Superconducting Technology for Next Generation (HEP) Accelerators

Size: px
Start display at page:

Download "Superconducting Technology for Next Generation (HEP) Accelerators"

Transcription

1 Superconducting Technology for Next Generation (HEP) Accelerators Lucio Rossi CERN High Luminosity LHC Project Leader AIME-SCMED, Madrid 24 Nov 2016

2 What SC brings to HEP accelerators today L. AIME- Madrid 24 Nov

3 B dip 8.3 T R dip 3 km L dip 15 m 1232 L tunnel = 27 km 1500 tonnes of top quality SC cables MJ of magnetic energy 1800 Power Converter from 60 A to 24 ka 1800 HTS Leads 11 kw@1.9 K L. AIME- Madrid 24 Nov

4 LHC ; the largest scientific instrument 27 km, p-p at 7+7 TeV start, 4+4 in x 15 m Twin Dipoles Operational field 8.3 ka (9 T design) HEII cooling, 1.9 K with 3 km circuits (130 tonnes He inventory). Field homogeneity of 10-4, bending strength uniformity better then Field quality control (geometric and SC effects) at L. AIME- Madrid 24 Nov

5 LHC, cont. 392 Main Quads Two-In-One rated for a peak field of 7 T. About 100 other Two-in-One MQs 32 MQX (low- ) single bore for luminosity (design L= cm -2 s - 1 ), 70 mm apertures, about 8 T peak field, high quality A «zoo» of 7600 «small» Sc magnets (correctors and higher order magnets Total: 9 MJ stored energy (at nominal) Large detector magnets ATLAS toroid 25 m long 1.2 GJ CMS solenois 12 m long 2.5 GJ L. AIME- Madrid 24 Nov

6 SC Magnets vs Resisitve shape for colliders L. AIME- Madrid 24 Nov

7 LHC Current Leads: based on HTS J c =12500 A/cm 77 K self field L. AIME- Madrid 24 Nov

8 RF, Cryogenics 400 MHz Standing wave RF 4 single cell cavities in cryomodule, 2 cryomod per beam. Total 16 cavities. Sputtered niobium design (as LEP) Gradient 5.5 MV/m nominal (8 MV/m available) Nominal 2MV, up to 3 MV at 8 MV/m Cryo : 8 x 18 kw@4.5k L. AIME- Madrid 24 Nov

9 The harvest of LHC Run : 0.04 fb -1 7 TeV CoM Commissioning 2011: 6.1 fb -1 7 TeV CoM exploring limits 2012: 23.3 fb -1 8 TeV CoM production L. AIME- Madrid 24 Nov

10 And immediate Award for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider L. AIME- Madrid 24 Nov

11 Machine performance better than expected L. AIME- Madrid 24 Nov

12 Availability L. AIME- Madrid 24 Nov

13 Fault Analysis: SC and cryo do very well! L. AIME- Madrid 24 Nov

14 And then? L. AIME- Madrid 24 Nov

15 The HL-LHC project A peak luminosity of L peak = cm -2 s -1 with levelling, allowing: An integrated luminosity of 250 fb -1 per year, enabling the goal of L int = 3000 fb -1 ten times the luminosity of the LHC. Ultimate L peak ult cm -2 s -1 and Integrated L int ult 4000 fb -1 Technical limits to lumi increase (Machine & Experiments) L. AIME- Madrid 24 Nov

16 L. AIME- Madrid 24 Nov

17 HiLumi & Collaborations: the long route Beyond FP7: CEA, INFN. UK CIEMAT, Uppsala Canada/Triumf? China/IHEP? Russia/BINP? L. AIME- Madrid 24 Nov

18 HL-LHC Technical infrastr. on surface - Point 5 SU Ventilation units SU chillers & pumping stations SD He refrigerator SF cooling towers SHM Helium compressor station Access system L. AIME- Madrid 24 Nov

19 HL-LHC underground structures - Point 1 UA13 UL13 UPR13 P1 (ATLAS) UR15 - Minimum distance of ~ 15 m between HL-LHC and experiment structures ~ 7 m between HL-LHC galleries and LHC tunnel (reduction of radiation & deformation impacts) PM17 UA17 UL17 US17 UW17 UPR17 L. AIME- Madrid 24 Nov

