Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego

Size: px
Start display at page:

Download "Direction of Arrival Estimation: Subspace Methods. Bhaskar D Rao University of California, San Diego"

Transcription

1 Direction of Arrival Estimation: Subspace Methods Bhaskar D Rao University of California, San Diego brao@ucsdedu

2 Reference Books and Papers 1 Optimum Array Processing, H L Van Trees 2 Stoica, P, & Moses, R L (2005) Spectral analysis of signals (Vol 1) Upper Saddle River, NJ: Pearson Prentice Hall 3 Schmidt, R (1986) Multiple emitter location and signal parameter estimation IEEE transactions on antennas and propagation, 34(3), Roy, Richard, and Thomas Kailath ESPRIT-estimation of signal parameters via rotational invariance techniques IEEE Transactions on acoustics, speech, and signal processing 377 (1989): Rao, Bhaskar D, and K S Arun Model based processing of signals: A state space approach Proceedings of the IEEE 802 (1992):

3 Narrow-band Signals Assumptions D 1 x(ω c, n) = V(ω c, k s )F s [n] + V(ω c, k l )F l [n] + Z[n] l=1 F s [n], F l [n], l = 1,, D 1, and Z[n] are zero mean E( F s [n] 2 ) = p s, and E( F l [n] 2 = p l, l = 1,, D 1, and E(Z[n]Z H [n]) = σ 2 z I All the signals/sources are uncorrelated with each other and over time: E(F l [n]f m[p]) = p l δ[l m]δ[n p] and E(F l [n]f s [p]) = 0 The sources are uncorrelated with the noise: E(Z[n]F l [m]) = 0

4 Adaptive Beamforming MVDR, MPDR, and LMMSE beamformers and their relationship Generalized Sidelobe Canceller Transmit and Receive Beamforming MVDR Power Spectrum Estimation

5 Direction of Arrival (DOA) Estimation D 1 x[n] = V l F l [n] + Z[n], n = 0, 1,, L 1 l=0 Here we have chosen to denote V s by V 0 for simplicity of notation Note V l = V(k l ) We will refer to the L vector measurements as L snapshots Goal: Estimate the direction of arrival k l or equivalently (θ l, φ l ), l = 0,, D 1 Can also consider estimating the source powers p l, l = 0, 1,, D 1, and noise variance σ 2 z ULA : N 1 j V(ψ) = [e 2 ψ,, e j N 1 2 ψ ] T N 1 j = e 2 ψ [1, e jψ, e j2ψ,, e j(n 1)ψ ] T Note for a ULA, V(ψ) = JV (ψ), where J is all zeros except for ones along the anti-diagonal Also note J = J 2

6 ULA and Time Series x 0 [n] x 1 [n] x N 1 [n] D 1 = l=0 1 e jψ l e j(n 1)ψ l e j N 1 2 ψ l F l [n]+z[n], n = 0, 1,, L 1 Considerable similarity with a time series problems composed of complex exponentials x[n] = D 1 l=0 c le jω l n + z[n], n = 0, 1,, (M 1) In vector form x[0] 1 z[0] x[1] e jω l z[1] x[m 1] D 1 = l=0 e j(m 1)ω l c l + z[m 1] The time series, sum of exponentials, problem with M samples is equivalent to a ULA with M sensors and one (vector) measurement or one snapshot

7 Estimation of the Frequencies of the Exponential In array processing we have a limited number of sensors N but can compensate potentially with L snapshots The time series problem is equivalent to one snapshot but a potentially large array if the number of samples M is large One complex exponential (Noise free): x[n] = c 0 e jω0n, n = 0, 1,, M 1 Interested in the frequency ω 0 Potential solution: Take the FFT and look at the peak Another option is to note that x[n] = c 0 e jω0(n 1) e jω0 = e jω0 x[n 1] In the noise free case, 2 samples is enough Can solve a least squares problem min a M 1 n=1 x[n] ax[n 1] 2 and find ω 0 from the estimated a

8 More than one exponentials Suppose we have two exponentials: x[n] = c 0 e jω0n + c 1 e jω1n, n = 0, 1,, M 1 A FFT based approach may fail to resolve the frequencies if they are close and the number of samples M is small Thumb rule ω 0 ω 1 > 2π M Can show x[n] = a 1 x[n 1] + a 2 x[n 2] and so one can solve a 1 and a 2 using a least squares technique In the absence of noise we just need 4 samples to set up a system of equations to solve for the parameters [ ] [ ] [ ] x[n] x[n 1] x[n 2] a1 = x[n 1] x[n 2] x[n 3] a 2 How to get the frequencies from the parameters a 1 and a 2? Can show that the zeros of the filter H(z) = 1 a 1 z 1 a 2 z 2 are located at e jω0 and e jω1

9 D exponentials Suppose we have a series composed of D exponentials: x[n] = D 1 l=0 c le jω l n, n = 0, 1,, M 1 A FFT based approach can be used with drawbacks as before: resolution and large number of samples may be needed Can show x[n] = D k=1 a kx[n k] and so one can solve a k, k = 1,, D using a least squares technique In the absence of noise we just need 2D samples to set up a system of equations to solve for the parameters x[n] x[n 1] x[n D] a 1 x[n 1] x[n 2] x[n D 1] a 2 x[n D + 1] = x[n D] x[n 2D 1] How to get the frequencies from the parameters a k, k = 1, D? Can show that the zeros of the filter H(z) = 1 D k=1 a kz k are located at e jω l, l = 0,, D 1 a D

