Coherent scattering of light objects on nuclei. Maxim Pospelov Perimeter Institute/U of Victoria

Size: px
Start display at page:

Download "Coherent scattering of light objects on nuclei. Maxim Pospelov Perimeter Institute/U of Victoria"

Transcription

1 Coherent scattering of light objects on nuclei Maxim Pospelov Perimeter Institute/U of Victoria Cui, Pospelov, Pradler, 207, PRD Bringmann, Pospelov, 208, subm to PRL Earlier papers with Deniverville, Batell, Ritz

2 Plan. Introduction. We invest in neutrino and direct detection experiments (including CEvNS) which are sensitive to variety of New Physics models 2. Example : energetic dark radiation, neutrino or otherwise 3. Example 2: light dark matter accelerated to large velocities 4. Conclusions 2

3 Cosmological surprises Existence of dark matter and dark energy calls into question whether there are other dark components: Dark Forces? Dark radiation? 3

4 Dark Radiation? Dark radiation existed in the form of neutrinos. At the time of the matter-radiation equality, about 40% of radiation energy density was encapsulated by neutrinos, and is fully captured by both BBN and CMB. New radiation like degrees of freedom (p DR = /3 r DR ) are limited by N eff. SM predicts Current limit is / Strong constraint on fully thermalized species. New DR? If not interacting with the SM only through N eff. However, if there is interaction, we have additional ways of probing DR.

5 Two cases for Dark Radiation Case : numerous soft quanta (interesting for EDGES)! DR! CMB, n DR >n RJ,! DR n DR tot. Case 2: fewer hard quanta amenable for detection with DD experiment n DR n, E DR E, DR ( E DR n DR ) apple 0. DM

6 Decay of DM to dark radiation Scenario: A fraction of DM decays, producing fluxes of relativistic particles. DM à DR + DR, followed by DR + nucleus à recoil Daughter particles can be anything: neutrinos and/or other light dark states. The parameter space of such models is rather complicated: {mass DM, mass DR, t DM, DR interaction strength} Region of DM mass of interest for this talk MeV to GeV

7 Attainable fluxes of DR. Scenario: A fraction of DM decays, producing fluxes of relativistic particles. DM à DR + DR 6 Typical spectra has a galactic and extra-galactic component: 04 galactic (5% smearing) X = 0 Gyr 0 Gyr, mx = 50 MeV and = 0.. max = 50 MeV = 0. width has been applied to the galactic or X = an of 5% display. total flux tot, integrated over the whole energy m, varies over many orders of magnitude dependthe choice parameters. Nevertheless, one can estihe maximum 03 possible flux at 0., X = 0 Gyr, aking m! 0, and keeping mx as0a free parame (MeV) = 0. m = 5 MeV 3 extragalactic (m = 0) extragalactic (m = 5 MeV) X /t0 d /de (/MeV/cm2 /sec) gal e.g. total (cm2 /s) (cm2 /s) 00 mx (MeV) 000 Fig. for X Gaussian of 5 flux for displa The total fl spectrum, var ing on the ch mate the max while taking eter: Completely c become com mx 0 Me many orders demonstrates times and X Could be comparable to solar neutrino fluxes, but more energetic creating DD sign. 0 MeVand extragalactic FIG. di erential particle fluxes max. Galactic 6 0 cm 2decay s. X! (23) tot monochromatic from 2-body 2. The solid mx (dashed) line is for a massless (5 MeV) daughter particle. FIG. 2. Integral galactic ( gal. ) and extragalactic ( e.g. ) particle fluxes from monochromatic 2-body decay X! 2. The labeled contours are in units of /cm2 /s. A mass of m = 5 MeV has been assumed. 4. SC A.

8 Decay to SM neutrinos {mass DM, mass DR, t DM, DR interaction strength} A new population of SM neutrinos could be created by the DM decay. Constraints on electron antineutrinos by SK are very strong, but for neutrinos with E < 30 MeV the constraints are not that strong, and direct detection will soon become competitive DR = SM SK(dsnb) X/t SK(sol) SK(atm) XENONT LUX m X (MeV) With such exotic n DR, the neutrino floor is closer, at 0-47 cm 2.

