Representing Motion Chapter 2

Size: px
Start display at page:

Download "Representing Motion Chapter 2"

Transcription

1 Phenomena

2 Representing Motion Chapter 2

3 Pop Quiz! How fast are you moving at this moment? o A.) 0m/s o B.) 783 mi/h o C.) 350m/s o D.) 30 km/s

4 Pop Quiz! How fast are you moving? oa.) 0m/s ob.) 783 mi/h oc.) 350m/s od.) 30 km/s Speed of the earth s rotation around its 40 o N latitude Speed of the earth s revolution around the sun

5 Pop Quiz! How fast are you moving? oa.) 0m/s ob.) 783 mi/h oc.) 350m/s od.) 30 km/s Speed of the earth s rotation around its 40 o N latitude Speed of the earth s revolution around the sun oin order to describe motion, you need a frame of reference!

6 Frame of Reference A system of objects that are not moving with respect to one another

7 Relative Motion Movement in relation to a frame of reference. Different frames of reference will give the same object different motion.

8 Coordinate Systems

9 Coordinate Systems

10

11 Coordinate Systems

12 Distance The length of a path between two points SI Unit meter Only length of the path is important o Direction doesn t matter o Scalar (magnitude only)

13 Displacement The strait line distance and direction between two points. Vector (magnitude and direction)

14 t = t f t 0 Time Intervals Where: t 0 = initial time t f = final time t = time interval o = change

15 x = x f x 0 Displacement Where: x 0 = initial position: x f = final position x = change in position

16 Displacement If displacements are in the same direction, add the vectors. If displacements are in different directions, subtract the vectors =5 3-2 =1

17 Scalar Vector vs. Scalar Quantities o Magnitude only Vector o Magnitude and Direction

18 Scalar Quantities Vector Quantities Distance Velocity Displacement Time Temperature Force

19 Vectors and Motion A quantity that requires both a magnitude (or size) and a direction can be represented by a vector. Graphically, we represent a vector by an arrow. The velocity of this car is 100 m/s (magnitude) to the left (direction). This boy pushes on his friend with a force of 25 N to the right.

20 Displacement Vectors A displacement vector starts at an object s initial position and ends at its final position. It doesn t matter what the object did in between these two positions. In motion diagrams, the displacement vectors span successive particle positions. Slide 1-29

21 Making a Motion Diagram Slide 1-11

22 Examples of Motion Diagrams Slide 1-12

23 The Particle Model A simplifying model in which we treat the object as if all its mass were concentrated at a single point. This model helps us concentrate on the overall motion of the object. Slide 1-13

24 Velocity Vectors Slide 1-34

25 Exercise Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst into a large, very soft snowbank that gradually brings her to a halt. Draw a motion diagram for Alice. Show and label all displacement vectors. Slide 1-30

26 Checking Understanding Two runners jog along a track. The positions are shown at 1 s time intervals. Which runner is moving faster? Slide 1-18

27 Checking Understanding Two runners jog along a track. The times at each position are shown. Which runner is moving faster? They are both moving at the same speed. Slide 1-20

28 Speed (m) The car moves 40 m in 1 s. Its speed is = 40 m 1 s. The bike moves 20 m in 1 s. Its speed is = 20 m 1 s. Slide 1-22

29 Velocity Slide 1-23

30 Speed and Velocity Speed vs. Velocity o Speed Scalar o Velocity - Vector Average speed = total distance total time Average velocity: v ҧ = x = x f x 0 t t f t 0 o SI Unit: meter per second (m/s)

31 Position vs. Time Graph Give a qualitative description of the motion of the object depicted in the graph.

32 Position vs. Time Graph The object remained stationary for 1s. It then moved 40m in the positive direction for 2s. It remained stationary for 1.5s and moved 40m in the negative direction for 1.5s.

33 Position vs. Time Graph What is the total distance the object traveled? What is the object s displacement?

34 Position vs. Time Graph What is the object s average velocity between 1s and 3s? v ҧ = x = x f x 0 = 60m 20m t t f t 0 3s 1s = 40m 2s = 20m/s

35 Position vs. Time Graph What is the object s average velocity between 1s and 6s? v ҧ = x = x f x 0 = 20m 20m t t f t 0 6s 1s = 0m 5s = 0m/s What is the object s average speed between 1s and 6s? Average speed = total distance total time = 40m+40m 5s = 80m 5s = 16m/s

36 Position vs. Time Graph The average velocity of an object during the time interval t is equal to the slope of the straight line joining the initial and final points on a graph of the object s position versus time.