20 FIRST: SC developments Smaller Filament Size US CDP and LARP Bruker devel. for Hilumi 0.85 mm RRP Value Quantity [km] n billets 9 Layout 108 Average I c, RMS [A] 720.1, 22.4 I c spec [A] 632 Average RRR, RMS 290, 51.4 RRR spec 150 Average J c, RMS [A/mm 2 ] 2760, 85.0 Average B c2, RMS [T] 25.6, 0.45 L. AIME- Madrid 24 Nov

21 Then: Magnet development with a precise (viable) goal. Plot from 2011 L. AIME- Madrid 24 Nov

22 The HiLumi IR Magnet zoo Nb 3 Sn L. AIME- Madrid 24 Nov

23 The upgrade backbone: Nb3Sn quadrupole technology for HiLumi L. AIME- Madrid 24 Nov

24 Need large infrastructure (reaction oven 10 m) L. AIME- Madrid 24 Nov

25 Φ 570 mm 11T Dipole for HiLumi LHC Design features LMBHB Collar Removable pole Loading plate Filler wedge Stress relief Inner layer (four blocks) Outer layer (two blocks) Collaring key 11T dipole cryo-assembly 11T dipole cold mass assembly Like the LHC main dipole, the 11 T dipole has a two-in-one structure Cold mass length: m, weight 8 t, magnetic length = m A pair of MBH will produce the same integrated field as the MB, 119 T m at ka Φ 60 mm Shrinking cylinder Bus bars Heat exchanger pipe Central lamination Yoke lamination Cold bore tube N-line Yoke shim Support pad L. AIME- Madrid 24 Nov

26 11 T dipole technology L. AIME- Madrid 24 Nov

27 Excelent results of MQXF quad : 13 T! and also the model of 11 T went beyond 12 T 13 T! L. AIME- Madrid 24 Nov

28 SC Links for Magnet Cold Powering ext 65 mm Mass 11 kg/m Length 100 m 4 18 ka ka ka 38 Units ka L. AIME- Madrid 24 Nov

29 Critical current (A) Some project highlights 20 m - 20 ka 24 K successful test in 2015 Six cryostats 60 m long specified and ordered from industry (three at CERN) 80 km MgB 2 wire delivered 200 km MgB 2 wire ordered Spec Spec Spec Sample number 29 billets More than 500 samples measured Unit lengths above 500 m Started cabling of MgB 2 wire in industry L. AIME- Madrid 24 Nov

30 Manipulation of beam at 10 fs level Crab Cavities RF crab cavity deflects head and tail in opposite direction so that collision is effectively head on and then luminosity is maximized Crab cavity maximzes the lumi and can be used also for lumimosity levelling: if the lumi is too high, initially you don t use it, so lumi is reduced by the geometrical factor. Then they are slowly turned on to compensate the proton burning L. AIME- Madrid 24 Nov

31 Prototype Cryomodules Vertical crossing for ATLAS, first one to go to SPS 2018 Atm Pressure ~10 7 mbar mbar Horizontal crossing for CMS Cavities starting K 2K 80K 2K 300K 2K L. AIME- Madrid 24 Nov

32 Shape of (compact) Crab Cavities DQW RFD Bulk Nb cavities, Dipolar symmetry V T = 3.4 MV (E p, B p 40 MV/m, 70 mt) Stored energy ~ J CERN : DQW 10 cavity, 5 Cryomodules US AUP : RFD 10 cavities, 5 Cryomod. L. AIME- Madrid 24 Nov

33 The Inner Triplet region with in-kinds Connection to LHC (UL) Service gallery (UR) SC Links DFX D1 CP Q3 Q2b Q2a Q1 TAXS DFM L. AIME- Madrid 24 Nov

34 The MS region with in-kinds UA gallery Service cavern (BBLR) Q4 Crab cavities D2 Collimators TAXN L. AIME- Madrid 24 Nov

35 CERN timeline construction LEP physics upgrade Design R&D prototyping LHC construction physics Design R&D prototyping HL-LHC construction physics Design R&D FCC prototyping construction physics L. AIME- Madrid 24 Nov

