the major source of energy for almost all environmental flows Radiation = electromagnetic waves Different types of heat transfer: Heat conduction by molecular diffusion (no large-scale

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Black Body Radiation. Heated Bodies Radiate. How is Radiation Absorbed? Absorption and Emission. Observing the Black Body Spectrum.

Black Body Radiation. Heated Bodies Radiate. How is Radiation Absorbed? Absorption and Emission. Observing the Black Body Spectrum. Black Body Radiation Michael Fowler University of Virginia Physics 252 Home Page Link to Previous Lecture Link to Next Lecture Heated Bodies Radiate We shall now turn to another puzzle confronting physicists

More information

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014)

- HH Photons. Compton effect. Hsiu-Hau Lin (May 8, 2014) - HH0130 - Photons Hsiu-Hau Lin hsiuhau@phys.nthu.edu.tw (May 8, 014) In 1905, inspired by Planck s pioneering work on blackbody radiation, Einstein proposed that light exists as discrete quanta, now referred

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 11-Radiative Heat Transfer Fausto Arpino f.arpino@unicas.it Nature of Thermal Radiation ü Thermal radiation refers to radiation

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Lecture 2: principles of electromagnetic radiation

Lecture 2: principles of electromagnetic radiation Remote sensing for agricultural applications: principles and methods Lecture 2: principles of electromagnetic radiation Instructed by Prof. Tao Cheng Nanjing Agricultural University March Crop 11, Circles

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Also: Question: what is the nature of radiation emitted by an object in equilibrium

Also: Question: what is the nature of radiation emitted by an object in equilibrium They already knew: Total power/surface area Also: But what is B ν (T)? Question: what is the nature of radiation emitted by an object in equilibrium Body in thermodynamic equilibrium: i.e. in chemical,

More information