Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect

Size: px
Start display at page:

Download "Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect"

Transcription

1 Modern Physics Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect Ron Reifenberger Professor of Physics Purdue University 1

2 I. Blackbody Radiation (1859/1879/1884/1895) Combining Thermodynamics with E & M Hot objects emit radiation. What is the nature of this radiation? Kirchoff s challenge (1859): measure energy vs. frequency for heat radiation

3 Stefan s Law (1879) T oven A The plan: Measure P (power emitted), infer I or S P AVERAGE then infer u tot. AT 4 P = eσ AT Boltzmann s Derivation (1884) 4 P = power radiated by hot object (in Watts) e = emissivity of object; 0<e<1 σ= Stefan constant = x 10-8 W/(m K 4 ) A = area of emitting (hot) object T = temperature of hot object (in K) 3

4 Wien and Lummer (1895) punch a hole in the side of a completely closed oven and spectrally measure what comes out. This was good idea! Power meter 1. Assume the energy flux of radiation is uniform over a hole of area A. P = c t I or S V AVERAGE [units: (J/s)/m ] Hot oven Area A. The power passing through the hole is related to the light intensity I emitted by oven: P = I da 3. In a time interval t, the amount of energy U (in J) passing through the area A is: I U = I A t = I A = A = utot V c c I since = utot ( Lecture L1.03) c 4. Recall from Lecture L1.03 for EM plane wave: u tot = 1 [( ε o E o ) ] [units: (J/m 3 ] 4

5 Summary: Blackbody Radiation - light emission from objects heated to a temperature T Blackbody Thermal Radiation (from experiment): Continuous light emission with no well defined emission lines Light spectrum (to first approximation) does not depend on material that is heated, only on absolute temperature T Energy density of radiation field (u tot ) in equilibrium with temperature of heated object thermodynamics 5

6 Spectral Distribution of Blackbody Radiation PHET, University Colorado at Boulder, see: 6

7 What s going on (Rayleigh, 1900)? a) Charges in the hot walls emit light at all frequencies b) Equilibrium is established; only certain light modes persist L y λ 1 λ λ 3 λ 4 λ 5 λ 6 λ 7 T E at surface is finite; damped mode E at surface is zero; undamped mode L x c) The shorter the wavelength, the more modes can fit inside the cavity c) Assume each persistent mode has same average energy = k B T 3 ( kb = J / K) d) Finally, count ALL possible modes and sum them up to obtain the spectral energy density = u tot (f) (the energy stored in the radiation field inside the cavity vs. frequency (or wavelength) 7

8 Classical physics unable to explain shape of measured light spectrum Experiment Emitted Intensity [ (W/m )/µm] UV visible 6000 K 3000 K IR Classical prediction - radiation field inside cavity is comprised of standing EM waves. Increases without bound as wavelength decreases. Rayleigh-Jeans (1905) 1000 nm 000 nm Wavelength,λ 8

9 Planck s Remarkable Hypothesis (1900) Planck assumes that a blackbody is made of atomic oscillators (presumably electrons) that emit or radiate light which is quantized in energy (photons), ie E = hf; c=fλ h= 6.66 x Js (fit to data) f= frequency of radiation Furthermore, a cavity may contain only a quantized number 0, 1,, 3,... of photons at a specific frequency f (or wavelength λ). Planck finds expression for the energy density u(f) (J/m 3 ) between frequency f and f+df (empirical): 3.0 8π f hf u( f ) df = df 3 hf/ kbt c e k = J / K B It follows that the number of photons at a frequency f is given by 1 n( f ) = hf/ kbt e 1 < n > 1.0 IR T=500 K T=000 K T=4000 K photon energy hf (in ev) visible More about u(f) later in the course 9

10 Planck s idea had an impact similar to that of Newton s in the early 1700 s Why is this quantization hypothesis so surprising? E (or B) position Recall from lecture L1.03: Energy transported by an EM plane wave: 1 EB S = E B = = ε oce µ o µ o 1 S = cε oeo AVERAGE Light is a wave (only way to explain interference and diffraction effects discovered back in the early 1800 s). It is well established that the energy transported by a wave is continuous and can be varied by adjusting the wave s amplitude. Nowhere does f appear? These well accepted ideas were completely contradicted by Planck s quantum hypothesis which assigned the energy in an EM wave to the frequency of the wave. 10