10 Relationship of Zeros of Filters to e jω l Claim: A signal with D exponentials, ie x[n] = D 1 l=0 c le jω l n, is exactly predictable from its D past samples, ie x[n] = D k=1 a kx[n k] or x[n] D k=1 a kx[n k] = 0 Consider a FIR filter H(z) = 1 P k=1 b kx[n k], P D, with input x[n] and denote its output by e[n] e[n] = x[n] P b k x[n k] = k=1 If we minimize n e[n] 2, what is the result? D H(e ω k )c k e jω k n The output will be zero This is achieved by making H(e jω k ) = 0 at the D frequencies Since the filter is of order P D, we can select the filter zeros to meet this criteria and minimize the output The excess (P D) zeros can be placed arbitrarily Can be a source of confusion when determining the frequency estimates k=1

11 Subspace Methods D 1 x(n) = V(k l )F l [n] + Z[n] l=0 = [V 0, V 1,, V D 1 ] = VF[n] + Z[n] where V C N D, and F[n] C D 1 F s [n] F 1 [n] F D 1 [n] Note that E(F[n]) = 0 D 1, E(F[n]Z H [n]) = 0 D N + Z[n]

12 Covariance Matrix Source Covariance matrix S F = E(F[n]F H [n]) = S H F = S H s S H 1 S H D 1, where S F C D D, S H s C 1 D and the diagonal elements are p s, p 1,, p D 1 For uncorrelated sources S F is a diagonal matrix, ie S F = diag(p s, p 1,, p D 1 ) and S H s = [p s, 0,, 0] Data Covariance Matrix S x = S s + σ 2 z I = VS F V H + σ 2 z I S x C N N, S s C N N, S F C D D, and V C N D

13 Signal and Noise Subspaces Subspace methods: Based on eigen-decomposition of a covariance matrix Eigen-decomposition of S s : Note S s = VS F V H S s has rank D, is Hermitian symmetric and positive semi-definite Hence S s has D non-zero eigenvalues and corresponding orthornomal eigenvectors S s = [q 1, q 2,, q D ] λ s λ s 2 0 q H 1 q H 2 = E sλ s E H s 0 0 λ s D q H D where E s C N D, and Λ s = diag(λ i ) Note E H s E s = I D D and P s = E s E H s is an orthogonal projection matrix onto R(E s ), ie P s = P H s and P s = P 2 s Important Observation: R(V) = R(E s ) and R(E s ) is referred to as Signal subspace

14 Subspaces Cont d Choose E n = [q D,, q N ] such that E H n E n = I (N D) (N D) and E H n E s = 0 (N D) D Defining E = [E s, E n ] C N N, we have E H E = EE H = I N N Important Observation: R(E n ) R(V) = R(V s ) R(E n ) is referred as Noise subspace [ ] [ ] [ ] S s = E s Λ s E H Λs 0 E H s = [E s, E n ] s Λs E H = E E H n 0 0 σz 2 I = σz 2 EE H = E (σz 2 I) E H = E σz σz σz 2 EH In fact E can be replaced by any orthonormal matrix in the expansion for σ 2 z I For subspace methods, choosing a matrix compatible with S s is more useful

15 Eigen decomposition of Data Covariance Matrix S x = S s + σ 2 z I [ Λs 0 = E 0 0 ] E H + E σz σz σz 2 [ ] Λs + σz = E 2 I D D 0 0 σz 2 E H I (N D) (N D) = E s (Λ s + σz 2 I D D ) E H s + σz 2 E n E H n D N = (λ s l + σz 2 )q l q H l + σz 2 q l q H l l=1 l=(d+1) EH

16 Observations S x = S s + σz 2 I = E s (Λ s + σz 2 I D D ) E H s + σz 2 E n E H n D N = (λ s l + σz 2 )q l q H l + σz 2 q l q H l l=1 l=(d+1) S x has eigenvalues λ l = λ s l + σ 2 z, l = 1,, D, and λ l = σ 2 z, l = (D + 1),, N The number of sources D can be identified by examining the multiplicity of the smallest eigenvalue which is expected to be σ 2 z with multiplicity (N D) The eigenvectors corresponding to the signal subspaces and noise subspaces are readily available from the eigen decomposition of S x, ie E s and E n are easily extracted

17 MUltiple SIgnal Classification (MUSIC) MUSIC uses the noise subspace spanned by the noise eigenvectors E n Since R(V) = R(E s ) R(E n ), we have V l R(E n ), l = 0, 1,, (D 1) or V H l E n = 0, l = 0, 1,, (D 1) Many options to use this orthogonality property All methods start with S x, usually estimated from the data MUSIC Algorithm (also known as Spectral-MUSIC) Perform an eigen-decomposition of S x Estimate D and the signal subspace E s and the noise subspace E n Compute the spatial MUSIC spectrum as follows: P MUSIC (k) = 1 V H (k)e n 2 Note that V H (k)e n 2 = V H (k)e n E H n V(k) = V H (k)p n V(k) where P n = E n E H n The peaks in P MUSIC (k) gives us the DOA