37 Position vs. Time Graphs The meaning of Shape Constant Velocity Positive Velocity Changing Velocity Positive Velocity Constant Velocity Slow, Rightward (+) Constant Velocity Fast, Rightward (+) Constant Velocity Slow, Leftward (+) Constant Velocity Fast, Leftward (+) Negative (-) Velocity Slow to Fast Leftward (-) Velocity Fast to Slow

38 Check Your Understanding Use the principle of slope to describe the motion of the objects depicted by the two plots below. In your description, be sure to include such information as the direction of the velocity vector (i.e., positive or negative), whether there is a constant velocity or an acceleration, and whether the object is moving slow, fast, from slow to fast or from fast to slow. Be complete in your description.

39 Position vs. Time Graphs The meaning of Slope The slope of the line on a position versus time graph is equal to the velocity of the object. Slope = y = y 2 y 1 = rise x x 2 x 1 run To determine the slope: Pick two points on the line and determine their coordinates. Determine the difference in y-coordinates of these two points (rise). Determine the difference in x-coordinates for these two points (run). Divide the difference in y-coordinates by the difference in x-coordinates (rise/run or slope). Check Your Understanding: Determine the velocity (i.e., slope) of the object as portrayed by the graph below.

40 x Tangent Lines t SLOPE On a position vs. time graph: VELOCITY SLOPE SPEED Positive Positive Steep Fast Negative Negative Gentle Slow Zero Zero Flat Zero

41 Determining the Area on a v-t Graph For velocity vs. time graphs, the area bounded by the line and the axes represents the distance traveled. The diagram shows three different velocity-time graphs; the shaded regions between the line and the axes represent the distance traveled during the stated time interval. The shaded area is representative of the distance traveled by the object during the time interval from 0 seconds to 6 seconds. This representation of the distance traveled takes on the shape of a rectangle whose area can be calculated using the appropriate equation. The shaded area is representative of the distance traveled by the object during the time interval from 0 seconds to 4 seconds. This representation of the distance traveled takes on the shape of a triangle whose area can be calculated using the appropriate equation. The shaded area is representative of the distance traveled by the object during the time interval from 2 seconds to 5 seconds. This representation of the distance traveled takes on the shape of a trapezoid whose area can be calculated using the appropriate equation. The method used to find the area under a line on a velocity-time graph depends on whether the section bounded by the line and the axes is a rectangle, a triangle or a trapezoid. Area formulae for each shape are given below.

42 Describing Motion with Velocity vs. Time Graphs - Slope Check Your Understanding The velocity-time graph for a two-stage rocket is shown below. Use the graph and your understanding of slope calculations to determine the acceleration of the rocket during the listed time intervals. o o o a. t = 0-1 second b. t = 1-4 second c. t = 4-12 second

43 Practice Problem Calculate the speed of a dog running through a field if he is covering 23.7 meters in 54 seconds.

44 Practice Problem Which object has a greater velocity, a ball rolling down a 3.4 meter hill in six seconds or a fish swimming upstream and covering 5.4 meters in 0.4 minutes?

45 Practice Problem Calculate the velocity of a mountain climber if that climber is moving northeast at a pace of 1.6 km in 1.4 hours? Give your answer in the SI unit for velocity.

46 Practice Problem If a cyclist in the Tour de France traveled southwest a distance of 12,250 meters in one hour, what would the velocity of the cyclist be?