9 Let us classify possible connections between Dark sector and SM H + H (l S 2 + A S) Higgs-singlet scalar interactions (scalar portal) B µn V µn Kinetic mixing with additional U() group (becomes a specific example of J µi A µ extension) LH N neutrino Yukawa coupling, N RH neutrino J µi A µ requires gauge invariance and anomaly cancellation It is very likely that the observed neutrino masses indicate that Nature may have used the LHN portal Dim>4 J µ A µ a /f. Neutral portals to the SM axionic portal 9

10 Decay to DR coupled to baryons A new population of fermions that interact with baryonic current could be created by the DM decay. Constraints from SK are not strong, and direct detection is the most sensitive probe: 0. Rate in Xe with ER > kev (kg 04 0 day ). DR = X /t0 X /t0 the each atm) e SN rent GB = 0GF m = 0 MeV form of flux of s given in tains sa paring through imum va have a c 0 Borexino gal. e.g. sum = 0. m =0 00 progenitor mass mx (MeV) 000 FIG. 5. Predicted recoil rate R(ER > kev) for DR consisting of massless particles that are coupled to the baryon current with strength GB = 0GF, in units of events/kg/day, and for xenon as detector material XENONT LUX 00 mx (MeV) 000 FIG. 6. Constraints on DR coupled to SM, at 95% C.L., through gauged baryon number with GB = 0GF from the direct detection experiments LUX and XENONT as well as from the neutrino experiment Borexino. Two cases are shown: the solid line is for m = 0 and dotted line is for m = Direct detection rates put significant constraints on models. Need more than species do differentiate between DR and DM recoil. Curre in the m techniqu (For som of DR do of the co It is e the benc outside ALP de searches as IAXO for ALP The exp

11 Second topic: light DM A limited number of concrete testable models of DM can be constructed in the sub-gev range. (Battaglieri et al, 207) On can look for it in the neutrino and beam dump experiments (Batell et al, 2009) Coherent neutrino scattering is a [future] way of constraining light dark matter created in beam dump (cross section is enhanced) There is also some merit in a less model-dependent approach, when you just look for DM within a simplified parameter space: {m c,s c }

12 MiniBooNE search for light DM arxiv: , PRL 207 Target Decay Pipe Beam Dump MiniBooNE Detector p Be Air 0 V Steel Earth N 50 m 4m 487 m ) 4 Events/(e20 POT) NCE Off Data (stat errors) Total Bkg (sys errors) Beam unrel. bkg ν det ν dirt Q (GeV ) QE I No nuisance parameters applied yet #events uncertainty BUB 697 det bkg 775 dirt bkg 07 Total Bkg % (pred. sys.) Data % (stat.) 2 0 m Subject to future improvement with much closer new detector at SNB χ V /m χ Y = ε 2 α'(m µ g-2 favored + + K π +invis. LSND E37 Preliminary Relic Density = 3m χ, α' = 0.5 m V MiniBooNE 90% CL J/ψ invis. BaBar MiniBooNE 90% Sensitivity Direct Det. 0 (GeV) 2

13 J/ψ invis. K+ π++invis. 0 7 Monojet (CDF) Neutron Scattering 0 4 Recent results and new proposals 0 8 BaBar MB Elastic N 9 0 Direct Detection Nucleon MB Full N + Timing 0 6 MB Electron + Timing Direct Detection Nucleon αb (mv = 3mχ) Y = ε2αd(mχ/mv)4 (mv = 3mχ, αd = 0.5) MB Elastic N 0 5 αµ favored 0 7 Z γ +invis. Example from this year: MiniBoNE result of light DM search ( ): XENON0/00 χ-e E K π+invis. 0 0 NA64 0 Relic Density 0 Very expensive and versatile experiments in particle physics have already been built, or will be built (LHC, Belle-II, DUNE, Hyper-K) LSND mχ (GeV/c2) mχ (GeV/c2) (a) vector portal (b) leptophobic FIG. 25. Comparing MiniBooNE confidence level limits (solid lines), and sensitivities (dashed lines) to other experiments for (a) Y as a function of m assuming D = 0.5 and mv = 3m and (b) in the leptophobic dark matter model with mv = 3m. Explanation of vector portal limits lines are given in Refs. [9, 25, 29 3]. Explanation of the leptophobic limit lines are given in Refs. [8, 27, 28]. Dark sector research will be important direction for many. MB Elastic N BaBar 9 0 MB Electron + Timing XENON0/00 χ-e- 0 0 E37 Relic Density 0 NA Direct Detection Nucleon MB Elastic N MB Full N + Timing MB Electron + Timing 0 NA64 E SH ip / 0 0 MMAPS 0-0 CRESST II SBNπ E37 0- NA64 Belle II LSND one ibo Min BaBar BD X O N 0-8 BaBar XENON0/00 χ-e J/ψ Direct invis.detection Nucleon αµ favored X EN 0 y = ϵ2αd (m χ/ma')4 αµ favored Y = ε2αd(mχ/mv)4 (mv = 7mχ, αd = 0.5) Y = ε2αd(mχ/mv)4 (mv = 3mχ, αd = 0.) 9 COHE RENT Relic Density 0 8 MB Full N + Timing Scalar Elastic DM (Kinetic Mixing) K+ π++invis. K+ π++invis. get Tar elic R lar e SBN Sca MX LD 0-5 LSND 3 LSND mχ (GeV/c2) 0 (a) vector portal ( D = 0., mv = 3m ) mχ (GeV/c2) 0 (b) vector portal ( D = 0.5, mv = 7m ) m χ [MeV] FIG % confidence level in the vector portal dark matter model with (a) Y as a function of m assuming D = 0. and mv = 3m and (b) D = 0. and mv = 7m. Explanation of limits lines are given in Refs. [9, 25, 29 3] Future LDMX-type experiments will add larger capabilities 3