18 MUSIC Example

19 ULA and MUSIC N 1 j ULA : V(ψ) = e 2 ψ [1, e jψ, e j2ψ,, e j(n 1)ψ ] T N 1 j Will drop e 2 ψ for this discussion for simplicity and because it does not matter V H (ψ)e n 2 = N l=d+1 V H (ψ)q l 2 = N l=d+1 q l (e jψ ) 2 where q l (e jψ ) = V H (ψ)q l = N 1 m=0 q l(m)e jmψ, with q l = [q l [0], q l [1],, q l [N 1]] T q l (e jψ ) is the Fourier transform of the impulse response of a filter formed from the eigenvector q l Defining B(e jψ ) = N l=d+1 q l(e jψ ) 2 The MUSIC spectrum is P MUSIC (ψ) = 1 B(e ψ ), and it will have peaks at ψ l, l = 0, 1,, (D 1) corresponding to the DOA Then B(e jψ l ) = 0, l = 0, 1,, (D 1)

20 Root-MUSIC With B(e jψ ) = N l=d+1 q l(e jψ ) 2, in the z-domain we have B(z) = N l=d q l(z)q l ( 1 z ) Alternately B(z) = N l=d+1 B l(z) where B l (z) = q l (z)q l ( 1 z ) = N 1 l= (N 1) r q l [m]z m, Each of the B l (z) represents a Moving Average Spectrum and the sum B(z) is also a Moving Average spectrum B(z) = N 1 l= (N 1) r q [m]z m = H rm (z)h rm( 1 z ), where r q [m] is an autocorrelation sequence and H rm (z) is obtained by spectral factorization B(e jψ l ) = 0, l = 0, 1,, (D 1) implies H rm (z) will have D of it s zeros at e jψ l, where ψ l corresponds to the DOA The remaining (N 1 D) zeros will be inside the unit circle assuming we use a minimum-phase spectral factor

21 Root-MUSIC Algorithm Perform an eigen-decomposition of S x Estimate D and the signal subspace E s and the noise subspace E n Compute q l (z) = N 1 m=0 q l[m]z m, l = D + 1,, N 1 Compute B(z) = N l=d+1 B l(z) where B l (z) = q l (z)q l ( 1 z ) = N 1 l= (N 1) r q l [m]z m Perform a spectral factorization to find a minimum phase factor H rm (z), ie B(z) = H rm (z)h rm( 1 z ) The D roots on/close to the unit circle are identified and their argument used to estimate the DOA

22 Root-MUSIC and Spectral-MUSIC Example

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego

Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books 1. Optimum Array Processing, H. L. Van Trees 2.

More information

Spatial Smoothing and Broadband Beamforming. Bhaskar D Rao University of California, San Diego

Spatial Smoothing and Broadband Beamforming. Bhaskar D Rao University of California, San Diego Spatial Smoothing and Broadband Beamforming Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books and Papers 1. Optimum Array Processing, H. L. Van Trees 2. Stoica, P.,

More information

ADAPTIVE ANTENNAS. SPATIAL BF

ADAPTIVE ANTENNAS. SPATIAL BF ADAPTIVE ANTENNAS SPATIAL BF 1 1-Spatial reference BF -Spatial reference beamforming may not use of embedded training sequences. Instead, the directions of arrival (DoA) of the impinging waves are used

More information

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued

Adaptive beamforming. Slide 2: Chapter 7: Adaptive array processing. Slide 3: Delay-and-sum. Slide 4: Delay-and-sum, continued INF540 202 Adaptive beamforming p Adaptive beamforming Sven Peter Näsholm Department of Informatics, University of Oslo Spring semester 202 svenpn@ifiuiono Office phone number: +47 22840068 Slide 2: Chapter

More information

DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas

DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas DOA Estimation of Uncorrelated and Coherent Signals in Multipath Environment Using ULA Antennas U.Somalatha 1 T.V.S.Gowtham Prasad 2 T. Ravi Kumar Naidu PG Student, Dept. of ECE, SVEC, Tirupati, Andhra

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

MVDR and MPDR. Bhaskar D Rao University of California, San Diego

MVDR and MPDR. Bhaskar D Rao University of California, San Diego MVDR ad MPDR Bhaskar D Rao Uiversity of Califoria, Sa Diego Email: brao@ucsd.edu Referece Books. Optimum Array Processig, H. L. Va Trees 2. Stoica, P., & Moses, R. L. (2005). Spectral aalysis of sigals

More information

Robust Subspace DOA Estimation for Wireless Communications

Robust Subspace DOA Estimation for Wireless Communications Robust Subspace DOA Estimation for Wireless Communications Samuli Visuri Hannu Oja ¾ Visa Koivunen Laboratory of Signal Processing Computer Technology Helsinki Univ. of Technology P.O. Box 3, FIN-25 HUT

More information

Generalization Propagator Method for DOA Estimation

Generalization Propagator Method for DOA Estimation Progress In Electromagnetics Research M, Vol. 37, 119 125, 2014 Generalization Propagator Method for DOA Estimation Sheng Liu, Li Sheng Yang, Jian ua uang, and Qing Ping Jiang * Abstract A generalization

More information

A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection

A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection Progress In Electromagnetics Research M, Vol. 35, 163 171, 2014 A New High-Resolution and Stable MV-SVD Algorithm for Coherent Signals Detection Basma Eldosouky, Amr H. Hussein *, and Salah Khamis Abstract

More information

HIGH RESOLUTION DOA ESTIMATION IN FULLY COHERENT ENVIRONMENTS. S. N. Shahi, M. Emadi, and K. Sadeghi Sharif University of Technology Iran