11 II. The Photoelectric Effect: Ejection of electrons from a material due to illumination by light photons in, electrons out What you can measure experimentally: 1. Intensity of Light. Frequency (color) of Light 3. Composition of Target 5. Electron Current (Number of Electrons) 4. Energy of Ejected Electrons 11

12 Photoelectric Effect Check out the photoelectric simulation at 1

13 What was expected For a given wavelength of light, as the intensity increases, the maximum energy of ejected electrons should also increase. For a given wavelength of light, at low enough intensities, there should be a time delay in electron emission. Electrons should be emitted for all wavelengths of light. None of these expectations were met by the experimental results! 13

14 Modern Picture of Photoemission (requires quantization of light energy) (hf) Kinetic Energy=K 0 (hf) Energy Photon energy Electron energy Work function, W (or φ) E = hf ( ) max K = hf W METAL VACUUUM h=planck s constant = 6.66x10-34 m kg/s 14

15 Note: Sometimes, the spectral radiance is used in lackbody calculations: 3 hf B( f) = hf kt B c e Other times, the spectral energy density is used instead: 3 8π hf u( f) = hf 3 kt B c e 1 1 It is evident that the two are related by 4π u( f) = B( f) c Appendix A: How do you get a T 4 dependence for power radiated by a Blackbody? Calculate u tot( T), the total energy density inside a cavity, by integrating Planck's u(f) over f: 3 3 hf kt B 8πhf 8πhf e utot = u( f ) df = df = df hf hf hf kt B 0 3 kt B kt B c e 1 c e e hf kt let x = ; df = B dx kt h B 4 3 x 4 3 x 8πh kt B xe 8πh kt xe tot = 3 = x x 3 x B 0 ( ) c h e e 0 ( 1 e ) u dx dx c h 4 kt 3 x x x B 8π h = x e 1 e 3 ( e )... dx c h let x = v ; dx = vdv; x dx = v dv 4 v 7 v 4v v π h kt B utot = e e e 3 c h.. dv αv n n v 3 now e v dv = so for example e dv = n = = 4 α u tot ( n )!. α 7 α v ; 7, α π h kt B = c h

16 4 8π h kt B = c h π you can show that =, so h kt B π 3 π 8 π = c h 8 = ch ( kt) 5 4 π kb / ( ) u 3 tot σ define σ = W K m = T 15ch c The energy that leaves the cavity per unit time thru a hole of area Ais P Acutot Ac T A T 4 4 c σ = = = σ 4 4 Where does the factor of ¼ come from? B 4 Stefan-Boltzmann Law Imagine an energy density u tot (T ) transported through a hollow cylinder of cross-section area A at speed c. What radiation intensity per unit time would emerge from the cylinder? 16

17 Well, you might expect ½ Ac u tot (T) to emerge from one end and ½ Ac u tot (T) to emerge from the other end. So if you are just looking at one end of the cylinder, you might expect to see just ½ Ac u tot (T). That gives a factor of ½. So why the factor of ¼? Well, inside a 3-dimnesional cavity, the radiation is not aimed directly at the hole of area A. It s hitting the hole from all inside directions, at different angles θ to the vertical. This implies the radiation effectively sees a smaller area, by a factor cos θ. Also, only a fraction of the radiation at an angle θ leaving the hole will strike a detector positioned at some distance in front of the hole. This fraction is also proportional to cos θ. This discussion implies we need to calculate the average value of cos θ between 0 and π/. π π 1 cos θdθ ( θ+ sin θcos θ) cos θ = = = π π dθ 0 So ultimately we have two factors of ½ which gives the factor of ¼ in the equation above. 17

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University Modern Physics Unit 6: Hydrogen tom - Radiation Lecture 6.5: Optical bsorption Ron Reifenberger Professor of Physics Purdue University 1 We now have a simple quantum model for how light is emitted. How

More information

Modern physics. Historical introduction to quantum mechanics

Modern physics. Historical introduction to quantum mechanics 2012-0-08 Modern physics dr hab. inż. Katarzyna ZAKRZEWSKA, prof. AGH KATEDRA ELEKTRONIKI, C-1, office 17, rd floor, phone 617 29 01, mobile phone 0 601 51 5 e-mail: zak@agh.edu.pl, Internet site http://home.agh.edu.pl/~zak