36 The FCC playground Geneva PS LHC SPS LHC 27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi HE-LHC 27 km, 20 T 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS FCC-hh 80 km, 20 T 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, 16 T 100 TeV (c.o.m.) 6000 tons Nb 3 Sn 3000 tons Nb-Ti L. AIME- Madrid 24 Nov

37 In small coils the 13 T barrier is yielding! LBNL HD1 Magnets with bore CERN RMC L. AIME- Madrid 24 Nov

38 Magnet design for 16 T P. McIntyre, 2005 E. Todesco 2013 D. Schoerling 2015 Blocks Cos-q J.M. Van Oort, R. Scanlan, 1994 Common coils Canted Cos-q R. Gupta, 1997 E. Todesco, 2013 GL. Sabbi, 2014 S. Caspi, 2014 L. AIME- Madrid 24 Nov

39 And the 20 T? 20 T for HE-LHC A 24 T LHC Tripler E. Todesco, L. Rossi (CERN) P. McIntyre (TAMU) Stress management Nb 3 Sn All options are based on an LTS winding (outsert), and an HTS field booster (insert) HTS Cost optimized, graded winding Nb-Ti L. AIME- Madrid 24 Nov

40 HTS is coming! Maget test in spring 2017 : hope for > 5 T 6 T HTS (YBCO) insert for test in FReSCa2 (no bore) 5 T HTS (YBCO) stand-alone dipole for test in FReSCa2 (40 mm bore) L. AIME- Madrid 24 Nov

41 Synchrotron radiation/beam screen Internal coating with SC to lessen impedance High synchrotron radiation load (SR) of 50 TeV: ~30 W/m/beam (@16 T) 5 MW total in arcs (LHC <0.2W/m) New type of ante-chamber - absorption of synchrotron radiation - avoids photo-electrons, helps vacuum Taking into account overall cryogenic efficiency and power consumption of the accelerator, the synchrotron radiation has to be absorbed at 50 K Copper coating as in the LHC Collaborfation CERN with TU Vienna SPIN Genova ICMAB-CSIC - Spain L. AIME- Madrid 24 Nov

42 Conclusions Accelerators remain a driver for SC technology SC requires (long) R&D and perseverance Cryogenics technology, even at 1.9 K remains expensive but is something we can master reasonably well, and availability is great The collaboration among laboratories and between research institutes and Industry is critical for TECHNOLOGY ADVANCEMENT We have industry at CERN for the HiLumi Magnet R&D and then to subcontract to Industry even the small mini.-series for Hilumi, for preparing the ground for future FCC/HE-LHC L. AIME- Madrid 24 Nov

43 Thanks to many colleagues: E. Todesco, F. Savary (HiLumi Magnets) A. Ballarino (SC links, CLs) R. Calaga (Craab Cavity) L. Tavian (Tech. Infrasturcture) L. Bottura (FCC magnets) L. AIME- Madrid 24 Nov

Status of HL-LHC and Superconducting Magnets for future Colliders. Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader

Status of HL-LHC and Superconducting Magnets for future Colliders. Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader Status of HL-LHC and Superconducting Magnets for future Colliders Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader Tsung-Dao Lee Institute Shanghai Physics BSM Workshop 2 July 2018

More information

The Large Hadron Collider Lyndon Evans CERN

The Large Hadron Collider Lyndon Evans CERN The Large Hadron Collider Lyndon Evans CERN 1.9 K 2.728 K T The coldest ring in the universe! L.R. Evans 1 The Large Hadron Collider This lecture. LHC Technologies Magnets Cryogenics Radiofrequency Vacuum

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

100 TeV Collider Magnets

100 TeV Collider Magnets 100 TeV Collider Magnets Alexander Zlobin Fermilab 1st CFHEP Symposium on circular collider physics 23-25 February 2014 IHEP, Beijing (China) Introduction v Circular collider energy scales with the strength

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM Impact of the forces due to CLIQ discharges on the MQXF Beam Screen Marco Morrone, Cedric Garion TE-VSC-DLM The High Luminosity - LHC project HL-LHC Beam screen design - Beam screen dimensions - Conceptual

More information

Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN

Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN Transporting Tens of Gigawatts of Green Power to the Market Brainstorming Workshop