47 Instantaneous Velocity The speed and direction of an object at a particular moment. The instantaneous velocity v is the limit of the average velocity as the time interval t becomes infinitesimally small x v = lim t 0 t

48 Instantaneous Velocity Positions of a Car at Specific Instants of Time t(s) d(m) Calculated Values of the Time Intervals, Displacements, and Average Velocities for the Car Time Interval (s) t (s) d (m) v ҧ (m/s) 1.00 to to to to to to

49 d (m) Instantaneous Velocity Motion of Car t (s)

50 Equation for Motion for Average Velocity x = vt ҧ + x 0 Look familiar???? y = mx + b Comparison of Straight Lines with Position-Time Graphs General Variable y Motion Variable x m x vҧ t b x 0

51

Chapter 1. Representing Motion. 1 Representing Motion. Making a Motion Diagram. Four Types of Motion We ll Study

Chapter 1. Representing Motion. 1 Representing Motion. Making a Motion Diagram. Four Types of Motion We ll Study Chapter 1 1 Representing Motion Representing Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Slide 1-2 Slide 1-3 Slide 1-4 Four Types of Motion We ll Study Making a

More information

Chapter 1. Representing Motion. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 1. Representing Motion. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 1 Representing Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 1 1 Representing Motion Slide 1-2 Slide 1-3 Slide 1-4 2 Reading Quiz 1. What is the difference

More information

Chapter 1. Representing Motion. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 1. Representing Motion. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 1 Representing Motion PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 1 Representing Motion Slide 1-2 Slide 1-3 Slide 1-4 Reading Quiz 1. What is the difference

More information

Graphical Analysis Part III. Motion Graphs. Basic Equations. Velocity is Constant. acceleration is zero. and. becomes

Graphical Analysis Part III. Motion Graphs. Basic Equations. Velocity is Constant. acceleration is zero. and. becomes Graphical Analysis Part III Motion Graphs Basic Equations d = vt+ 0 1 at v = v 0 + at Velocity is Constant acceleration is zero and becomes 1 d = v 0 t+ at d = vt 1 Velocity is Constant the slope of d

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

Chapter 3: Introduction to Kinematics

Chapter 3: Introduction to Kinematics Chapter 3: Introduction to Kinematics Kari Eloranta 2018 Jyväskylän Lyseon lukio Pre Diploma Program Year October 11, 2017 1 / 17 3.1 Displacement Definition of Displacement Displacement is the change

More information

Which car/s is/are undergoing an acceleration?

Which car/s is/are undergoing an acceleration? Which car/s is/are undergoing an acceleration? Which car experiences the greatest acceleration? Match a Graph Consider the position-time graphs below. Each one of the 3 lines on the position-time graph

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved.

Linear Motion 1. Scalars and Vectors. Scalars & Vectors. Scalars: fully described by magnitude (or size) alone. That is, direction is not involved. Linear Motion 1 Aristotle 384 B.C. - 322 B.C. Galileo 1564-1642 Scalars and Vectors The motion of objects can be described by words such as distance, displacement, speed, velocity, and acceleration. Scalars

More information

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2.

Topic 2.1 Motion. Topic 2.1 Motion. Kari Eloranta Jyväskylän Lyseon lukio. August 18, Kari Eloranta 2017 Topic 2. Topic 2.1 Motion Kari Eloranta 2017 Jyväskylän Lyseon lukio August 18, 2017 Velocity and Speed 2.1: Kinematic Quanties: Displacement Definition of Displacement Displacement is the change in position. The

More information

Motion. Slope. Slope. Distance and Displacement

Motion. Slope. Slope. Distance and Displacement Steepness or slope base (run), height (rise) slope = rise/run slope down (\) : - (rise/run) slope up (/) : + (rise/run) sudden change of slope curved hill - the slope is always changing procedure to find

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Four Basic Types of Motion Pearson Education, Inc.

Four Basic Types of Motion Pearson Education, Inc. Four Basic Types of Motion Making a Motion Diagram An easy way to study motion is to make a video of a moving object. A video camera takes images at a fixed rate, typically 30 every second. Each separate

More information

Position-versus-Time Graphs

Position-versus-Time Graphs Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel

Acceleration. 3. Changing Direction occurs when the velocity and acceleration are neither parallel nor anti-parallel Acceleration When the velocity of an object changes, we say that the object is accelerating. This acceleration can take one of three forms: 1. Speeding Up occurs when the object s velocity and acceleration

More information

Chapter 3. Accelerated Motion

Chapter 3. Accelerated Motion Chapter 3 Accelerated Motion Chapter 3 Accelerated Motion In this chapter you will: Develop descriptions of accelerated motions. Use graphs and equations to solve problems involving moving objects. Describe

