SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLMNTARY INFORMATION Hindered rolling and friction anisotropy in supported carbon nanotubes Marcel Lucas 1, Xiaohua Zhang +, Ismael Palaci 1, Christian Klinke 3, rio Tosatti, 4 * and lisa Riedo 1 * 1 School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA , USA International School for Advanced Studies (SISSA), and CNR-INFM Democritos, Via Beirut 4, Trieste, Italy 3 Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 0146, Hamburg, Germany 4 International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste, Italy * tosatti@sissa.it * elisa.riedo@physics.gatech.edu nature materials 1

2 1) Friction force calibration The lateral force was calibrated using the wedge method on the Mikromasch TGG01 silicon grating (D. F. Ogletree, R. W. Carpick, and M. Salmeron, Rev. Sci. Instrum. 67, 398 (1996)). A series of topography and friction force images of 1 m x 1 m size were collected at a scanning speed of 4 m/s, for different normal force values. The normal force is nn initially and then decreased step-wise (0.5 nn steps) until the tip is out of contact with the sample. The grating was aligned so that the wedges are perpendicular to the fast scanning direction of the AFM. Also, the grating was placed so that the left half of the images would correspond to the wedge side with a positive slope, and the right half of the images to the side with a negative slope. Topography images indicate that the left side has an inclination of +61, and the right side an inclination of -5. The friction force and the friction loop offset were measured as a function of the normal force (Suppl. Figs. 1 and ). The four sets of data were fitted linearly to determine their slopes: Positive inclination: Friction force slope (W'+): V/nN Loop offset slope ('+): V/nN Negative inclination: Friction force slope (W'-): V/nN Loop offset slope ('-): V/nN Supplementary Figure 1. Friction force as a function of the normal force for the positively (red circles) and the negatively (green triangles) sloped sides of the wedge on the TGG01 grating. nature MATRIALS

3 Supplementary Figure. Average friction loop offset as a function of the normal force for the positively (red circles) and the negatively (green triangles) sloped sides of the wedge on the TGG01 grating. From the four slopes, the friction coefficient on the positively inclined side of the wedge, +, is estimated to be 0.0, and the calibration coefficient is 9.84 nn/v. ) Determination of contact area and shear strength of the interface sample-tip The contact area A (as a function of F + F ) ( N adh ) between the spherical tip and a flat surface (for example HOPG) can be determined using the contact mechanics Hertz theory, modified to add the contribution of the adhesion force (found as the load at which the friction force is zero): A ( ) 3 3 RTIP FN + Fadh ( FN + Fadh ) = π a = π * 4 where R TIP is the tip radius (about 60 nm), and * is the reduced modulus of the silicon tip and the sample (for example HOPG): = ( 1 ν ) ( ν sample ) TIP + 1 * TIP sample Using TIP =0.7, TIP =169 GPa, HOPG =0.8, HOPG =36 GPa, * = 3 GPa. The contact area between the AFM tip and the CNT is calculated using the modified Hertz theory between a sphere and a cylinder (see Palaci et al., Phys. Rev. Lett. 94, (005)). The contact area is expected to be an ellipse of semi-major axis a, and semi-minor axis b: A F + F ) = π ab ( N adh nature materials 3

4 b is given by the following expression: b = 3 3k π 1 ( 1 k ) 1 1 ( F + F ) = ka * R TIP + R NT N adh where R TIP is the AFM tip radius and k is the solution to the following equation: R 1+ R TIP NT = ( 1/ k ) ( 1 k ) K ( 1 k ) K ( 1 k ) ( 1 k ) (k) and K(k) are the complete elliptic integrals of the second kind: K π / ( k ) = ( 1 k sin ) 0 π / ( k ) = ( 1 k sin ) 0 1/ θ dθ 1/ θ dθ The shear strength σ of the different samples is then found by fitting the experimental F F vs. F N curves for the different samples, by using the equation: F F = σ A( FN + Fadh ). The only free fitting parameters are σ and F adh. The values of the Young Moduli for the CNT (about 30 GPa) are taken from Palaci et al., Phys. Rev. Lett. 94, (005). 3) Shear strength and friction of the interface HOPG-Si Tip Supplementary Figure 3. Friction force as a function of the normal force on HOPG. 4 nature MATRIALS