HIGH RESOLUTION DOA ESTIMATION IN FULLY COHERENT ENVIRONMENTS. S. N. Shahi, M. Emadi, and K. Sadeghi Sharif University of Technology Iran Progress In Electromagnetics Research C, Vol. 5, 35 48, 28 HIGH RESOLUTION DOA ESTIMATION IN FULLY COHERENT ENVIRONMENTS S. N. Shahi, M. Emadi, and K. Sadeghi Sharif University of Technology Iran Abstract

More information

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego

Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Independent Component Analysis (ICA) Bhaskar D Rao University of California, San Diego Email: brao@ucsdedu References 1 Hyvarinen, A, Karhunen, J, & Oja, E (2004) Independent component analysis (Vol 46)

More information

THE estimation of covariance matrices is a crucial component

THE estimation of covariance matrices is a crucial component 1 A Subspace Method for Array Covariance Matrix Estimation Mostafa Rahmani and George K. Atia, Member, IEEE, arxiv:1411.0622v1 [cs.na] 20 Oct 2014 Abstract This paper introduces a subspace method for the

More information

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces

Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Aalborg Universitet Joint Direction-of-Arrival and Order Estimation in Compressed Sensing using Angles between Subspaces Christensen, Mads Græsbøll; Nielsen, Jesper Kjær Published in: I E E E / S P Workshop

More information

Polynomial Root-MUSIC Algorithm for Efficient Broadband Direction Of Arrival Estimation

Polynomial Root-MUSIC Algorithm for Efficient Broadband Direction Of Arrival Estimation Polynomial Root-MUSIC Algorithm for Efficient Broadband Direction Of Arrival Estimation William Coventry, Carmine Clemente, and John Soraghan University of Strathclyde, CESIP, EEE, 204, George Street,

More information

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan

2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS. Volkan Cevher, James H. McClellan 2-D SENSOR POSITION PERTURBATION ANALYSIS: EQUIVALENCE TO AWGN ON ARRAY OUTPUTS Volkan Cevher, James H McClellan Georgia Institute of Technology Atlanta, GA 30332-0250 cevher@ieeeorg, jimmcclellan@ecegatechedu

More information

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM Tadeu N. Ferreira, Sergio L. Netto, and Paulo S. R. Diniz Electrical Engineering Program COPPE/DEL-Poli/Federal University of Rio de Janeiro P.O.

More information

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Progress In Electromagnetics Research M, Vol. 63, 185 193, 218 DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Kai-Chieh Hsu and

More information

Enhancing Polynomial MUSIC Algorithm for Coherent Broadband Sources Through Spatial Smoothing

Enhancing Polynomial MUSIC Algorithm for Coherent Broadband Sources Through Spatial Smoothing Enhancing Polynomial MUSIC Algorithm for Coherent Broadband Sources Through Spatial Smoothing William Coventry, Carmine Clemente and John Soraghan University of Strathclyde, CESIP, EEE, 204, George Street,

More information

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE

FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Progress In Electromagnetics Research C, Vol. 6, 13 20, 2009 FAST AND ACCURATE DIRECTION-OF-ARRIVAL ESTIMATION FOR A SINGLE SOURCE Y. Wu School of Computer Science and Engineering Wuhan Institute of Technology

More information

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation

Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Co-prime Arrays with Reduced Sensors (CARS) for Direction-of-Arrival Estimation Mingyang Chen 1,LuGan and Wenwu Wang 1 1 Department of Electrical and Electronic Engineering, University of Surrey, U.K.

More information

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling

Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling 140 IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 2, FEBRUARY 2014 Improved Unitary Root-MUSIC for DOA Estimation Based on Pseudo-Noise Resampling Cheng Qian, Lei Huang, and H. C. So Abstract A novel pseudo-noise

More information

Virtual Array Processing for Active Radar and Sonar Sensing

Virtual Array Processing for Active Radar and Sonar Sensing SCHARF AND PEZESHKI: VIRTUAL ARRAY PROCESSING FOR ACTIVE SENSING Virtual Array Processing for Active Radar and Sonar Sensing Louis L. Scharf and Ali Pezeshki Abstract In this paper, we describe how an

More information

Co-Prime Arrays and Difference Set Analysis

Co-Prime Arrays and Difference Set Analysis 7 5th European Signal Processing Conference (EUSIPCO Co-Prime Arrays and Difference Set Analysis Usham V. Dias and Seshan Srirangarajan Department of Electrical Engineering Bharti School of Telecommunication

More information

Statistical and Adaptive Signal Processing

Statistical and Adaptive Signal Processing r Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing Dimitris G. Manolakis Massachusetts Institute of Technology Lincoln Laboratory

More information

Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling

Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling Two-Dimensional Sparse Arrays with Hole-Free Coarray and Reduced Mutual Coupling Chun-Lin Liu and P. P. Vaidyanathan Dept. of Electrical Engineering, 136-93 California Institute of Technology, Pasadena,

More information

Joint Azimuth, Elevation and Time of Arrival Estimation of 3-D Point Sources

Joint Azimuth, Elevation and Time of Arrival Estimation of 3-D Point Sources ISCCSP 8, Malta, -4 March 8 93 Joint Azimuth, Elevation and Time of Arrival Estimation of 3-D Point Sources Insaf Jaafar Route de Raoued Km 35, 83 El Ghazela, Ariana, Tunisia Email: insafjaafar@infcomrnutn