More information

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics 1 Modern physics 2 Gustav Kirchhoff (1824-1887) Surprisingly, the path to quantum mechanics begins with the work of German physicist Gustav Kirchhoff in 1859. Electron was discovered by J.J.Thomson in

More information

Lecture 2 Blackbody radiation

Lecture 2 Blackbody radiation Lecture 2 Blackbody radiation Absorption and emission of radiation What is the blackbody spectrum? Properties of the blackbody spectrum Classical approach to the problem Plancks suggestion energy quantisation

More information

Modern Physics (Lec. 1)

Modern Physics (Lec. 1) Modern Physics (Lec. 1) Physics Fundamental Science Concerned with the fundamental principles of the Universe Foundation of other physical sciences Has simplicity of fundamental concepts Divided into five

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Atomic Physics and Lasers. The idea of a photon. Light from a hot object... Example of a Blackbody. Example of a Blackbody

Atomic Physics and Lasers. The idea of a photon. Light from a hot object... Example of a Blackbody. Example of a Blackbody Atomic Physics and Lasers The idea of a photon Black body radiation Photoelectric Effect The structure of the atom How does a Laser work? Interaction of lasers with matter Laser safety Applications Spectroscopy,

More information

Quantum Mechanics: Blackbody Radiation

Quantum Mechanics: Blackbody Radiation Blackbody Radiation Quantum Mechanics Origin of Quantum Mechanics Raleigh-Jeans law (derivation)-ultraviolet catastrophe, Wien s Distribution Law & Wein s Displacement law, Planck s radiation law (calculation

More information

QM all started with - - The Spectrum of Blackbody Radiation

QM all started with - - The Spectrum of Blackbody Radiation QM all started with - - The Spectrum of Blackbody Radiation Thermal Radiation: Any object, not at zero temperature, emits electromagnetic called thermal. When we measure the intensity of a real object,

More information

STSF2223 Quantum Mechanics I

STSF2223 Quantum Mechanics I STSF2223 Quantum Mechanics I What is quantum mechanics? Why study quantum mechanics? How does quantum mechanics get started? What is the relation between quantum physics with classical physics? Where is

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Quantum Mechanics (made fun and easy)

Quantum Mechanics (made fun and easy) Lecture 7 Quantum Mechanics (made fun and easy) Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why the world needs quantum mechanics Why

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

The term black body was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation. Black body (Redirected from Black-body radiation) As the temperature decreases, the peak of the black body radiation curve moves to lower intensities and longer wavelengths. The black-body radiation graph

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics FI 3103 Quantum Physics Alexander A. Iskandar Physics of Magnetism and Photonics Research Group Institut Teknologi Bandung General Information Lecture schedule 17 18 9136 51 5 91 Tutorial Teaching Assistant

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

CHAPTER 3 The Experimental Basis of Quantum

CHAPTER 3 The Experimental Basis of Quantum CHAPTER 3 The Experimental Basis of Quantum 3.1 Discovery of the X Ray and the Electron 3.2 Determination of Electron Charge 3.3 Line Spectra 3.4 Quantization 3.5 Blackbody Radiation 3.6 Photoelectric

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

Physics 1C. Lecture 27A

Physics 1C. Lecture 27A Physics 1C Lecture 27A "Any other situation in quantum mechanics, it turns out, can always be explained by saying, You remember the experiment with the two holes? It s the same thing. " --Richard Feynman

More information

Experimental Basis for QM Ch3

Experimental Basis for QM Ch3 Experimental Basis for QM Ch3 This chapter describes the early evidence for quantization including Blackbody radiation Photoelectric effect Compton scattering X-rays and their spectra We ll see how early

More information

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010

Physics 2D Lecture Slides Lecture 10. Jan.25, 2010 Physics 2D Lecture Slides Lecture 10 Jan.25, 2010 Radiation from A Blackbody (a) Intensity of Radiation I =! R (#) d# " T 4 I =! T 4 (Area under curve) Stephan-Boltzmann Constant σ = 5.67 10-8 W / m 2

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 27 Modern Physics Quantum Physics Blackbody radiation Plank s hypothesis http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 27 1 Quantum Physics 2 Introduction: Need

More information

Photoelectric Effect & Bohr Atom

Photoelectric Effect & Bohr Atom PH0008 Quantum Mechanics and Special Relativity Lecture 03 (Quantum Mechanics) 020405v2 Photoelectric Effect & Bohr Atom Prof Department of Physics Brown University Main source at Brown Course Publisher