14 Light DM can be searched with coherent scattering on nuclei Assuming ton experiment, Deniverville, Pospelov, Ritz, 205 baryonic force dark photon force

15 Search for WIMP-nucleus scattering (latest LUX, XENON T and PANDA-X results) What about MeV mass range? Optimum sensitivity, m WIMP ~ m Nucleus (a little lighter because of nuclear form factor). No sensitivity below m WIMP ~ few GeV, due to exceedingly small recoil that does not give much light or scintillation. 5

16 Finally: light DM accelerated due to its interaction There is always a small energetic component to DM flux (Bringmann, Pospelov, 208). There is also some merit in a less model-dependent approach, when you just look for DM within a simplified parameter space: {m c,s c }. Typically: MeV DM mass à kev kinetic energy à sub-ev nuclear recoils. No limits for s nucleon-dm for DM in the MeV range. This is not quite true because there is always an energetic component for DM, not bound to the galaxy. Generated through the very same interaction cross section: s c Main idea: Collisions of DM with cosmic rays generate subdominant DM flux with ~ 00 MeV momentum perfect for direct detection type recoil. T χ dφ/dt χ [cm -2 s - ] SHM x f (v/c) σ χ = 0-30 cm T χ [GeV]

17 Resulting limits Spin-independent limits. [Notice the constraint from Miniboone, from measurements of NC nu-p scattering]. Exclusion of s = cm 2! Scattering on free protons in e.g. Borexino is also very constraining for the spin-dependent scattering.

18 Conclusions. Interacting DR can be searched for in direct detection [of DM] experiments. The maximum strength signal from DR neutrinos will be reached relatively soon. 2. Future ton experiments looking for measuring (!) CEvNS, can also be used for constraining very light DM created in beam dumps. 3. New limits are derived on {m c,s c } parameter space using subdominant energetic fraction of DM created by collisions with cosmic rays with subsequent scattering in DM and neutrino experiments. 8

Perturbative QCD: CEvNS in dark matter experiments

Perturbative QCD: CEvNS in dark matter experiments Perturbative QCD: CEvNS in dark matter experiments applications to Higgs physics, Dark Matter and Exploring the Unknown John Campbell Pedro A. N. Machado DOE Comparative November 2018 Review 11 July 2018

More information

New dark matter direct detection signals

New dark matter direct detection signals New dark matter direct detection signals Josef Pradler Pacific 2018 conferernce Feb 15 2018 A (partial) summary of 2 decades of experimental effort lower detector thresholds more exposure (kg days) CF1

More information

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018)

In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: Jong-Chul Park. 2 nd IBS-KIAS Joint High1 January 08 (2018) In collaboration w/ G. Giudice, D. Kim, JCP, S. Shin arxiv: 1712.07126 Jong-Chul Park 2 nd IBS-KIAS Joint Workshop @ High1 January 08 (2018) (Mainly) focusing on Non-relativistic weakly interacting massive

More information

sub-gev DM Searches at FNAL

sub-gev DM Searches at FNAL V p π 0 γ N sub-gev DM Searches at FNAL R. T. Thornton MiniBooNE-DM Collaboration LDMA17 - Isola d Elba Fermi National Accelerator Laboratory Booster Neutrino Beamline (8 GeV) SeaQuest (10 GeV) NuMI (10

More information

Beam Dump Experiments with Photon and Electron Beams

Beam Dump Experiments with Photon and Electron Beams Beam Dump Experiments with Photon and Electron Beams Electron beams BDX at Jefferson Lab Signal and backgrounds Muon flux measurements Status Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

Beam Dump Experiments at JLab and SLAC

Beam Dump Experiments at JLab and SLAC Beam Dump Experiments at JLab and SLAC Brief History (E137 at SLAC) BDX at Jefferson Lab Detector and signal Backgrounds Expected Sensitivity Elton S. Smith, Jefferson Lab On behalf of the BDX Collaboration

More information

Very Dark Photons! (in Cosmology) Anthony Fradette. work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 2014 (arxiv:1407.

Very Dark Photons! (in Cosmology) Anthony Fradette. work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 2014 (arxiv:1407. Very Dark Photons (in Cosmology) Anthony Fradette work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 204 (arxiv:407.0993) Theoretical Perspective on New Physics at the Intensity Frontier

More information

Doojin Kim University of Wisconsin, WI November 14th, 2017

Doojin Kim University of Wisconsin, WI November 14th, 2017 Doojin Kim, WI November 14th, 2017 Based on DK, J.-C. Park, S. Shin, PRL119, 161801 (2017) G. Giudice, DK, J.-C. Park, S. Shin, 1711. xxxxx Doojin Kim, WI November 14th, 2017 Based on DK, J.-C. Park, S.