More information

IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY

IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY J. of Electromagn. Waves and Appl., Vol. 23, 593 606, 2009 IMPROVED BLIND 2D-DIRECTION OF ARRIVAL ESTI- MATION WITH L-SHAPED ARRAY USING SHIFT IN- VARIANCE PROPERTY X. Zhang, X. Gao, and W. Chen Department

More information

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES

A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Progress In Electromagnetics Research C, Vol. 25, 233 247, 212 A HIGH RESOLUTION DOA ESTIMATING METHOD WITHOUT ESTIMATING THE NUMBER OF SOURCES Q. C. Zhou, H. T. Gao *, and F. Wang Radio Propagation Lab.,

More information

ADAPTIVE FILTER THEORY

ADAPTIVE FILTER THEORY ADAPTIVE FILTER THEORY Fourth Edition Simon Haykin Communications Research Laboratory McMaster University Hamilton, Ontario, Canada Front ice Hall PRENTICE HALL Upper Saddle River, New Jersey 07458 Preface

More information

Linear Optimum Filtering: Statement

Linear Optimum Filtering: Statement Ch2: Wiener Filters Optimal filters for stationary stochastic models are reviewed and derived in this presentation. Contents: Linear optimal filtering Principle of orthogonality Minimum mean squared error

More information

Overview of Beamforming

Overview of Beamforming Overview of Beamforming Arye Nehorai Preston M. Green Department of Electrical and Systems Engineering Washington University in St. Louis March 14, 2012 CSSIP Lab 1 Outline Introduction Spatial and temporal

More information

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Chun-Lin Liu 1 P. P. Vaidyanathan 2 Piya Pal 3 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology,

More information

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH

ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH Progress In Electromagnetics Research Letters, Vol. 25, 37 46, 2011 ROBUST ADAPTIVE BEAMFORMING BASED ON CO- VARIANCE MATRIX RECONSTRUCTION FOR LOOK DIRECTION MISMATCH R. Mallipeddi 1, J. P. Lie 2, S.

More information

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna

Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Performance Analysis for Strong Interference Remove of Fast Moving Target in Linear Array Antenna Kwan Hyeong Lee Dept. Electriacal Electronic & Communicaton, Daejin University, 1007 Ho Guk ro, Pochen,Gyeonggi,

More information

WIDEBAND array processing arises in many applications

WIDEBAND array processing arises in many applications IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999 1213 Localization of Wideband Signals Using Least-Squares and Total Least-Squares Approaches Shahrokh Valaee, Benoit Champagne, Member,

More information

Generalized Design Approach for Fourth-order Difference Co-array

Generalized Design Approach for Fourth-order Difference Co-array Generalized Design Approach for Fourth-order Difference Co-array Shiwei Ren, Tao Zhu, Jianyan Liu School of Information and Electronics,Beijing Institute of Technology, Beijing 8, China renshiwei@bit.edu.cn,zhutao@bit.edu.cn

More information

PASSIVE NEAR-FIELD SOURCE LOCALIZATION BASED ON SPATIAL-TEMPORAL STRUCTURE

PASSIVE NEAR-FIELD SOURCE LOCALIZATION BASED ON SPATIAL-TEMPORAL STRUCTURE Progress In Electromagnetics Research C, Vol. 8, 27 41, 29 PASSIVE NEAR-FIELD SOURCE LOCALIZATION BASED ON SPATIAL-TEMPORAL STRUCTURE Y. Wu Wuhan Institute of Technology Wuhan 4373, China H. C. So Department

More information

High-resolution Parametric Subspace Methods

High-resolution Parametric Subspace Methods High-resolution Parametric Subspace Methods The first parametric subspace-based method was the Pisarenko method,, which was further modified, leading to the MUltiple SIgnal Classification (MUSIC) method.

More information

II. BACKGROUND. A. Notation

II. BACKGROUND. A. Notation Diagonal Unloading Beamforming for Source Localization Daniele Salvati, Carlo Drioli, and Gian Luca Foresti, arxiv:65.8v [cs.sd] 3 May 26 Abstract In sensor array beamforming methods, a class of algorithms

More information

SPOC: An Innovative Beamforming Method

SPOC: An Innovative Beamforming Method SPOC: An Innovative Beamorming Method Benjamin Shapo General Dynamics Ann Arbor, MI ben.shapo@gd-ais.com Roy Bethel The MITRE Corporation McLean, VA rbethel@mitre.org ABSTRACT The purpose o a radar or

More information

(a)

(a) Chapter 8 Subspace Methods 8. Introduction Principal Component Analysis (PCA) is applied to the analysis of time series data. In this context we discuss measures of complexity and subspace methods for

More information

Statistical Signal Processing Detection, Estimation, and Time Series Analysis

Statistical Signal Processing Detection, Estimation, and Time Series Analysis Statistical Signal Processing Detection, Estimation, and Time Series Analysis Louis L. Scharf University of Colorado at Boulder with Cedric Demeure collaborating on Chapters 10 and 11 A TT ADDISON-WESLEY

More information

Array Signal Processing Algorithms for Beamforming and Direction Finding

Array Signal Processing Algorithms for Beamforming and Direction Finding Array Signal Processing Algorithms for Beamforming and Direction Finding This thesis is submitted in partial fulfilment of the requirements for Doctor of Philosophy (Ph.D.) Lei Wang Communications Research

More information

III.C - Linear Transformations: Optimal Filtering

III.C - Linear Transformations: Optimal Filtering 1 III.C - Linear Transformations: Optimal Filtering FIR Wiener Filter [p. 3] Mean square signal estimation principles [p. 4] Orthogonality principle [p. 7] FIR Wiener filtering concepts [p. 8] Filter coefficients

More information

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters.