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Lecture 8. > Blackbody Radiation. > Photoelectric Effect

Lecture 8. > Blackbody Radiation. > Photoelectric Effect Lecture 8 > Blackbody Radiation > Photoelectric Effect *Beiser, Mahajan & Choudhury, Concepts of Modern Physics 7/e French, Special Relativity *Nolan, Fundamentals of Modern Physics 1/e Serway, Moses &

More information

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7 Chemistry 795T Lecture 7 Electromagnetic Spectrum Black body Radiation NC State University Black body Radiation An ideal emitter of radiation is called a black body. Observation: that peak of the energy

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Class 11: Thermal radiation

Class 11: Thermal radiation Class : Thermal radiation By analyzing the results from a number of eperiments, Planck found the energy density of the radiation emitted by a black body in wavelength interval (, d + was well described

More information

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Objectives Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation. Solve problems involving maximum kinetic energy, work function,

More information

CHAPTER 3 The Experimental Basis of Quantum Theory

CHAPTER 3 The Experimental Basis of Quantum Theory CHAPTER 3 The Experimental Basis of Quantum Theory 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Discovery of the X Ray and the Electron Determination of Electron Charge Line Spectra Quantization As far as I can

More information

Planck s Hypothesis of Blackbody

Planck s Hypothesis of Blackbody Course : Bsc Applied Physical Science (Computer Science) Year Ist (Sem IInd) Paper title : Thermal Physics Paper No : 6 Lecture no. 20. Planck s Hypothesis of Blackbody Hello friends, in the last lecture

More information

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom

Problems with Classical Physics. Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom The Quantum Gang Problems with Classical Physics Blackbody Radiation Photoelectric Effect Compton Effect Bohr Model of Atom Why this shape? Why the drop? Blackbody Radiation A black body is an ideal system

More information

ATMO/OPTI 656b Spring 2009

ATMO/OPTI 656b Spring 2009 Nomenclature and Definition of Radiation Quantities The various Radiation Quantities are defined in Table 2-1. Keeping them straight is difficult and the meanings may vary from textbook to textbook. I

More information

Physics Lecture 6

Physics Lecture 6 Physics 3313 - Lecture 6 Monday February 8, 2010 Dr. Andrew Brandt 1. HW1 Due today HW2 weds 2/10 2. Electron+X-rays 3. Black body radiation 4. Compton Effect 5. Pair Production 2/8/10 3313 Andrew Brandt

More information

Physics 1C. Chapter 28 !!!!

Physics 1C. Chapter 28 !!!! Physics 1C Chapter 28!!!! "Splitting the atom is like trying to shoot a gnat in the Albert Hall at night and using ten million rounds of ammunition on the off chance of getting it. That should convince

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Physics 2D Lecture Slides Lecture 10: Jan 26 th 2004

Physics 2D Lecture Slides Lecture 10: Jan 26 th 2004 Brian Wecht, the TA, is away this week. I will substitute for his office hours (in my office 3314 Mayer Hall, discussion and PS session. Pl. give all regrade requests to me this week Quiz 3 is This Friday

More information

Equilibrium Properties of Matter and Radiation

Equilibrium Properties of Matter and Radiation Equilibrium Properties of Matter and Radiation Temperature What is it? A measure of internal energy in a system. Measure from (1) velocities of atoms/molecules () population of excited/ionized states (3)

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantization of Light Max Planck started the revolution of quantum theory by challenging the classical physics and the classical wave theory of light. He proposed the concept of quantization

More information

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics

Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Blackbody radiation The photoelectric effect Compton effect Line spectra Nuclear physics/bohr model Lasers Quantum mechanics Phys 2435: Chap. 38, Pg 1 Blackbody radiation New Topic Phys 2435: Chap. 38,

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Physics 2D Lecture Slides Lecture 11: Jan 27 th 2004

Physics 2D Lecture Slides Lecture 11: Jan 27 th 2004 Brian Wecht, the TA, is away this week. I will substitute for his office hours (in my office 3314 Mayer Hall, discussion and PS session. Pl. give all regrade requests to me this week (only) Quiz 3 is This

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Thermal radiation (a.k.a blackbody radiation) is the answer to the following simple question:

Thermal radiation (a.k.a blackbody radiation) is the answer to the following simple question: Thermal radiation (a.k.a blackbody radiation) is the answer to the following simple question: What is the state of the electromagnetic (EM) field in equilibrium with its surroundings at temperature T?