More information

Background and sensitivity predictions for XENON1T

Background and sensitivity predictions for XENON1T Background and sensitivity predictions for XENON1T Marco Selvi INFN - Sezione di Bologna (on behalf of the XENON collaboration) Feb 19 th 016, UCLA Dark Matter 016 1 Outline Description of the detector;

More information

Cosmological Constraints! on! Very Dark Photons

Cosmological Constraints! on! Very Dark Photons Cosmological Constraints on Very Dark Photons Anthony Fradette work presented in AF, Maxim Pospelov, Josef Pradler, Adam Ritz : PRD Aug 204 (arxiv:407.0993) Cosmo 204 - Chicago, IL Plan Dark Photon review

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Pseudoscalar portals into the dark sector

Pseudoscalar portals into the dark sector Pseudoscalar portals into the dark sector Felix Kahlhoefer CERN-EPFL-Korea Theory Institute New Physics at the Intensity Frontier 20 February 3 March 2017 CERN Outline > Introduction: Pseudoscalars and

More information

Dark Sectors at the Fermilab SeaQuest Experiment

Dark Sectors at the Fermilab SeaQuest Experiment Dark Sectors at the Fermilab SeaQuest Experiment Stefania Gori University of Cincinnati New Probes for Physics Beyond the Standard Model KITP April 9, 2018 Dark sectors Dark matter (DM) exists! The stronger

More information

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni Axion and axion-like particle searches in LUX and LZ Maria Francesca Marzioni PPE All Group meeting 06/06/2016 Outline Why are we interested in axions How can we detect axions with a xenon TPC Axion signal

More information

The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter

The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter The 17 MeV Anomaly in Beryllium Decays and U(1) Portal to Dark Matter a, Guey-Lin Lin b, Yen-Hsun Lin b and Fanrong Xu c a Department of Physics, Tamkang University New Taipei City 25137, Taiwan b Institute

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

OVERVIEW: Dark Matter

OVERVIEW: Dark Matter DM-Stat: Statistical Challenges in the Search for Dark Matter OVERVIEW: Dark Matter Bradley J. Kavanagh GRAPPA Institute, University of Amsterdam b.j.kavanagh@uva.nl @BradleyKavanagh DM-Stat: Statistical

More information

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19, DARWIN Marc Schumann U Freiburg PATRAS 2017 Thessaloniki, May 19, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Dark Matter Searches: Status spin-independent WIMP-nucleon interactions

More information

New directions in direct dark matter searches

New directions in direct dark matter searches New directions in direct dark matter searches Tongyan Lin UC Berkeley & LBNL April 4, 2017 DM@LHC 2017, UC Irvine Direct detection of WIMPs target nuclei E recoil Heat, ionization, charge from recoiling

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

The Hunt for Sterile Neutrinos. H. Ray, University of Florida

The Hunt for Sterile Neutrinos. H. Ray, University of Florida The Hunt for Sterile Neutrinos 1 Particle Physics is Over!..finding the Higgs arguably the most important discovery in more than a generation has left physicists without a clear roadmap of where to go

More information

LHC searches for dark matter.! Uli Haisch

LHC searches for dark matter.! Uli Haisch LHC searches for dark matter! Uli Haisch Evidence for dark matter Velocity Observed / 1 p r Disk 10 5 ly Radius Galaxy rotation curves Evidence for dark matter Bullet cluster Mass density contours 10 7

More information

Enectalí Figueroa-Feliciano

Enectalí Figueroa-Feliciano School and Workshop on Dark Matter and Neutrino Detection Dark Matter Direct Detection Lecture 3 Enectalí Figueroa-Feliciano!113 Outline Lecture 1: The dark matter problem WIMP and WIMP-like DM detection

More information

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15, DARWIN Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017 marc.schumann@physik.uni-freiburg.de www.app.uni-freiburg.de 1 Marc Schumann U Freiburg LAUNCH 17 Heidelberg, September 15, 2017

More information

Solar and atmospheric neutrinos as background for direct dark matter searches

Solar and atmospheric neutrinos as background for direct dark matter searches Solar and atmospheric neutrinos as background for direct dark matter searches Achim Gütlein TU-München Joined seminar on neutrinos and dark matter.0.0 utline Direct Dark Matter Search eutrinos as background

More information

Available online at ScienceDirect. Physics Procedia 61 (2015 ) 55 60

Available online at   ScienceDirect. Physics Procedia 61 (2015 ) 55 60 Available online at www.sciencedirect.com ScienceDirect Physics Procedia 61 (2015 ) 55 60 13th International Conference on Topics in Astroparticle and Undergound Physics, TAUP2013 Searching for Sub-Gev