More information

Preliminary design of the new HL-LHC beam screen for the low-β triplets

Preliminary design of the new HL-LHC beam screen for the low-β triplets Preliminary design of the new HL-LHC beam screen for the low-β triplets Marco Morrone TE-VSC-DLM 15/10/2015 Contents o CERN The Hi Lumi upgrade o Functional requirements -Functional study -Current vs new

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System CERN-ACC-2014-0065 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Milestone Report Cryogenic Scenarios for the Cold Powering System Ballarino, A (CERN) et al 27 May 2014 The HiLumi LHC

More information

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris LHC accelerator status and prospects 2 nd September 2016 - Paris LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 :

More information

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN The LHC Collider STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN Outline of Talk The LHC Stored energy and protection systems 2008 start-up 2008 accident

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

New European Accelerator Project EuCARD: Work Package on High Field Magnets

New European Accelerator Project EuCARD: Work Package on High Field Magnets New European Accelerator Project EuCARD: Work Package on High Field Magnets Gijs de Rijk CERN, Technology Department, 1211 Genève 23, Switzerland; Phone: +41-22767 5261; Fax: +41-22-767-6300; email: gijs.de.rijk@cern.ch

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

Why are particle accelerators so inefficient?

Why are particle accelerators so inefficient? Why are particle accelerators so inefficient? Philippe Lebrun CERN, Geneva, Switzerland Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group RING-RING DESIGN Miriam Fitterer, CERN - KIT for the LHeC study group LHeC Design Options LHeC Design Options Linac-Ring LHeC Design Options Linac-Ring Ring-Ring Point 4 P Z4 5 P M4 5 P X4 6 Point 5 P

More information

PUBLICATION. The Global Future Circular Colliders Effort

PUBLICATION. The Global Future Circular Colliders Effort CERN-ACC-SLIDES-2016-0016 Future Circular Collider PUBLICATION The Global Future Circular Colliders Effort Benedikt, Michael (CERN) et al. 09 August 2016 The research leading to this document is part of

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

20 T Block Dipole: Features and Challenges

20 T Block Dipole: Features and Challenges 20 T Block Dipole: Features and Challenges GianLuca Sabbi, Xiaorong Wang, LBNL Acknowledgment: Daniel R. Dietderich, LBNL Emmanuele Ravaioli and Jonas Blomberg Ghini, CERN ICFA Mini Workshop on High Field

More information

The Large Hadron Collider Performance, technology & future upgrades

The Large Hadron Collider Performance, technology & future upgrades The Large Hadron Collider Performance, technology & future upgrades Philippe Lebrun CERN retired & European Scientific Institute, Archamps Technopole, France Joint US-CERN-Japan-Russia International Accelerator

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

The LHC: the energy, cooling, and operation. Susmita Jyotishmati

The LHC: the energy, cooling, and operation. Susmita Jyotishmati The LHC: the energy, cooling, and operation Susmita Jyotishmati LHC design parameters Nominal LHC parameters Beam injection energy (TeV) 0.45 Beam energy (TeV) 7.0 Number of particles per bunch 1.15

More information

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug ! " # # $ ' ( # # $ %& ) Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug. 2009. http://www.ippp.dur.ac.uk/workshops/09/sussp65/programme/

More information

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector

Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector Superconducting Magnet with a Minimal Steel Yoke for the Future Circular Collider Detector V. I. Klyukhin Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119992, Russia

More information

Superconducting Magnet Development for the LHC Upgrades

Superconducting Magnet Development for the LHC Upgrades Review Article Superconducting Magnet Development for the LHC Upgrades Lucio ROSSI * Synopsis: LHC is now delivering proton and heavy ion collisions at the highest energy. Upgrading the LHC beyond its

More information

EUCARD MAGNET DEVELOPMENT

EUCARD MAGNET DEVELOPMENT Paper selected from the Proceedings of the EuCARD - HE-LHC'10 AccNet Mini-Workshop on a "High Energy LHC" EUCARD MAGNET DEVELOPMENT Gijs de Rijk, CERN, Geneva, Switzerland. Abstract The FP7-EuCARD work

More information

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d.