More information

Quantum Physics Lecture 5

Quantum Physics Lecture 5 Quantum Physics Lecture 5 Thermal Phenomena - continued Black Body radiation - Classical model, UV catastrophe - Planck model, Wien & Stefan laws - Photoelectric effect revisited The hydrogen atom Planetary

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

Planck s Hypothesis of Blackbody

Planck s Hypothesis of Blackbody Course : Bsc Applied Physical Science (Computer Science) Year Ist (Sem IInd) Paper title : Thermal Physics Paper No : 6 Lecture no. 20. Planck s Hypothesis of Blackbody FAQs Q1. What were the shortcomings

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation REMINDER: no lecture on Monday Feb. 6th The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation The cosmic microwave background

More information

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics Chemistry 4521 Time is flying by: only 15 lectures left!! Six quantum mechanics Four Spectroscopy Third Hour exam Three statistical mechanics Review Final Exam, Wednesday, May 4, 7:30 10 PM Quantum Mechanics

More information

1. Historical perspective

1. Historical perspective Atomic and Molecular Physics/Lecture notes presented by Dr. Fouad Attia Majeed/Third year students/college of Education (Ibn Hayyan)/Department of Physics/University of Babylon. 1. Historical perspective

More information

Quantum Physics Lecture 6

Quantum Physics Lecture 6 Quantum Physics Lecture 6 Thermal Phenomena Specific Heats - Classical model, failure at low temperature - Einstein model Black Body radiation - Classical model, UV catastrophe - Planck model - Wien &

More information

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University Chemistry 431 Lecture 1 Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation NC State University Overview Quantum Mechanics Failure of classical physics Wave equation Rotational,

More information

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 30. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 30 Physics, 4 th Edition James S. Walker Chapter 30 Quantum Physics Units of Chapter 30 Blackbody Radiation and Planck s Hypothesis of Quantized Energy Photons and the Photoelectric

More information

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by. Planck s s Radiation Law Planck made two modifications to the classical theory The oscillators (of electromagnetic origin) can only have certain discrete energies determined by E n = n h ν with n is an

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcement Course webpage http://highenergy.phys.ttu.edu/~slee/2402/ Textbook PHYS-2402 Lecture 3 Sep. 15, 2015 Quiz.1 Thursday [Ch.2] Lecture Notes, HW Assignments, Physics Colloquium, etc.. Chapter.

More information

Chapter 3 Energy Balance and Temperature. Topics to be covered

Chapter 3 Energy Balance and Temperature. Topics to be covered Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and31) 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas:

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas: Blackbody Radiation A Blackbody is an ideal system that absorbs all radiation incident on it. Emission of radiation by a blackbody is independent of the properties of its wall, but depends only on its

More information

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies PHYS 1403 Stars and Galaxies for Today s Class 1. How do we explain the motion of energy? 2. What is a wave and what are its properties 3. What is an electromagnetic spectrum? 4. What is a black body and

More information

5. Light-matter interactions: Blackbody radiation

5. Light-matter interactions: Blackbody radiation 5. Light-matter interactions: Blackbody radiation The electromagnetic spectrum Sources of light Boltzmann's Law Blackbody radiation why do hot things glow? The cosmic microwave background The electromagnetic

More information

Satish Chandra. Blackbody. Unit IV, BLACK BODY RADIATION. Radiation in a Hollow Enclosure. Pure Temperature Dependence

Satish Chandra. Blackbody. Unit IV, BLACK BODY RADIATION. Radiation in a Hollow Enclosure. Pure Temperature Dependence Lecture Notes Dated: Jan 04, 013 Blackbody The ability of a body to radiate is closely related to its ability to absorb radiation. This is to be expected, since a body at a constant temperature is in thermal

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

What is it good for? RT is a key part of remote sensing and climate modeling.