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017

Cristiano Alpigiani Shanghai Jiao Tong University Shanghai, 18 May 2017 Searches for dark matter in ATLAS Shanghai Jiao Tong University Shanghai, 18 May 2017 Dark Matter and Particle Physics Astrophysical evidence for the existence of dark matter! First observed by Fritz Zwicky

More information

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1 DARK MATTER Martti Raidal NICPB & University of Helsinki 28.05.2010 Tvärminne summer school 1 Energy budget of the Universe 73,4% - Dark Energy WMAP fits to the ΛCDM model Distant supernova 23% - Dark

More information

The Yang and Yin of Neutrinos

The Yang and Yin of Neutrinos The Yang and Yin of Neutrinos Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA The Yang and Yin of Neutrinos (2018) back to start 1 Contents Introduction The

More information

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos Exotic Charges, Multicomponent and Light Sterile Neutrinos Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 2.10.2012 based on J.H., He Zhang, arxiv:1210.xxxx. Sterile Neutrinos Hints for ev

More information

The Four Basic Ways of Creating Dark Matter Through a Portal

The Four Basic Ways of Creating Dark Matter Through a Portal The Four Basic Ways of Creating Dark Matter Through a Portal DISCRETE 2012: Third Symposium on Prospects in the Physics of Discrete Symmetries December 4th 2012, Lisboa Based on arxiv:1112.0493, with Thomas

More information

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017

Searching for at Jefferson Lab. Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017 Searching for at Jefferson Lab Holly Szumila-Vance On behalf of the HPS, APEX, DarkLight, and BDX 2017 JLab User s Group Meeting 20 June 2017 Overview: Motivation Dark photon searches: APEX (Hall A) HPS

More information

Searches for New Physics in quarkonium decays at BaBar/Belle

Searches for New Physics in quarkonium decays at BaBar/Belle 1 Searches for New Physics in quarkonium decays at BaBar/Belle Lucas Winstrom University of California Santa Cruz for the BaBar Collaboration Presented at QWG08 in Nara, Japan December 5, 2008 2 Outline

More information

Recent results from PandaX- II and status of PandaX-4T

Recent results from PandaX- II and status of PandaX-4T Recent results from PandaX- II and status of PandaX-4T Jingkai Xia (Shanghai Jiao Tong University) On behalf of PandaX Collaboration August 2-5, Mini-Workshop@SJTU 2018/8/4 1 Outline Dark Matter direct

More information

Surprises in (Inelastic) Dark Matter

Surprises in (Inelastic) Dark Matter Surprises in (Inelastic) Dark Matter David Morrissey Harvard University with Yanou Cui, David Poland, Lisa Randall (hep-ph/0901.0557) Cornell Theory Seminar, March 11, 2009 Outline Evidence and Hints for

More information

The Story of Wino Dark matter

The Story of Wino Dark matter The Story of Wino Dark matter Varun Vaidya Dept. of Physics, CMU DIS 2015 Based on the work with M. Baumgart and I. Rothstein, 1409.4415 (PRL) & 1412.8698 (JHEP) Evidence for dark matter Rotation curves

More information

Direct Detection of! sub-gev Dark Matter

Direct Detection of! sub-gev Dark Matter Direct Detection of! sub-gev Dark Matter Rouven Essig C.N. Yang Institute for Theoretical Physics, Stony Brook Sackler Conference, Harvard, May 18, 2014 An ongoing program Direct Detection of sub-gev Dark

More information

Search for Hidden Particles with the SHiP experiment (on behalf of the SHiP collaboration)

Search for Hidden Particles with the SHiP experiment (on behalf of the SHiP collaboration) Search for Hidden Particles with the SHiP experiment (on behalf of the SHiP collaboration) Andrey Golutvin Imperial College / CERN See also other presentations at this workshop: - Theoretical motivation:

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Recent results from MiniBooNE on neutrino oscillations

Recent results from MiniBooNE on neutrino oscillations Recent results from MiniBooNE on neutrino oscillations Alexis [for the MiniBooNE collaboration] IX International Symposium on High Energy Physics 1 SILAFAE 2012,, December 10 14, 2013 Outline LSND and

More information

arxiv: v1 [astro-ph.co] 7 Nov 2012

arxiv: v1 [astro-ph.co] 7 Nov 2012 arxiv:1211.15v1 [astro-ph.co] 7 Nov 212 Mirror dark matter explanation of the DAMA, CoGeNT and CRESST-II data ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University

More information

Implications of cosmological observables for particle physics: an overview

Implications of cosmological observables for particle physics: an overview Implications of cosmological observables for particle physics: an overview Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia TAUP 2015, Torino, September 7 11, 2015 The concordance

More information

LHC searches for momentum dependent DM interactions

LHC searches for momentum dependent DM interactions LHC searches for momentum dependent interactions Daniele Barducci w/ A. Bharucha, Desai, Frigerio, Fuks, Goudelis, Kulkarni, Polesello and Sengupta arxiv:1609.07490 Daniele Barducci LHC searches for momentum