3.2.2 Magnets. The properties of the quadrupoles, sextupoles and correctors are listed in tables t322_b,_c and _d. 3.2.2 Magnets The characteristics for the two types of combined function magnets,bd and BF, are listed in table t322_a. Their cross-sections are shown, together with the vacuum chamber, in Figure f322_a.

More information

LHC Upgrades and Future Circular Colliders

LHC Upgrades and Future Circular Colliders LHC Upgrades and Future Circular Colliders M. Benedikt gratefully acknowledging input from HL-LHC project team, FCC coordination group global design study team and many HL-LHC SPS other contributors. Particular

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet

PUBLICATION. Thermal Design of an Nb3Sn High Field Accelerator Magnet EuCARD-CON-2011-057 European Coordination for Accelerator Research and Development PUBLICATION Thermal Design of an Nb3Sn High Field Accelerator Magnet Pietrowicz, S (CEA-irfu, on leave from Wroclaw University

More information

BEAM DYNAMICS STUDIES FOR HILUMI LHC

BEAM DYNAMICS STUDIES FOR HILUMI LHC BEAM DYNAMICS STUDIES FOR HILUMI LHC BARBARA DALENA IN COLLABORATION WITH: J. PAYET, A. CHANCÉ, O. GABOUEV The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded

More information

THE HIGH LUMINOSITY LHC PROJECT 1

THE HIGH LUMINOSITY LHC PROJECT 1 FRXC2 Proceedings of IPAC2015, Richmond, VA, USA THE HIGH LUMINOSITY LHC PROJECT 1 O. Brüning, CERN, Geneva, Switzerland Abstract This presentation reviews the status of the high luminosity LHC project,

More information

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC CERN-ACC-2018-0009 Galina.Skripka@cern.ch Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC G. Skripka and G. Iadarola CERN, Geneva, Switzerland Keywords: LHC, HL-LHC, heat

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC

Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC CERN-ACC-2016-0112 Giovanni.Iadarola@cern.ch Beam induced heat loads on the beam-screens of the twin-bore magnets in the IRs of the HL-LHC G. Iadarola, E. Metral, G. Rumolo CERN, Geneva, Switzerland Abstract

More information

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6 CERN-ACC-2018-0039 Future Circular Collider PUBLICATION Consolidated EIR design baseline: Milestone M3.6 Tomas Garcia, Rogelio (CERN) et al. 01 November 2018 The European Circular Energy-Frontier Collider

More information

LHC Status and CERN s future plans. Lyn Evans

LHC Status and CERN s future plans. Lyn Evans LHC Status and CERN s future plans Lyn Evans Machine layout L. Evans EDMS document no. 859415 2 Cryodipole overview 1250 1000 Equivalent dipoles 750 500 250 0 01-Jan-01 01-Jan-02 01-Jan-03 01-Jan-04 01-Jan-05

More information

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Accelerator Magnet Technologies On the Use of Superconducting

More information

Trends in Magnet Technologies

Trends in Magnet Technologies Trends in Magnet Technologies Davide Tommasini State of the art Motivation for new developments in Magnet Technology Fast cycled superconducting magnets Higher Magnetic Fields Conclusions Magnet Technologies

More information

CURRENT LEADS FOR THE LHC MAGNET SYSTEM

CURRENT LEADS FOR THE LHC MAGNET SYSTEM EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 526 CURRENT LEADS FOR THE LHC MAGNET SYSTEM A. Ballarino Abstract The

More information

50 years of Superconducting Magnets for Physics Research and Medicine

50 years of Superconducting Magnets for Physics Research and Medicine 50 years of Superconducting Magnets for Physics Research and Medicine Herman ten Kate Kamerlingh Onnes and magnets Understanding superconductors From materials to magnets Examples of Applications: Lab

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

LHC Commissioning and First Operation

LHC Commissioning and First Operation LHC Commissioning and First Operation PPC 2010, July 12, 2010, Turin, Italy Steve Myers Director for Accelerators and Technology, CERN Geneva (On behalf of the LHC team and international collaborators)

More information

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC CERN-ACC-2014-0197 Michele.Modena@cern.ch Report Considerations for a QD0 with Hybrid Technology in ILC M. Modena, A. Aloev #, H. Garcia, L. Gatignon, R. Tomas CERN, Geneva, Switzerland Keywords: ILC Abstract