More information

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment

A B C D. Unit 6 (1-Dimensional Motion) Practice Assessment Unit 6 (1-Dimensional Motion) Practice Assessment Choose the best answer to the following questions. Indicate the confidence in your answer by writing C (Confident), S (So-so), or G (Guessed) next to the

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

MOTION. Chapter 2: Sections 1 and 2

MOTION. Chapter 2: Sections 1 and 2 MOTION Chapter 2: Sections 1 and 2 Vocab: Ch 2.1-2.2 Distance Displacement Speed Average speed Instantaneous speed Velocity Acceleration Describing Motion Motion is an object s change in position relative

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Displacement, Velocity & Acceleration

Displacement, Velocity & Acceleration Displacement, Velocity & Acceleration Honors/AP Physics Mr. Velazquez Rm. 254 1 Velocity vs. Speed Speed and velocity can both be defined as a change in position or displacement over time. However, speed

More information

UAM Paradigm Lab. Uniform Acceleration Background. X-t graph. V-t graph now. What about displacement? *Displacement method 2 9/18/2017

UAM Paradigm Lab. Uniform Acceleration Background. X-t graph. V-t graph now. What about displacement? *Displacement method 2 9/18/2017 9/8/07 UAM Paradigm Lab Uniform Acceleration Background Wheel down a rail Observations Dots got further apart as the wheel rolled down rail This means the change in position increased over time X-t graph

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Position-Time Graphs

Position-Time Graphs Position-Time Graphs Suppose that a man is jogging at a constant velocity of 5.0 m / s. A data table representing the man s motion is shown below: If we plot this data on a graph, we get: 0 0 1.0 5.0 2.0

More information

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion

Jan 31 8:19 PM. Chapter 9: Uniform Rectilinear Motion Unit 3: Kinematics Uniform Rectilinear Motion (velocity is constant) Uniform Accelerated Rectilinear Motion The Motion of Projectiles Jan 31 8:19 PM Chapter 9: Uniform Rectilinear Motion Position: point

More information

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH

ANIL TUTORIALS. Motion IMPORTANT NOTES ANIL TUTORIALS,SECTOR-5,DEVENDRA NAGAR,HOUSE NO-D/156,RAIPUR,C.G,PH Motion 1. Rest : When a body does not change its position with respect to time and its surroundings, the body is said to be at rest. 2. Motion : When a body continuously changes its position with respect

More information

The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are

The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are The graphs above are based on the average data from our marble trials. What are the differences between these two graphs? Why do you suppose they are different? What does each graph tell us about our experiment?

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Solving Problems In Physics

Solving Problems In Physics Solving Problems In Physics 1. Read the problem carefully. 2. Identify what is given. 3. Identify the unknown. 4. Find a useable equation and solve for the unknown quantity. 5. Substitute the given quantities.

More information

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics Trigonometry I Pythagorean theorem: Trigonometry II 90 180 270 360 450 540 630 720 sin(x) and cos(x) are mathematical functions that describe oscillations. This will be important later, when we talk about

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics.

Chapter 2. Motion along a straight line. We find moving objects all around us. The study of motion is called kinematics. Chapter 2 Motion along a straight line 2.2 Motion We find moving objects all around us. The study of motion is called kinematics. Examples: The Earth orbits around the Sun A roadway moves with Earth s

More information

Physic 231 Lecture 3. Main points of today s lecture. for constant acceleration: a = a; assuming also t0. v = lim

Physic 231 Lecture 3. Main points of today s lecture. for constant acceleration: a = a; assuming also t0. v = lim Physic 231 Lecture 3 Main points of today s lecture Δx v = ; Δ t = t t0 for constant acceleration: a = a; assuming also t0 = 0 Δ x = v v= v0 + at Δx 1 v = lim Δ x = Δ t 0 ( v+ vo ) t 2 Δv 1 2 a = ; Δ v=

More information

Four Types of Motion We ll Study

Four Types of Motion We ll Study Four Types of Motion We ll Study The branch of mechanics that studies the motion of a body without caring about what caused the motion. Kinematics definitions Kinematics branch of physics; study of motion

More information

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion.