Adaptive beamforming for uniform linear arrays with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters. Title Adaptive beamforming for uniform linear arrays with unknown mutual coupling Author(s) Liao, B; Chan, SC Citation IEEE Antennas And Wireless Propagation Letters, 2012, v. 11, p. 464-467 Issued Date

More information

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT

A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Progress In Electromagnetics Research Letters, Vol. 16, 53 60, 2010 A ROBUST BEAMFORMER BASED ON WEIGHTED SPARSE CONSTRAINT Y. P. Liu and Q. Wan School of Electronic Engineering University of Electronic

More information

New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays

New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays New Cramér-Rao Bound Expressions for Coprime and Other Sparse Arrays Chun-Lin Liu 1 P. P. Vaidyanathan 2 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA

More information

Real Time Implementation for DOA Estimation Methods on NI-PXI Platform

Real Time Implementation for DOA Estimation Methods on NI-PXI Platform Progress In Electromagnetics Research B, Vol. 59, 103 121, 2014 Real Time Implementation for DOA Estimation Methods on NI-PXI Platform Nizar Tayem * Abstract In this paper, we present five different approaches

More information

DIRECTION OF ARRIVAL ESTIMATION BASED ON FOURTH-ORDER CUMULANT USING PROPAGATOR METHOD

DIRECTION OF ARRIVAL ESTIMATION BASED ON FOURTH-ORDER CUMULANT USING PROPAGATOR METHOD Progress In Electromagnetics Research B, Vol. 18, 83 99, 2009 DIRECTION OF ARRIVAL ESTIMATION BASED ON FOURTH-ORDER CUMULANT USING PROPAGATOR METHOD P. Palanisamy and N. Rao Department of Electronics and

More information

J. Liang School of Automation & Information Engineering Xi an University of Technology, China

J. Liang School of Automation & Information Engineering Xi an University of Technology, China Progress In Electromagnetics Research C, Vol. 18, 245 255, 211 A NOVEL DIAGONAL LOADING METHOD FOR ROBUST ADAPTIVE BEAMFORMING W. Wang and R. Wu Tianjin Key Lab for Advanced Signal Processing Civil Aviation

More information

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems

Quantization and Compensation in Sampled Interleaved Multi-Channel Systems Quantization and Compensation in Sampled Interleaved Multi-Channel Systems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar

Optimal Time Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Optimal Division Multiplexing Schemes for DOA Estimation of a Moving Target Using a Colocated MIMO Radar Kilian Rambach, Markus Vogel and Bin Yang Institute of Signal Processing and System Theory University

More information

On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance. Karl Werner and Magnus Jansson

On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance. Karl Werner and Magnus Jansson On DOA estimation in unknown colored noise-fields using an imperfect estimate of the noise covariance Karl Werner and Magnus Jansson 005-06-01 IR-S3-SB-0556 Proceedings IEEE SSP05 c 005 IEEE. Personal

More information

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation

Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation 1 Robust Adaptive Beamforming Based on Low-Complexity Shrinkage-Based Mismatch Estimation Hang Ruan and Rodrigo C. de Lamare arxiv:1311.2331v1 [cs.it] 11 Nov 213 Abstract In this work, we propose a low-complexity

More information

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound

Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Performance Analysis of Coarray-Based MUSIC and the Cramér-Rao Bound Mianzhi Wang, Zhen Zhang, and Arye Nehorai Preston M. Green Department of Electrical & Systems Engineering Washington University in

More information

Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation

Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation Reduced-Rank Multi-Antenna Cyclic Wiener Filtering for Interference Cancellation Hong Zhang, Ali Abdi and Alexander Haimovich Center for Wireless Communications and Signal Processing Research Department

More information

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Huiping Duan, Tiantian Tuo, Jun Fang and Bing Zeng arxiv:1511.06828v1 [cs.it] 21 Nov 2015 Abstract In underdetermined direction-of-arrival

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

IN THE FIELD of array signal processing, a class of

IN THE FIELD of array signal processing, a class of 960 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 4, APRIL 1997 Distributed Source Modeling Direction-of-Arrival Estimation Techniques Yong Up Lee, Jinho Choi, Member, IEEE, Iickho Song, Senior

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

Spatial Array Processing

Spatial Array Processing Spatial Array Processing Signal and Image Processing Seminar Murat Torlak Telecommunications & Information Sys Eng The University of Texas at Austin, Introduction A sensor array is a group of sensors located

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 15) Root-MUSIC ime Delay Estimation Based on ropagator Method Bin Ba, Yun Long Wang, Na E Zheng & an Ying

More information

Title without the persistently exciting c. works must be obtained from the IEE

Title without the persistently exciting c.   works must be obtained from the IEE Title Exact convergence analysis of adapt without the persistently exciting c Author(s) Sakai, H; Yang, JM; Oka, T Citation IEEE TRANSACTIONS ON SIGNAL 55(5): 2077-2083 PROCESS Issue Date 2007-05 URL http://hdl.handle.net/2433/50544