What is it good for? RT is a key part of remote sensing and climate modeling. Read Bohren and Clothiaux Ch.; Ch 4.-4. Thomas and Stamnes, Ch..-.6; 4.3.-4.3. Radiative Transfer Applications What is it good for? RT is a key part of remote sensing and climate modeling. Remote sensing:

More information

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018

Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Gen. Phys. II Exam 4 - Chs. 27,28,29 - Wave Optics, Relativity, Quantum Physics Apr. 16, 2018 Rec. Time Name For full credit, make your work clear. Show formulas used, essential steps, and results with

More information

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011 We report on experiments investigating the thermal radiation from a blackbody. By finding the electromagnetic spectra emitted

More information

Determination of Stefan-Boltzmann Constant.

Determination of Stefan-Boltzmann Constant. Determination of Stefan-Boltzmann Constant. An object at some non-zero temperature radiates electromagnetic energy. For the perfect black body, which absorbs all light that strikes it, it radiates energy

More information

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy Quantum Physics at a glance Quantum Physics deals with the study of light and particles at atomic and smaller levels. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

More information

Announcements. A test of General Relativity. Gravitational Radiation. Other Consequences of GR

Announcements. A test of General Relativity. Gravitational Radiation. Other Consequences of GR Announcements HW1: Ch.2-70, 75, 76, 87, 92, 97, 99, 104, 111 *** Lab start-up meeting with TA This Week *** Lab manual is posted on the course web *** Course Web Page *** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Physics 2D Lecture Slides. Oct 15. UCSD Physics. Vivek Sharma

Physics 2D Lecture Slides. Oct 15. UCSD Physics. Vivek Sharma Physics 2D Lecture Slides Oct 15 Vivek Sharma UCSD Physics Properties of EM Waves: Maxwell s Equations Power incident on an area A Intensity of Radiation I = Larger t Energy Flow in EM W aves : 1 Poy nting

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

Chapter 27. Quantum Physics

Chapter 27. Quantum Physics Chapter 27 Quantum Physics Need for Quantum Physics Problems remained from classical mechanics that relativity didn t explain Blackbody Radiation The electromagnetic radiation emitted by a heated object

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Chapter 1 Early Quantum Phenomena

Chapter 1 Early Quantum Phenomena Chapter Early Quantum Phenomena... 8 Early Quantum Phenomena... 8 Photo- electric effect... Emission Spectrum of Hydrogen... 3 Bohr s Model of the atom... 4 De Broglie Waves... 7 Double slit experiment...

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Chapter 3 Energy Balance and Temperature. Astro 9601

Chapter 3 Energy Balance and Temperature. Astro 9601 Chapter 3 Energy Balance and Temperature Astro 9601 1 Topics to be covered Energy Balance and Temperature (3.1) - All Conduction (3..1), Radiation (3.. and 3...1) Convection (3..3), Hydrostatic Equilibrium

More information

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya 1 INTRODUCTION TO MICROWAVE REMOTE SENSING - II Dr. A. Bhattacharya The Radiation Framework The information about features on the Earth s surface using RS depends on measuring energy emanating from the

More information

11 Quantum theory: introduction and principles

11 Quantum theory: introduction and principles Part 2: Structure Quantum theory: introduction and principles Solutions to exercises E.b E.2b E.3b E.4b E.5b E.6b Discussion questions A successful theory of black-body radiation must be able to explain

More information

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics.

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics. Chapter One The Old Quantum Theory 1-1 Why Quantum Mechanics. The birth of quantum mechanics can be dated to 1925, when physicists such as Werner Heisenberg and Erwin Schrödinger invented mathematical

More information

Physics 1161: Lecture 22

Physics 1161: Lecture 22 Physics 1161: Lecture 22 Blackbody Radiation Photoelectric Effect Wave-Particle Duality sections 30-1 30-4 Everything comes unglued The predictions of classical physics (Newton s laws and Maxwell s equations)

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications SDSMT, Physics 2013 Fall 1 Introduction Photons, E.M. Radiation 2 Blackbody Radiation The Ultraviolet Catastrophe 3 Thermal Quantities of Photon System Total Energy Entropy 4 Radiation

More information

With certain caveats (described later) an object absorbs as effectively as it emits

With certain caveats (described later) an object absorbs as effectively as it emits Figure 1: A blackbody defined by a cavity where emission and absorption are in equilibrium so as to maintain a constant temperature Blackbody radiation The basic principles of thermal emission are as follows:

More information

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements Lecture 12 ASTR 111 Section 002 Measurements in Astronomy In astronomy, we need to make remote and indirect measurements Think of an example of a remote and indirect measurement from everyday life Using

More information

SPH4U UNIVERSITY PHYSICS

SPH4U UNIVERSITY PHYSICS SPH4U UNIVERSITY PHYSICS REVOLUTIONS IN MODERN PHYSICS:... L Photons & the Quantum Theory of... (P.620-623) The Work Function Around 1800, Thomas Young performed his double-slit interference experiment

More information

Homework 3 Solutions Problem 1 (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure:

Homework 3 Solutions Problem 1 (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure: Homework 3 Solutions Problem (a) The technique is essentially that of Homework 2, problem 2. The situation is depicted in the figure: θ photon vdt A θ d Figure : The figure shows the system at time t.