5 The friction force was measured by AFM in air on Highly Ordered Pyrolytic Graphite (HOPG) as a function of the normal load (Suppl. Fig. 3). A linear fit of the data yields a friction coefficient μ ~ , in agreement with previous experiments performed on HOPG in air (see Udo D. Schwarz et al. Phys. Rev. B (1997)). The adhesion force (defined as the load at which the friction force is zero) is difficult to determine from our data, a rough estimate gives F adh ~ From a different type of experiment, where the AFM tip is loaded on HOPG and then retracted, the adhesion force can be measured as the pull-out force. These data give F adh ~ From our F F vs. F N curves and by using F adh ~ , we calculated the shear strength between a freshly cleaved HOPG surface and our silicon AFM tip, following the method described above. The results give σ ~ 3 60 MPa. It is important to note that this value could be smaller in the case the estimated contact area was larger, for example in case a small flake of graphene was attached to the AFM tip. 4) Characterization of the used carbon nanotubes and Sample preparation Supplementary Figure 4. In (a) a transmission electron micrograph of the used carbon nanotubes is shown; (b) and (c) are higher magnification images of the nanotubes. In (d) a statistic demonstrates the diameter distribution and the ratio of inner to outer diameter. We used commercially available multiwall carbon nanotubes (Baytubes) purchased from Bayer in Germany. They are synthesized in a fluidized bed catalytic chemical vapor deposition process. Transmission electron microscopy reveals a good crystallinity of the nanotubes with sporadic defects. The distribution of the outer and inner diameter is relatively broad. Nevertheless the ratio between the outer and inner diameter is quite defined with a mean value of.83 and a standard deviation of For our studies, we suspended the multiwall nanotubes in DC (1,-dichloroethane) by sonication in an ultrasound bath for about 1 hour. The density is chosen in a way that the solution appears slightly greyish after sonication. Right after the sonication we took a droplet of the solution and put it on the surface (~ 1 nature materials 5

6 cm ) of an untreated silicon wafer. We leave the droplet there for about 30 sec and than we blow it away with a nitrogen pistol. In this way, the CNT are adsorbed on the Si substrate and can be used for the AFM experiments. Preliminary experimental data on home made CVD CNT of higher structural quality show a friction anisotropy similar that one reported in this work. 5) xperimental rrors and Method Discussion xample of error analysis to determine the error on the shear strength: (R = 5.5 nm) Transverse CNT F = σ Area + (see paragraph of this supplementary material) F ( FN Fadh) The linear fit below gives: Shear Strength (σ ) =.0884e+09 ± 9.43e+07 8x10-9 Friction (N) Area (m ) 4 5x10-18 Supplementary Figure 5. Similarly, all the other friction measurements give rise to errors of about ± 0.1 GPa in the determination of the shear strength. However, this error could be larger due to supplementary errors in the measurements of the friction force (estimated to be about ± 0.4 nn), and the tip radius. Friction Measurement on the CNT: After imaging friction and topography of the desired section of the CNT and the surrounding silicon substrate (for example Fig. 1c in our manuscript), we zoom in on an area at the top of the tube where the topography and the friction look flat by using the SPIP software. For example, for a CNT of radius of 7 nm we zoomed in on an area of 0 nm x 100 nm in the center of the tube. By considering the convolution of the AFM tip (radius 60 nm) with a CNT of 7 nm, a width of w convoluted = ± 10 nm at the top of the imaged tube corresponds roughly to a width w real = ± 1 nm on top of the real nanotube: w R + R w tip CNT real = convoluted R. We then take the average friction value inside this area. The FWHM of CNT the corresponding histogram of the data inside this area is usually around 1 nn. Comparing different averaged friction values in different parallel sections of the same CNT gives an error of about 0.4 nn or less. 6 nature MATRIALS