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion. Article retrieved from Brittanica, Retrieved 6/27/2016 Velocity Velocity has a scientific meaning that is slightly different from that of speed. Speed is the rate of an object s motion, while velocity

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

1.1 Motion and Motion Graphs

1.1 Motion and Motion Graphs Figure 1 A highway is a good example of the physics of motion in action. kinematics the study of motion without considering the forces that produce the motion dynamics the study of the causes of motion

More information

Kinematics. Chapter 2. Position-Time Graph. Position

Kinematics. Chapter 2. Position-Time Graph. Position Kinematics Chapter 2 Motion in One Dimension Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Types of Motion Translational An example is a car traveling on a highway. Rotational An example is the Earth s spin on its axis. Vibrational An example is the back-and-forth

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Chapter 2 Kinematics in One Dimension:

Chapter 2 Kinematics in One Dimension: Chapter 2 Kinematics in One Dimension: Vector / Scaler Quantities Displacement, Velocity, Acceleration Graphing Motion Distance vs Time Graphs Velocity vs Time Graphs Solving Problems Free Falling Objects

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue.

Chapter 2: Representing Motion. Click the mouse or press the spacebar to continue. Chapter 2: Representing Motion Click the mouse or press the spacebar to continue. Chapter 2 Representing Motion In this chapter you will: Represent motion through the use of words, motion diagrams, and

More information

Introduction to Kinematics. Motion, Forces and Energy

Introduction to Kinematics. Motion, Forces and Energy Introduction to Kinematics Motion, Forces and Energy Mechanics: The study of motion Kinematics The description of how things move 1-D and 2-D motion Dynamics The study of the forces that cause motion Newton

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Suggested Videos for Chapter 1 Prelecture Videos Introduction Putting Numbers on Nature Video Tutor Solutions Representing Motion Class Videos Series

More information

PHY131H1F Introduction to Physics I Class 2

PHY131H1F Introduction to Physics I Class 2 PHY131H1F Introduction to Physics I Class 2 Today: Chapter 1. Motion Diagrams Particle Model Vector Addition, Subtraction Position, velocity, and acceleration Position vs. time graphs Garden-Variety Clicker

More information

CHAPTER 2. Motion Notes

CHAPTER 2. Motion Notes CHAPTER 2 Motion Notes DISTANCE AND DISPLACEMENT Distance and displacement are two quantities which may seem to mean the same thing, yet have distinctly different definitions and meanings. DISTANCE Distance

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

Mechanics is the study of motion, and is typically subdivided into two main categories:

Mechanics is the study of motion, and is typically subdivided into two main categories: Ch1 Page 1 Sunday, September 01, 2013 1:43 PM Brock University PHYS 1P21/1P91 Mechanics and Introduction to Relativity Course Overview Overview of Mechanics Core theories of mechanics: Quantum Field Theory

More information

1. How could you determine the average speed of an object whose motion is represented in the graphs above?

1. How could you determine the average speed of an object whose motion is represented in the graphs above? AP Physics Lesson 1 b Kinematics Graphical Analysis and Kinematic Equation Use Outcomes Interpret graphical evidence of motion (uniform speed & uniform acceleration). Apply an understanding of position

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chapter 2 Motion along a straight line Introduction: Study of the motion of objects Physics studies: Properties of matter and energy: solid state physics, thermal physics/ thermodynamics, atomic physics,

More information

Physical Science Chapter 11. Motion

Physical Science Chapter 11. Motion Physical Science Chapter 11 Motion Motion Definition An object is in motion when its distance from another object is changing. Relative Motion Relative motion is movement in relation to a REFERENCE POINT.

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion

Motion along a straight line. Physics 11a. 4 Basic Quantities in Kinematics. Motion Physics 11a Motion along a straight line Motion Position and Average velocity and average speed Instantaneous velocity and speed Acceleration Constant acceleration: A special case Free fall acceleration

More information

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:.

Preliminary Physics. Moving About. DUXCollege. Week 2. Student name:. Class code:.. Teacher name:. Week 2 Student name:. Class code:.. Teacher name:. DUXCollege Week 2 Theory 1 Present information graphically of: o Displacement vs time o Velocity vs time for objects with uniform and non-uniform linear

More information

1 (a) A bus travels at a constant speed. It stops for a short time and then travels at a higher constant speed.