More information

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations

Using an Oblique Projection Operator for Highly Correlated Signal Direction-of-Arrival Estimations Appl. Math. Inf. Sci. 9, No. 5, 2663-2671 (2015) 2663 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090552 Using an Oblique Projection Operator for

More information

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY

ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY 2014 IEEE International Conference on Acoustic, Speech and Signal Processing ICASSP ML ESTIMATION AND CRB FOR NARROWBAND AR SIGNALS ON A SENSOR ARRAY Langford B White School of Electrical and Electronic

More information

Double-Directional Estimation for MIMO Channels

Double-Directional Estimation for MIMO Channels Master Thesis Double-Directional Estimation for MIMO Channels Vincent Chareyre July 2002 IR-SB-EX-0214 Abstract Space-time processing based on antenna arrays is considered to significantly enhance the

More information

IMPROVEMENTS IN ACTIVE NOISE CONTROL OF HELICOPTER NOISE IN A MOCK CABIN ABSTRACT

IMPROVEMENTS IN ACTIVE NOISE CONTROL OF HELICOPTER NOISE IN A MOCK CABIN ABSTRACT IMPROVEMENTS IN ACTIVE NOISE CONTROL OF HELICOPTER NOISE IN A MOCK CABIN Jared K. Thomas Brigham Young University Department of Mechanical Engineering ABSTRACT The application of active noise control (ANC)

More information

On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation

On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation On the duality of Phase-based and Phase-less RSSI MUSIC algorithm for Direction of Arrival estimation MARCO PASSAFIUME, STEFANO MADDIO, ALESSANDRO CIDRONALI and GIANFRANCO MANES University of Florence

More information

Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc

Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc Aalborg Universitet Robust Implementation of the MUSIC algorithm Zhang, Johan Xi; Christensen, Mads Græsbøll; Dahl, Joachim; Jensen, Søren Holdt; Moonen, Marc Published in: I E E E International Conference

More information

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME

EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME EEE508 GÜÇ SİSTEMLERİNDE SİNYAL İŞLEME Signal Processing for Power System Applications Frequency Domain Analysis Techniques Parametric Methods for Line Spectra (Week-5-6) Gazi Üniversitesi, Elektrik ve

More information

An Adaptive Sensor Array Using an Affine Combination of Two Filters

An Adaptive Sensor Array Using an Affine Combination of Two Filters An Adaptive Sensor Array Using an Affine Combination of Two Filters Tõnu Trump Tallinn University of Technology Department of Radio and Telecommunication Engineering Ehitajate tee 5, 19086 Tallinn Estonia

More information

Research Article About Noneigenvector Source Localization Methods

Research Article About Noneigenvector Source Localization Methods Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 28, Article ID 48835, 13 pages doi:1.1155/28/48835 Research Article About Noneigenvector Source Localization Methods

More information

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai

PERFORMANCE ANALYSIS OF COARRAY-BASED MUSIC AND THE CRAMÉR-RAO BOUND. Mianzhi Wang, Zhen Zhang, and Arye Nehorai PERFORANCE ANALYSIS OF COARRAY-BASED USIC AND THE CRAÉR-RAO BOUND ianzhi Wang, Zhen Zhang, and Arye Nehorai Preston. Green Department of Electrical and Systems Engineering, Washington University in St.

More information

AN EXTENSION OF THE MUSIC ALGORITHM TO BROADBAND SCENARIOS USING A POLYNOMIAL EIGENVALUE DECOMPOSITION

AN EXTENSION OF THE MUSIC ALGORITHM TO BROADBAND SCENARIOS USING A POLYNOMIAL EIGENVALUE DECOMPOSITION 9th European Signal Processing Conference (EUSIPCO 2) Barcelona, Spain, August 29 - September 2, 2 AN EXTENSION OF THE MUSIC ALGORITHM TO BROADBAND SCENARIOS USING A POLYNOMIAL EIGENVALUE DECOMPOSITION

More information

Microphone-Array Signal Processing

Microphone-Array Signal Processing Microphone-Array Signal Processing, c Apolinárioi & Campos p. 1/30 Microphone-Array Signal Processing José A. Apolinário Jr. and Marcello L. R. de Campos {apolin},{mcampos}@ieee.org IME Lab. Processamento

More information

Array Signal Processing

Array Signal Processing I U G C A P G Array Signal Processing December 21 Supervisor: Zohair M. Abu-Shaban Chapter 2 Array Signal Processing In this chapter, the theoretical background will be thoroughly covered starting with

More information

BLIND SOURCE EXTRACTION FOR A COMBINED FIXED AND WIRELESS SENSOR NETWORK

BLIND SOURCE EXTRACTION FOR A COMBINED FIXED AND WIRELESS SENSOR NETWORK 2th European Signal Processing Conference (EUSIPCO 212) Bucharest, Romania, August 27-31, 212 BLIND SOURCE EXTRACTION FOR A COMBINED FIXED AND WIRELESS SENSOR NETWORK Brian Bloemendal Jakob van de Laar

More information

2D Imaging in Random Media with Active Sensor Array

2D Imaging in Random Media with Active Sensor Array 2D Imaging in Random Media with Active Sensor Array Paper Presentation: Imaging and Time Reversal in Random Media Xianyi Zeng rhodusz@stanford.edu icme, Stanford University Math 221 Presentation May 18