7 Supplementary Figure 6. Uncalibrated friction force average (LFT), and 1 friction force single profiles (RIGHT) inside the white dashed area of Fig. 1c in the manuscript. 6) Simulation Movies Supplementary Movie frames of the transverse sliding on the chiral tube, collected with time interval of 7.5 ps. The sliding distance is 0.84 nm over which the friction force is calculated. The normal force is.5 nn. Supplementary Movie. 15 frames of the longitudinal sliding on the chiral tube, with sliding distance of 0.96 nm. Supplementary Movie frames of the longitudinal sliding on the nonchiral tube, with sliding distance of 0.96 nm. Suppl. Movies 1 and show the transverse and longitudinal sliding on the chiral tube, and Suppl. Movie 3 shows the longitudinal sliding on the nonchiral tube. Friction force does not show clear dependence on the sliding distance (we have used 0.84 nm, 0.96 nm, and 1.08 nm) and the off-axis position of the tip. In the transverse case (Suppl. Movie 1), the rightwards overall rolling is hindered by the frozen C-Au bonds (not shown, but labeled in Fig.4). The left-right tube oscillation shows in detail the softness of deformation, which becomes stronger at larger simulation sliding speed, e.g., from 1 m/sec to m/sec. This softness will play a role at much lower sliding speed, as our experiments show, when the atomic stick-slip is expected to replace smooth sliding, and smooth rubbing will correspondingly be replaced by slips and kicks on the nanotube. In the simulated longitudinal sliding the leftwards rolling is hindered (see Suppl. Movie ), and the oscillation is small but still finite due to the outer tube chirality, differently from the nonchiral tube where no transverse oscillation is observed (see Suppl. Movie 3). nature materials 7

8 7) Friction Calculation In MD Simulations Supplementary Figure 7. Typical lateral force-displacement curves for two transverse sliding loops, used for extracting the simulated frictional dissipation. Normal forces are.6 nn (top graph), and 1.4 nn (bottom graph), and the sliding distance is 0.96 nm. We calculated the friction force by dividing the total dissipated energy, i.e., the enclosed area of one sliding loop, by the corresponding sliding distance. Top: Although globally above the red curve, the blue curve is S-shaped, indicating the effect of the strong oscillation that can be observed in Suppl. Movie 1. Bottom: As the normal force is decreased the dissipated energy becomes smaller, showing the load dependence of friction. The sharp oscillations reflect the kick exerted by sharp tip speed reversals at the left and right ends of the sweeps. 8 nature MATRIALS

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films Supporting Information Interfacial Shear Strength of Multilayer Graphene Oxide Films Matthew Daly a,1, Changhong Cao b,1, Hao Sun b, Yu Sun b, *, Tobin Filleter b, *, and Chandra Veer Singh a, * a Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Manuscript: Nanoscale wear as a stress-assisted chemical reaction Supplementary Methods For each wear increment, the diamond indenter was slid laterally relative to the silicon

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

RHK Technology Brief

RHK Technology Brief The Atomic Force Microscope as a Critical Tool for Research in Nanotribology Rachel Cannara and Robert W. Carpick Nanomechanics Laboratory, University of Wisconsin Madison Department of Engineering Physics,

More information

Supplementary Material

Supplementary Material Mangili et al. Supplementary Material 2 A. Evaluation of substrate Young modulus from AFM measurements 3 4 5 6 7 8 Using the experimental correlations between force and deformation from AFM measurements,

More information

Size dependence of the mechanical properties of ZnO nanobelts

Size dependence of the mechanical properties of ZnO nanobelts Philosophical Magazine, Vol. 87, Nos. 14 15, 11 21 May 2007, 2135 2141 Size dependence of the mechanical properties of ZnO nanobelts M. LUCAS*y, W. J. MAIz, R. S. YANGz, Z. L WANGz and E. RIEDO*y yschool

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

A General Equation for Fitting Contact Area and Friction vs Load Measurements

A General Equation for Fitting Contact Area and Friction vs Load Measurements Journal of Colloid and Interface Science 211, 395 400 (1999) Article ID jcis.1998.6027, available online at http://www.idealibrary.com on A General Equation for Fitting Contact Area and Friction vs Load

More information

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm.