More information

Dipoles for High-Energy LHC

Dipoles for High-Energy LHC 4AO-1 1 Dipoles for High-Energy LHC E. Todesco, L. Bottura, G. De Rijk, L. Rossi Abstract For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 2 T operational

More information

Progress with High-Field Superconducting Magnets for High-Energy Colliders

Progress with High-Field Superconducting Magnets for High-Energy Colliders FERMILAB-PUB-15-544-TD ACCEPTED 1 Progress with High-Field Superconducting Magnets for High-Energy Colliders G. Apollinari, S. Prestemon and A.V. Zlobin Abstract - One of the possible next steps for HEP

More information

Limits to high field magnets for particle accelerators

Limits to high field magnets for particle accelerators IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 19, January 212 Submitted to ESNF Nov. 16, 211; accepted Nov. 3, 212. Reference No. ST286, Category 6 The published version of this manuscript

More information

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics High Field Magnets Perspectives from High Energy Physics Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics What is High Energy Physics? The High Energy Physics (HEP)

More information

High Field Magnets. Lucio Rossi CERN. CAS Intermediate level Course 2 October 2009

High Field Magnets. Lucio Rossi CERN. CAS Intermediate level Course 2 October 2009 High Field Magnets Lucio Rossi CERN CAS Intermediate level Course 2 October 2009 Content Definition and historic Basic of Sc magnets for accelerator Superconductivity and Nb Ti review Reasons to pursue

More information

LHC RunII Commissioning and HL-LHC Status

LHC RunII Commissioning and HL-LHC Status LHC RunII Commissioning and HL-LHC Status The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities

More information

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Acknowledgements: O. Brüning, S. Fartoukh, M. Giovannozzi, G. Iadarola, M. Lamont, E. Métral, N. Mounet, G. Papotti, T. Pieloni,

More information

HIGH FIELD MAGNET DEVELOPMENTS

HIGH FIELD MAGNET DEVELOPMENTS HIGH FIELD MAGNET DEVELOPMENTS T. Nakamoto, KEK, Tsukuba, Japan Abstract High field magnet developments based on Nb 3 Sn towards future accelerator applications in the next era have been intensively pursued.

More information

Future Circular Colliders

Future Circular Colliders Future Circular Colliders M. Benedikt and F. Zimmermann CERN, Geneva, Switzerland Summary. In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future

More information

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades 1LPN-03 FERMILAB-12-547-TD 1 Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades N. Andreev, G. Apollinari, B. Auchmann, E. Barzi, R. Bossert, G. Chlachidze,

More information

SMR/ Summer School on Particle Physics June LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland

SMR/ Summer School on Particle Physics June LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland SMR/1847-2 Summer School on Particle Physics 11-22 June 2007 LHC Accelerators and Experiments (part I) Marzio Nessi CERN, Switzerland CERN-RRB-2004-152 LHC Accelerators and Experiments (part I) ICTP Marzio

More information

LHC. Construction Understanding first the commissioning. Prospects for

LHC. Construction Understanding first the commissioning. Prospects for LHC Overview The problem what and is fixing LHC it? Construction Understanding first the commissioning problem Making Beam sure commissioning there no Titanic II Prospects for 2009 2010 LHC is a superconducting

More information

LONG TERM OPERATIONAL EXPERIENCE OF CRYOGENICS FOR CERN EXPERIMENTS AND TEST FACILITIES FOR ACCELERATOR COMPONENTS

LONG TERM OPERATIONAL EXPERIENCE OF CRYOGENICS FOR CERN EXPERIMENTS AND TEST FACILITIES FOR ACCELERATOR COMPONENTS LONG TERM OPERATIONAL EXPERIENCE OF CRYOGENICS FOR CERN EXPERIMENTS AND TEST FACILITIES FOR ACCELERATOR COMPONENTS K. Barth on behalf of CERN-AT-ECR Workshop on Cryogenics Operations 2004 Jefferson Lab,

More information

Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system

Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system Very Large Hadron Collider - phase 2 Optimization of the beam screen cooling & Impact of the photon stop on the cryogenic system VLHC workshop on the beam tube vacuum Saturday June 23, 21 - Christine Darve