More information

Quantum Model Einstein s Hypothesis: Photoelectric Effect

Quantum Model Einstein s Hypothesis: Photoelectric Effect VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT Quantum Model Einstein s Hypothesis: Photoelectric Effect The photoelectric effect was discovered by Hertz in 1887 as he confirmed Maxwell s electromagnetic

More information

BLACKB ODY RADIATION LAWS. Stefan-Boltzmann. Blackbody E = 1. T is Temperature (Kelvin) R(T) = EaT. R(T) = at4. a = 5.67x10.

BLACKB ODY RADIATION LAWS. Stefan-Boltzmann. Blackbody E = 1. T is Temperature (Kelvin) R(T) = EaT. R(T) = at4. a = 5.67x10. LAWS a = 5.67x10 8 (m2 1() T is Temperature (Kelvin) R(T) = at4 Blackbody E = 1 R(T) = EaT 4 Stefan-Boltzmann BLACKB ODY RADIATION Wien Displacement AmaxT = b b = 2.898x10 3m K CONSIDER TWO OPAQUE QBJECTS

More information

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include:

There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: Chapter 1 Introduction 1.1 Historical Background There are a number of experimental observations that could not be explained by classical physics. For our purposes, the main one include: The blackbody

More information

Chapter. 3 Wave & Particles I

Chapter. 3 Wave & Particles I Announcement Course webpage http://www.phys.ttu.edu/~slee/3301/ Textbook PHYS-3301 Lecture 7 HW2 (due 9/21) Chapter 2 63, 65, 70, 75, 76, 87, 92, 97 Sep. 19, 2017 Outline: Chapter. 3 Wave & Particles I

More information

CHEM 115 Waves, Radiation, and Spectroscopy

CHEM 115 Waves, Radiation, and Spectroscopy CHEM 115 Waves, Radiation, and Spectroscopy Lecture 16 Prof. Sevian 1 Announcements (1) Challenge problem Due today at 2:00 promptly (late papers will not be accepted) - place in the box at the front of

More information

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter

Supplemental Activities. Module: Atomic Theory. Section: Electromagnetic Radiation and Matter Supplemental Activities Module: Atomic Theory Section: Electromagnetic Radiation and Matter Introduction to Electromagnetic Radiation Activity 1 1. What are the two components that make up electromagnetic

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Chapter 39. Particles Behaving as Waves

Chapter 39. Particles Behaving as Waves Chapter 39 Particles Behaving as Waves 39.1 Electron Waves Light has a dual nature. Light exhibits both wave and particle characteristics. Louis de Broglie postulated in 1924 that if nature is symmetric,

More information

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY

QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY QUANTUM MECHANICS AND MOLECULAR SPECTROSCOPY CHEM 330 B. O. Owaga Classical physics Classical physics is based on three assumptions i. Predicts precise trajectory for particles with precisely specified

More information

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube CHAPTER Prelude to Quantum Theory.1 Discovery of the X Ray and the Electron. Determination of Electron Charge. Line Spectra.4 Quantization.5 Blackbody Radiation.6 Photoelectric Effect.7 X-Ray Production.8

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Double Slit Experiment Matter Waves Louis-Victor-Pierre-Raymond, 7th duc de Broglie 1892-1987 AnNouncements Reading Assignment for Thursday, Sept 28th: Chapter

More information

Physics 2D Lecture Slides Jan 27. Vivek Sharma UCSD Physics

Physics 2D Lecture Slides Jan 27. Vivek Sharma UCSD Physics Physics 2D Lecture Slides Jan 27 Vivek Sharma UCSD Physics Ch 2 : Quantum Theory Of Light What is the nature of light? When it propagates? When it interacts with Matter? What is Nature of Matter? When

More information