More information

Searching for dark photon. Haipeng An Caltech Seminar at USTC

Searching for dark photon. Haipeng An Caltech Seminar at USTC Searching for dark photon Haipeng An Caltech Seminar at USTC 1 The standard model is very successful! 2 The big challenge! We just discovered a massless spin-2 particle.! We don t know how to write down

More information

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Oak Ridge National Laboratory, TN K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab Coherent elastic neutrino-nucleus scattering (CEvNS) n + A n +

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 12 Nov. 18, 2015 Today Big Bang Nucleosynthesis and Neutrinos Particle Physics & the Early Universe Standard Model of Particle

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

Collider Searches for Dark Matter

Collider Searches for Dark Matter Collider Searches for Dark Matter AMELIA BRENNAN COEPP-CAASTRO WORKSHOP 1 ST MARCH 2013 Introduction Enough introductions to dark matter (see yesterday) Even though we don t know if DM interacts with SM,

More information

PandaX Dark Matter Search

PandaX Dark Matter Search PandaX Dark Matter Search Xiangdong Ji Shanghai Jiao Tong University University of Maryland On Behalf of the PandaX Collaboration 2017/8/7 1 Outline Introduction to WIMP search and liquid xenon experiments

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

WIMP Velocity Distribution and Mass from Direct Detection Experiments

WIMP Velocity Distribution and Mass from Direct Detection Experiments WIMP Velocity Distribution and Mass from Direct Detection Experiments Manuel Drees Bonn University WIMP Distribution and Mass p. 1/33 Contents 1 Introduction WIMP Distribution and Mass p. 2/33 Contents

More information

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology Effective theory of dark matter direct detection Riccardo Catena Chalmers University of Technology March 16, 216 Outline Introduction Dark matter direct detection Effective theory of dark matter-nucleon

More information

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles Marco Drewes, Université catholique de Louvain The Other Neutrinos 21.12.2017 IAP Meeting Université libre de Bruxelles The Standard Model of Particle 125 GeV The periodic table of elementary particles

More information

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector Joshua Spitz, Yale University DAEdALUS Workshop 2/4/2010 1 Outline What is coherent neutrino-nucleus scattering?

More information

Constraints on Darkon Scalar Dark Matter From Direct Experimental Searches

Constraints on Darkon Scalar Dark Matter From Direct Experimental Searches Constraints on arkon Scalar ark Matter From irect Experimental Searches Based on PhysRev.79.023521 (arxiv:0811.0658 [hep-ph]) Ho-Chin Tsai National Taiwan University in collaboration with Xiao-Gang He,

More information

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon)

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon) sub-gev Dark Matter Theory Tien-Tien Yu (University o Oregon) The Magniicent CEvNS University o Chicago Nov 2, 2018 WIMP miracle thermal equilibrium WIMP miracle reeze-out Ωh 2 10 37 cm 2 σ ann v 0.1 P.

More information

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case

A cancellation mechanism for dark matter-nucleon interaction: non-abelian case A cancellation mechanism for dark matter-nucleon interaction: non-abelian case University of Ioannina 31/3/2018 In collaboration with: Christian Gross, Alexandros Karam, Oleg Lebedev, Kyriakos Tamvakis

More information

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29 Learning from WIMPs Manuel Drees Bonn University Learning from WIMPs p. 1/29 Contents 1 Introduction Learning from WIMPs p. 2/29 Contents 1 Introduction 2 Learning about the early Universe Learning from

More information

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS Class Mechanics My office (for now): Dantziger B Room 121 My Phone: x85200 Office hours: Call ahead, or better yet, email... Even better than office

More information

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter Very-Short-BaseLine Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

NEUTRINO OSCILLOMETRY- Neutrinos in a box

NEUTRINO OSCILLOMETRY- Neutrinos in a box NEUTRINO OSCILLOMETRY- Neutrinos in a box J.D. Vergados*, Y. Giomataris* and Yu.N. Novikov** *for the STPC (NOSTOS) Collaboration: (Saclay, APC-Paris, Saragoza, Ioannina, Thessaloniki, Demokritos, Dortmund,

More information

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE

EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE EVIDENCE FOR A PROTOPHOBIC FIFTH FORCE Mitchell Workshop on Collider, Dark Matter, and Neutrino Physics Texas A&M Jonathan Feng, UC Irvine 23 May 2016 23 May 2016 Feng 1 COLLABORATORS Jonathan Feng Bart

More information

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

MiniBooNE, LSND, and Future Very-Short Baseline Experiments 1 MiniBooNE, LSND, and Future Very-Short Baseline Experiments Mike Shaevitz - Columbia University BLV2011 - September, 2011 - Gatlinburg, Tennessee Neutrino Oscillation Summary 2! µ "! Sterile "! e New