More information

Very high field magnet options for ELN

Very high field magnet options for ELN Very high field magnet options for ELN Lucio Rossi CERN High Luminosity LHC Project Leader Erice ISSP 2018, June 18th Content Accelerator: engines for discovers Accelerators & Superconductivity Accelerator

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna The LHC Part 1 Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna Organizzazione Part 1 Part 2 Part 3 Introduction Energy challenge Luminosity

More information

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Accelerator Design of High Luminosity Electron-Hadron Collider erhic Accelerator Design of High Luminosity Electron-Hadron Collider erhic V. PTITSYN ON BEHALF OF ERHIC DESIGN TEAM: E. ASCHENAUER, M. BAI, J. BEEBE-WANG, S. BELOMESTNYKH, I. BEN-ZVI, M. BLASKIEWICZ, R. CALAGA,

More information

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets

Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Analysis of Coupled Electromagnetic-Thermal Effects in Superconducting Accelerator Magnets Egbert Fischer 1, Roman Kurnyshov 2 and Petr Shcherbakov 3 1 Gesellschaft fuer Schwerionenforschung mbh, Darmstadt,

More information

UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX

UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 1110 UPGRADE ISSUES FOR THE CERN ACCELERATOR COMPLEX R. Garoby CERN,

More information

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany

Gesellschaft für Schwerionenforschung mbh (GSI), Planckstrasse 1, D Darmstadt, Germany Proceedings of ICEC 22ICMC 2008, edited by HoMyung CHANG et al. c 2009 The Korea Institute of Applied Superconductivity and Cryogenics 9788995713822 Cold electrical connection for FAIR/ SIS100 Kauschke,

More information

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop Plans for the LHC Luminosity Upgrade Summary of the APD-LUMI-05 workshop Walter Scandale CERN AT department LHC project seminar Geneva, 10 November 2005 We acknowledge the support of the European Community-Research

More information

Technology Development. Overview and Outlook

Technology Development. Overview and Outlook Technology Development Overview and Outlook Kirk McDonald, for Alan Bross MAP Collaboration Meeting JLAB, March 4, 2011 Outline R&D Goals Status to date FY 11 Milestones & beyond Outlook Kirk McDonald,

More information

The Eloisatron. Thomas Taylor CERN. 55th School of Subnuclear Physics, Erice ELN - T. Taylor 20/06/2017

The Eloisatron. Thomas Taylor CERN. 55th School of Subnuclear Physics, Erice ELN - T. Taylor 20/06/2017 The Eloisatron Thomas Taylor CERN 1 Frontier High Energy Physics in the laboratory. The long march of hadron colliders It started with the ISR (Intersecting Storage Rings, 30 + 30 GeV) This was audacious.

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR CERN-ATS-2012-009 Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC) F. Haug (on behalf of

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title: Post-LHC accelerator magnets Author: Gourlay, Stephen A. Publication Date: 06-10-2001 Publication Info: Lawrence Berkeley

More information

HL-LHC: parameter space, constraints & possible options

HL-LHC: parameter space, constraints & possible options HL-LHC: parameter space, constraints & possible options Many thanks to R. Assmann, C. Bhat, O. Brüning, R. Calaga, R. De Maria, S. Fartoukh, J.-P. Koutchouk, S. Myers, L. Rossi, W. Scandale, E. Shaposhnikova,

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

Status of the LHC Machine

Status of the LHC Machine Status of the LHC Machine J. Wenninger CERN Beams Department Operation Group Acknowledgements to R. Schmidt for some slides and many discussions. 1 Outline Introduction Commissioning 2008 Incident of September

More information

Luminosity for the 100 TeV collider

Luminosity for the 100 TeV collider Luminosity for the 100 TeV collider M.L.Mangano, contribution to the Luminosity discussion session, Jan 15 2015 IAS programme on The Future of High Energy Physics Critical parameter to determine the physics

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics STATUS OF THE LHC. R. Schmidt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics STATUS OF THE LHC. R. Schmidt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 569 STATUS OF THE LHC R. Schmidt Abstract The Large Hadron Collider