1 (a) A bus travels at a constant speed. It stops for a short time and then travels at a higher constant speed. 1 (a) A bus travels at a constant. It stops for a short time and then travels at a higher constant. Using the axes in Fig. 1.1, draw a distance-time graph for this bus journey. distance time Fig. 1.1 [3]

More information

MOTION ALONG A STRAIGHT LINE

MOTION ALONG A STRAIGHT LINE MOTION ALONG A STRAIGHT LINE 2 21 IDENTIFY: The average velocity is Let be upward EXECUTE: (a) EVALUATE: For the first 115 s of the flight, When the velocity isn t constant the average velocity depends

More information

Part D: Kinematic Graphing - ANSWERS

Part D: Kinematic Graphing - ANSWERS Part D: Kinematic Graphing - ANSWERS 31. On the position-time graph below, sketch a plot representing the motion of an object which is.... Label each line with the corresponding letter (e.g., "a", "b",

More information

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date:

+ at. mav x. = mv3 x 2 ma x. Exam 1--PHYS 101--F14--Chapters 1 & 2. Name: Class: Date: Class: Date: Exam 1--PHYS 101--F14--Chapters 1 & 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The following are not standards for time. However, which

More information

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ]

Chapter 8 : Motion. KEY CONCEPTS [ *rating as per the significance of concept ] Chapter 8 : Motion KEY CONCEPTS [ *rating as per the significance of concept ] 1 Motion **** 2 Graphical Representation of Motion *** & Graphs 3 Equation of motion **** 4 Uniform Circular Motion ** 1 Motion

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

Free Response- Exam Review

Free Response- Exam Review Free Response- Exam Review Name Base your answers to questions 1 through 3 on the information and diagram below and on your knowledge of physics. A 150-newton force, applied to a wooden crate at an angle

More information

Lecture 2- Linear Motion Chapter 10

Lecture 2- Linear Motion Chapter 10 1 / 37 Lecture 2- Linear Motion Chapter 10 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 12 th, 2018 Contact Already read the syllabus

More information

Kinematics Unit. Measurement

Kinematics Unit. Measurement Kinematics Unit Measurement The Nature of Science Observation: important first step toward scientific theory; requires imagination to tell what is important. Theories: created to explain observations;

More information

Chapter 2 Solutions. = 16.1 m/s. = 11.5 m/s m. 180 km = ( ) h. = 2.5 m/s. = 3.3 m/s

Chapter 2 Solutions. = 16.1 m/s. = 11.5 m/s m. 180 km = ( ) h. = 2.5 m/s. = 3.3 m/s Chapter Solutions *.1 (a) v.30 m/s v x 57.5 m 9.0 m 3.00 s 16.1 m/s (c) v x 57.5 m 0 m 5.00 s 11.5 m/s. (a) Displacement (8.50 10 4 m/h) 35.0 60.0 h + 130 103 m x (49.6 + 130) 10 3 m 180 km Average velocity

More information

Lecture Notes Kinematics Recap 2.4 Acceleration

Lecture Notes Kinematics Recap 2.4 Acceleration Lecture Notes 2.5-2.9 Kinematics Recap 2.4 Acceleration Acceleration is the rate at which velocity changes. The SI unit for acceleration is m/s 2 Acceleration is a vector, and thus has both a magnitude

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Name: Total Points: Physics 201. Midterm 1

Name: Total Points: Physics 201. Midterm 1 Physics 201 Midterm 1 QUESTION 1 [25 points] An object moves in 1 dimension It starts at rest and uniformly accelerates at 5m/s 2 for 2s It then moves with constant velocity for 4s It then uniformly accelerates

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

Unit 1 Parent Guide: Kinematics

Unit 1 Parent Guide: Kinematics Unit 1 Parent Guide: Kinematics Kinematics is the study of the motion of objects. Scientists can represent this information in the following ways: written and verbal descriptions, mathematically (with

More information

Module 4: One-Dimensional Kinematics

Module 4: One-Dimensional Kinematics 4.1 Introduction Module 4: One-Dimensional Kinematics Kinematics is the mathematical description of motion. The term is derived from the Greek word kinema, meaning movement. In order to quantify motion,

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

PS113 Chapter 2. Kinematics in one dimension

PS113 Chapter 2. Kinematics in one dimension PS113 Chapter 2 Kinematics in one dimension 1 Displacement Displacement is defined as the vector drawn from an object s initial position toward its final position and has a magnitude that equals the shortest