More information

Wideband Beamspace Processing Using Orthogonal Modal Beamformers

Wideband Beamspace Processing Using Orthogonal Modal Beamformers Noname manuscript No. (will be inserted by the editor) Wideband Beamspace Processing Using Orthogonal Modal Beamformers Thushara D. Abhayapala Darren B. Ward Received: 15 April 29 / Revised: 8 August 29/

More information

Digital Image Processing Lectures 13 & 14

Digital Image Processing Lectures 13 & 14 Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2013 Properties of KL Transform The KL transform has many desirable properties which makes

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

Direction Finding for Bistatic MIMO Radar with Non-Circular Sources

Direction Finding for Bistatic MIMO Radar with Non-Circular Sources Progress In Electromagnetics Research M, Vol. 66, 173 182, 2018 Direction Finding for Bistatic MIMO Radar with Non-Circular Sources Hao Chen 1, 2, *, Xinggan Zhang 2,YechaoBai 2, and Jinji Ma 1 Abstract

More information

arxiv: v1 [cs.ce] 3 Apr 2016

arxiv: v1 [cs.ce] 3 Apr 2016 Two Dimensional Angle of Arrival Estimation arxiv:160400594v1 [csce] 3 Apr 2016 1 Introduction Santhosh Kumar, Pradip Sircar Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Degenerate Perturbation Theory

Degenerate Perturbation Theory Physics G6037 Professor Christ 12/05/2014 Degenerate Perturbation Theory The treatment of degenerate perturbation theory presented in class is written out here in detail. 1 General framework and strategy

More information

The Linear Sampling Method and the MUSIC Algorithm

The Linear Sampling Method and the MUSIC Algorithm CODEN:LUTEDX/(TEAT-7089)/1-6/(2000) The Linear Sampling Method and the MUSIC Algorithm Margaret Cheney Department of Electroscience Electromagnetic Theory Lund Institute of Technology Sweden Margaret Cheney

More information

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University

Beamforming. A brief introduction. Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University Beamforming A brief introduction Brian D. Jeffs Associate Professor Dept. of Electrical and Computer Engineering Brigham Young University March 2008 References Barry D. Van Veen and Kevin Buckley, Beamforming:

More information

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China Progress In Electromagnetics Research Letters, Vol. 13, 11 20, 2010 BLIND DIRECTION OF ANGLE AND TIME DELAY ESTIMATION ALGORITHM FOR UNIFORM LINEAR ARRAY EMPLOYING MULTI-INVARIANCE MUSIC X. Zhang, G. Feng,

More information

Z subarray. (d,0) (Nd-d,0) (Nd,0) X subarray Y subarray

Z subarray. (d,0) (Nd-d,0) (Nd,0) X subarray Y subarray A Fast Algorithm for 2-D Direction-of-Arrival Estimation Yuntao Wu 1,Guisheng Liao 1 and H. C. So 2 1 Laboratory for Radar Signal Processing, Xidian University, Xian, China 2 Department of Computer Engineering

More information

Speaker Tracking and Beamforming

Speaker Tracking and Beamforming Speaker Tracking and Beamforming Dr. John McDonough Spoken Language Systems Saarland University January 13, 2010 Introduction Many problems in science and engineering can be formulated in terms of estimating

More information

Sample ECE275A Midterm Exam Questions

Sample ECE275A Midterm Exam Questions Sample ECE275A Midterm Exam Questions The questions given below are actual problems taken from exams given in in the past few years. Solutions to these problems will NOT be provided. These problems and

More information

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D.

COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION. Aditya K. Jagannatham and Bhaskar D. COMPLEX CONSTRAINED CRB AND ITS APPLICATION TO SEMI-BLIND MIMO AND OFDM CHANNEL ESTIMATION Aditya K Jagannatham and Bhaskar D Rao University of California, SanDiego 9500 Gilman Drive, La Jolla, CA 92093-0407

More information

The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading. N. Raj Rao (Dept. of Electrical Engineering and Computer Science)

The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading. N. Raj Rao (Dept. of Electrical Engineering and Computer Science) The Probability Distribution of the MVDR Beamformer Outputs under Diagonal Loading N. Raj Rao (Dept. of Electrical Engineering and Computer Science) & Alan Edelman (Dept. of Mathematics) Work supported

More information

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES

LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES LECTURE NOTES IN AUDIO ANALYSIS: PITCH ESTIMATION FOR DUMMIES Abstract March, 3 Mads Græsbøll Christensen Audio Analysis Lab, AD:MT Aalborg University This document contains a brief introduction to pitch

More information

arxiv: v1 [cs.it] 6 Nov 2016

arxiv: v1 [cs.it] 6 Nov 2016 UNIT CIRCLE MVDR BEAMFORMER Saurav R. Tuladhar, John R. Buck University of Massachusetts Dartmouth Electrical and Computer Engineering Department North Dartmouth, Massachusetts, USA arxiv:6.272v [cs.it]

More information

POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS

POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS POLYNOMIAL SINGULAR VALUES FOR NUMBER OF WIDEBAND SOURCES ESTIMATION AND PRINCIPAL COMPONENT ANALYSIS Russell H. Lambert RF and Advanced Mixed Signal Unit Broadcom Pasadena, CA USA russ@broadcom.com Marcel

More information