More information

High Magnetic Field Facility for Neutron Scattering

High Magnetic Field Facility for Neutron Scattering High Magnetic Field Facility for Neutron Scattering Project HFM-EXED NHMFL: M. Bird, I. Dixon, J. Toth, S. Bole, S. Hannahs, J. Kynoch, H. Bai, S. Marshall, T. Adkins, G. Boebinger J. Miller, A. Bonito-Oliva

More information

Cable-in-Conduit Dipoles to enable a Future Hadron Collider

Cable-in-Conduit Dipoles to enable a Future Hadron Collider Cable-in-Conduit Dipoles to enable a Future Hadron Collider Saeed Assadi, Jeff Breitschopf, Daniel Chavez, James Gerity, Joshua Kellams, Peter McIntyre, and Kyle Shores Accelerator Research Lab Texas A&M

More information

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011 FP7 Eucard2 WP on HTS Magnets term of reference: edms doc. 1152224 Lucio Rossi CERN Task 1 : conductor Mee@ng at EUCAS2011 Use of Bi- 2212 and YBCO: both are promising so far 10,000 YBCO B _ Tape Plane

More information

Spoke and other TEM-class superconducting cavities. J.L. Muñoz, ESS-Bilbao Academy-Industry Matching Event CIEMAT, Madrid, 27.May.

Spoke and other TEM-class superconducting cavities. J.L. Muñoz, ESS-Bilbao Academy-Industry Matching Event CIEMAT, Madrid, 27.May. Spoke and other TEM-class superconducting cavities J.L. Muñoz, ESS-Bilbao Academy-Industry Matching Event CIEMAT, Madrid, 27.May.2013 Outline Introduction Basic design of TEM cavities Cavity design issues

More information

LHC upgrade based on a high intensity high energy injector chain

LHC upgrade based on a high intensity high energy injector chain LHC upgrade based on a high intensity high energy injector chain Walter Scandale CERN AT department PAF n. 6 CERN, 15 September 2005 luminosity and energy upgrade Phase 2: steps to reach maximum performance

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Exploitation of LHC and Future Circular Colliders Frédérick Bordry Basics of Accelerator Science and Technology at CERN Chavannes 7 th February 2014

Exploitation of LHC and Future Circular Colliders Frédérick Bordry Basics of Accelerator Science and Technology at CERN Chavannes 7 th February 2014 Outline - LHC recall and 1 st Run - LS1 status - Run 2 (from LS1 to LS2) 13-14 TeV - LS2 and Run 3 300 fb -1 - High Luminosity LHC project 3 000 fb -1 - Post-LHC machine: - Future Circular Colliders 0.25-100

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

LHC Upgrade (accelerator)

LHC Upgrade (accelerator) LHC Upgrade (accelerator) Time scale of LHC luminosity upgrade Machine performance limitations Scenarios for the LHC upgrade Phase 0: no hardware modifications Phase 1: Interaction Region upgrade Phase

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS

MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS MAGNET SYSTEMS FOR LARGE PARTICLE ACCELERATORS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Tools of Particle Physics Accelerator Types Accelerator Components Synchrotron-Type

More information

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC

Optimized Annular Triode Ion Pump for Experimental Areas in the LHC See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/41059758 Optimized Annular Triode Ion Pump for Experimental Areas in the LHC Article in Vacuum

More information

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland 1970-1 Signaling the Arrival of the LHC Era 8-13 December 2008 Current Status of the LHC Albert De Roeck CERN Switzerland Status of the LHC Albert De Roeck CERN and University of Antwerp and the IPPP Durham

More information

ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC

ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC ACCELERATOR PHYSICS AND TECHNOLOGY OF THE LHC R.Schmidt CERN, 1211 Geneva 23, Switzerland open-2000-148 09/Aug/2000 Abstract The Large Hadron Collider, to be installed in the 26 km long LEP tunnel, will

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012 Introduction to accelerators for teachers (Korean program) Mariusz Sapiński (mariusz.sapinski@cern.ch) CERN, Beams Department August 9 th, 2012 Definition (Britannica) Particle accelerator: A device producing

More information

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets E. I. Sfakianakis August 31, 2006 Abstract Even before the construction of the Large Hadron Collider at CERN is finished, ideas about

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information