More information

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute

Physics 30S Unit 2 Motion Graphs. Mrs. Kornelsen Teulon Collegiate Institute Physics 30S Unit 2 Motion Graphs Mrs. Kornelsen Teulon Collegiate Institute 1 Grade 11 Physics Graphing Properties Property d-t Graph v-t Graph a-t Graph Not Moving Does Not Apply Constant Velocity Change

More information

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below:

Page 1 / 15. Motion Unit Test. Name: Motion ONLY, no forces. Question 1 (1 point) Examine the graphs below: Motion Unit Test Motion ONLY, no forces Name: Question 1 (1 point) Examine the graphs below: Which of the four graphs shows the runner with the fastest speed? A. Graph A B. Graph B C. Graph C D. Graph

More information

SPH 4C Unit 1 Motion and its Applications

SPH 4C Unit 1 Motion and its Applications SPH 4C Unit 1 Motion and its Applications Review of Trigonometry and Pythagorean Theorem Learning Goal: I can use SOH CAH TOA and Pythagorean Theorem in real world applications. Your Calculator You will

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Chapter 2. Motion in One Dimension. Professor Wa el Salah

Chapter 2. Motion in One Dimension. Professor Wa el Salah Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now, will consider motion in one dimension Along a straight

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Unit 1 Physics and Chemistry Kinematics

Unit 1 Physics and Chemistry Kinematics 4 th ESO. UNIT 1: KINEMATICS Kinematics is a branch of Physics which describes the motion of bodies without regard to its causes. A reference frame is a set of coordinate axis in terms of which the position

More information

Lecture Presentation Chapter 1 Representing Motion

Lecture Presentation Chapter 1 Representing Motion Lecture Presentation Chapter 1 Representing Motion Chapter Assignment # s 65, 67, & RT-2 Chapter Goal: To introduce the fundamental concepts of motion and to review related basic mathematical principles.

More information

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION

Experiment 3. d s = 3-2 t ANALYSIS OF ONE DIMENSIONAL MOTION Experiment 3 ANALYSIS OF ONE DIMENSIONAL MOTION Objectives 1. To establish a mathematical relationship between the position and the velocity of an object in motion. 2. To define the velocity as the change

More information

220A Solutions. Assignment 2

220A Solutions. Assignment 2 220A Solutions Assignment 2 2-4. A picture is worth 1000 words. Draw an arrow from the starting to the ending point to get the displacement as follows: y x - 4.2 cm 3.4 cm x The displacement is just 7.6

More information

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph.

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Physics Lecture #2: Position Time Graphs If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Suppose a

More information

QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are

QuickCheck 1.5. An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are APPY1 Review QuickCheck 1.5 An ant zig-zags back and forth on a picnic table as shown. The ant s distance traveled and displacement are A. 50 cm and 50 cm B. 30 cm and 50 cm C. 50 cm and 30 cm D. 50 cm

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

1 Concepts of Motion. Introduction and Part I Overview. Background Information. Recommended class days: 3 (including course introduction)

1 Concepts of Motion. Introduction and Part I Overview. Background Information. Recommended class days: 3 (including course introduction) 1 Concepts of Motion Recommended class days: 3 (including course introduction) Introduction and Part I Overview Each of the seven parts of the textbook opens with an overview and closes with a summary.

More information

Chapter 9 Review. Block: Date:

Chapter 9 Review. Block: Date: Science 10 Chapter 9 Review Name: Block: Date: 1. A change in velocity occurs when the of an object changes, or its of motion changes, or both. These changes in velocity can either be or. 2. To calculate

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance

1. Complete the following table: Term Definition Unit Examples Speed Velocity Scalar Vector Displacement Distance Motion Review Name: Answer ALL questions on separate paper. Draw diagrams to help you visualize each scenario. Show all steps, as we have in class, to solve math questions. 1. Complete the following table:

More information

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once.

A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. PART III. KINEMATICS A. VOCABULARY REVIEWS On the line, write the term that correctly completes each statement. Use each term once. 1. rise (Δy) The vertical separation of any two points on a curve is

More information

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration Table of Contents Motion 1 Describing Motion 2 Velocity and Momentum 3 Acceleration 1 Describing Motion Motion Are distance and time important in describing running events at the track-and-field meets

More information