More information

CEνNS: Models. Bhaskar Dutta Texas A&M University

CEνNS: Models. Bhaskar Dutta Texas A&M University CEνNS: Models Bhaskar Dutta Texas A&M University 1 Introduction ν s are investigating new physics at CEνNS experiments (stopped pion, reactors): COHERENT, CONUS, MINER, CONIE etc. Many interesting ideas

More information

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack Astro/Phys 224 Spring 2012 Origin and Evolution of the Universe Week 3 - Part 2 Recombination and Dark Matter Joel Primack University of California, Santa Cruz http://pdg.lbl.gov/ In addition to the textbooks

More information

Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017

Daniel Gazda. Chalmers University of Technology. Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017 Ab initio nuclear response functions for dark matter searches Daniel Gazda Chalmers University of Technology Progress in Ab Initio Techniques in Nuclear Physics TRIUMF, Feb 28 Mar 3, 2017 Collaborators:

More information

The future of neutrino physics (at accelerators)

The future of neutrino physics (at accelerators) Mauro Mezzetto, Istituto Nazionale Fisica Nucleare, Padova The future of neutrino physics (at accelerators) Present Status Concepts, strategies, challenges The two players: Dune and Hyper-Kamiokande Conclusions

More information

Gauged U(1) clockwork

Gauged U(1) clockwork Gauged U(1) clockwork Hyun Min Lee Chung-Ang University, Korea Based on arxiv: 1708.03564 Workshop on the Standard Model and Beyond Corfu, Greece, Sept 2-10, 2017. Outline Introduction & motivation Gauged

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Pseudoscalar-mediated dark matter models: LHC vs cosmology

Pseudoscalar-mediated dark matter models: LHC vs cosmology Pseudoscalar-mediated dark matter models: LHC vs cosmology Based on: S. Banerjee, D. Barducci, G. Bélanger, B. Fuks, A. G., B. Zaldivar, arxiv:1705.02327 Birmingham, 15/11/2017 LPTHE - Jussieu Outline

More information

ATLAS Missing Energy Signatures and DM Effective Field Theories

ATLAS Missing Energy Signatures and DM Effective Field Theories ATLAS Missing Energy Signatures and DM Effective Field Theories Theoretical Perspectives on New Physics at the Intensity Frontier, Victoria, Canada James D Pearce, University of Victoria Sept 11, 014 1

More information

Searches for Exotics in Upsilon Decays in BABAR

Searches for Exotics in Upsilon Decays in BABAR Searches for Exotics in Upsilon Decays in BABAR Yury Kolomensky UC Berkeley/LBNL For the BABAR Collaboration 14th Lomonosov Conference on Elementary Particle Physics August 24, 2009, Moscow Light Higgs

More information

Search for Dark Matter with LHC proton Beam Dump

Search for Dark Matter with LHC proton Beam Dump Search for Dark Matter with LHC proton Beam Dump Ashok Kumar a, Archana Sharma b* a Delhi University, Delhi, India b CERN, Geneva, Switzerland Abstract Dark Matter (DM) comprising particles in the mass

More information

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010 Neutrinos: Yesterday, Today and Tomorrow August 13, 2010 1 My Marching Orders 2 My Marching Orders...the summary talk should be visionary, rather than a dedicated summary of the SSI program. 2 My Marching

More information

No combined analysis of all experiments available

No combined analysis of all experiments available Compatibility between DAMA-CDMS CDMS-Edelweiss-Xenon10 - KIMS? No combined analysis of all experiments available However, some trivial considerations: * for m χ 25 GeV capture on DAMA is dominated by the

More information

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA

Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403, USA Frascati Physics Series Vol. LVI (2012) Dark Forces at Accelerators October 16-19, 2012 DEEPLY INELASTIC DARK MATTER: BEAM DUMPS AS WIMP CANNONS Chris J. Wallace Institute for Particle Physics Phenomenology,

More information

Two-body currents in WIMP nucleus scattering

Two-body currents in WIMP nucleus scattering Two-body currents in WIMP nucleus scattering Martin Hoferichter Institute for Nuclear Theory University of Washington INT program on Nuclear ab initio Theories and Neutrino Physics Seattle, March 16, 2018

More information

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz. Dark Photon Searches at MAMI and MESA

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz. Dark Photon Searches at MAMI and MESA Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz Dark Photon Searches at MAMI and MESA / Mainz Achim Denig Dark Photon New massive force carrier of extra U(1) d gauge group;

More information

Searching for Physics Beyond the Standard Model with Accelerator ν Experiments W.C Louis, LANL. MiniBooNE Status FNAL ORNL

Searching for Physics Beyond the Standard Model with Accelerator ν Experiments W.C Louis, LANL. MiniBooNE Status FNAL ORNL Searching for Physics Beyond the Standard Model with Accelerator ν Experiments W.C Louis, LANL MiniBooNE Status BooNE @ FNAL OscSNS @ ORNL Happy 75 th Birthdays to Frank Avignone, Ettore Fiorini, & Peter

More information

The XENON1T experiment

The XENON1T experiment The XENON1T experiment Ranny Budnik Weizmann Institute of Science For the XENON collaboration 1 The XENON1T experiment Direct detection with xenon The XENON project XENON1T/nT 2 Quick introduction and

More information

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS D. Markoff (NC Central University, Triangle Universities Nuclear Laboratory) For the COHERENT Collaboration

More information

Direct Detection of the Dark Mediated DM

Direct Detection of the Dark Mediated DM Direct Detection of the Dark Mediated DM Yuhsin Tsai In collaboration with David Curtin, Ze ev Surujon, and Yue Zhao 1312.2618 and 1402.XXXX UC Davis Jan 16 2014 Main questions χ χ How does the direct

More information

Search for Dark Matter in the mono-x* final states with ATLAS

Search for Dark Matter in the mono-x* final states with ATLAS Search for Dark Matter in the mono-x* final states with (on behalf of the Collaboration) Rencontres de Moriond (EW) 08 *: X = jet, Z, W, H Probing Dark Matter (DM) Underlying assumption: DM has also non-gravitational

More information

Hidden Sector particles at SNS

Hidden Sector particles at SNS Hidden Sector particles at SNS 1 S E N S I T I V I T Y T O A X I O N S A N D A X I O N - L I K E P A R T I C L E S. A T H A N S H A T Z I K O U T E L I S Y U R I E F R E M E N K O U N I V E R S I T Y O

More information

FERMION PORTAL DARK MATTER

FERMION PORTAL DARK MATTER FERMION PORTAL DARK MATTER Joshua Berger SLAC UC Davis Theory Seminar! w/ Yang Bai: 1308.0612, 1402.6696 March 10, 2014 1 A HOLE IN THE SM Van Albada et. al. Chandra + Hubble What else can we learn about

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

arxiv: v1 [hep-ph] 12 Dec 2018

arxiv: v1 [hep-ph] 12 Dec 2018 Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection David McKeen and Nirmal Raj TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada arxiv:1812.05102v1 [hep-ph] 12

More information

Neutrino-Nucleus Scattering at MINERvA

Neutrino-Nucleus Scattering at MINERvA 1 Neutrino-Nucleus Scattering at MINERvA Elba XIII Workshop: Neutrino Physics IV Tammy Walton Fermilab June 26, 2014 2 MINERvA Motivation Big Picture Enter an era of precision neutrino oscillation measurements.

More information

Recent Results from T2K and Future Prospects

Recent Results from T2K and Future Prospects Recent Results from TK and Future Prospects Konosuke Iwamoto, on behalf of the TK Collaboration University of Rochester E-mail: kiwamoto@pas.rochester.edu The TK long-baseline neutrino oscillation experiment

More information

DARK MATTER INTERACTIONS

DARK MATTER INTERACTIONS DARK MATTER INTERACTIONS Jonathan H. Davis Institut d Astrophysique de Paris jonathan.h.m.davis@gmail.com LDMA 2015 Based on J.H.Davis & J.Silk, Phys. Rev. Lett. 114, 051303 and J.H.Davis, JCAP 03(2015)012

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Down-to-earth searches for cosmological dark matter

Down-to-earth searches for cosmological dark matter Down-to-earth searches for cosmological dark matter Carter Hall, University of Maryland October 19, 2016 Astrophysical evidence for dark matter Galaxy cluster collisions Rotation curves Ω 380,000 years

More information

Oak Ridge and Neutrinos eharmony forms another perfect couple

Oak Ridge and Neutrinos eharmony forms another perfect couple Oak Ridge and Neutrinos eharmony forms another perfect couple H. Ray University of Florida 05/28/08 1 Oak Ridge Laboratory Spallation Neutron Source Accelerator based neutron source in Oak Ridge, TN 05/28/08

More information

Beyond Simplified Models

Beyond Simplified Models Pseudoscalar Portal to Dark Matter: Beyond Simplified Models Jose Miguel No King's College London J.M.N. PRD 93 (RC) 031701 (1509.01110) D. Goncalves, P. Machado, J.M.N. 1611.04593 M. Fairbairn, J.M.N.,

More information

Prospects for the Direct Detection of the Cosmic Neutrino Background

Prospects for the Direct Detection of the Cosmic Neutrino Background Prospects for the Direct Detection of the Cosmic Neutrino Background Andreas Ringwald http://www.desy.de/ ringwald DESY PANIC 2008 November 9 14, 2008, Eilat, Israel Prospects for the Direct Detection

More information

Natural explanation for 130 GeV photon line within vector boson dark matter model

Natural explanation for 130 GeV photon line within vector boson dark matter model Natural explanation for 130 GeV photon line within vector boson dark matter model Yasaman Farzan IPM, TEHRAN Plan of talk Direct and indirect dark matter searches 130 or 135 GeV line in FermiLAT data Challenges

More information