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary Figure 1. Few-layer BN nanosheets. AFM image and the corresponding height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm. Supplementary

More information

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm

Intensity (a.u.) Intensity (a.u.) Raman Shift (cm -1 ) Oxygen plasma. 6 cm. 9 cm. 1mm. Single-layer graphene sheet. 10mm. 14 cm Intensity (a.u.) Intensity (a.u.) a Oxygen plasma b 6 cm 1mm 10mm Single-layer graphene sheet 14 cm 9 cm Flipped Si/SiO 2 Patterned chip Plasma-cleaned glass slides c d After 1 sec normal Oxygen plasma

More information

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Author Watson, Gregory, Watson, Jolanta Published 008 Journal

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Frictional characteristics of exfoliated and epitaxial graphene

Frictional characteristics of exfoliated and epitaxial graphene Frictional characteristics of exfoliated and epitaxial graphene Young Jun Shin a,b, Ryan Stromberg c, Rick Nay c, Han Huang d, Andrew T. S. Wee d, Hyunsoo Yang a,b,*, Charanjit S. Bhatia a a Department

More information

Nanotribology. Judith A. Harrison & Ginger M. Chateauneuf. Chemistry Department United States Naval Academy Annapolis, MD

Nanotribology. Judith A. Harrison & Ginger M. Chateauneuf. Chemistry Department United States Naval Academy Annapolis, MD Nanotribology Judith A. Harrison & Ginger M. Chateauneuf Chemistry Department United States Naval Academy Annapolis, MD 140 jah@usna.edu Some Reviews 1. J. A. Harrison et al, Atomic-Scale Simulation of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Ultrahigh interlayer friction in multiwalled boron nitride nanotubes 1 Contents Nanotubes production and characterizations 2 Experimental Methods 4 Post mortem characterization of the nanotubes 4 Références

More information

Material Anisotropy Revealed by Phase Contrast in Intermittent Contact Atomic Force Microscopy

Material Anisotropy Revealed by Phase Contrast in Intermittent Contact Atomic Force Microscopy University of Pennsylvania ScholarlyCommons Departmental Papers (MEAM) Department of Mechanical Engineering & Applied Mechanics 5-17-2002 Material Anisotropy Revealed by Phase Contrast in Intermittent

More information

Supplementary Information. Synthesis of soft colloids with well controlled softness

Supplementary Information. Synthesis of soft colloids with well controlled softness Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Synthesis of soft colloids with well controlled softness Fuhua Luo, Zhifeng

More information

Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system

Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system REVIEW OF SCIENTIFIC INSTRUMENTS 77, 065105 2006 Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system Q. Li, K.-S. Kim, and A. Rydberg Division of Engineering,

More information

Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone

Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone Supplementary Information: Nanoscale heterogeneity promotes energy dissipation in bone KUANGSHIN TAI, * MING DAO, * SUBRA SURESH,, AHMET PALAZOGLU, & AND CHRISTINE ORTIZ Department of Materials Science

More information

Adhesion-dependent negative friction coefficient on chemically-modified graphite at the nanoscale

Adhesion-dependent negative friction coefficient on chemically-modified graphite at the nanoscale Adhesion-dependent negative friction coefficient on chemically-modified graphite at the nanoscale Zhao Deng 1,2, Alex Smolyanitsky 3, Qunyang Li 4, Xi-Qiao Feng 4 and Rachel J. Cannara 1 * 1 Center for

More information

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope SUPPLEMENTARY INFORMATION Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope Johannes Rheinlaender and Tilman E. Schäffer Supplementary Figure S1 Supplementary

More information

Accurate thickness measurement of graphene

Accurate thickness measurement of graphene Accurate thickness measurement of graphene Cameron J Shearer *, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter and Christopher T Gibson * Centre for NanoScale Science and Technology, School of

More information

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector.

ET-105(A) : PHYSICS. Show that only an infinitesimal rotation can be regarded as a vector. No. of Printed Pages : 7 ET-105(A) B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI Term-End Examination June, 2017 ET-105(A)

More information

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating Atomic Force icroscopy Characterization of Room- Temperature Adlayers of Small Organic olecules through Graphene Templating Peigen Cao, Ke Xu,2, Joseph O. Varghese, and James R. Heath *. Kavli Nanoscience

More information

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2

Samantha Ramirez, MSE. Stress. The intensity of the internal force acting on a specific plane (area) passing through a point. F 2 Samantha Ramirez, MSE Stress The intensity of the internal force acting on a specific plane (area) passing through a point. Δ ΔA Δ z Δ 1 2 ΔA Δ x Δ y ΔA is an infinitesimal size area with a uniform force

More information

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL

ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL ADHESION OF AN AXISYMMETRIC ELASTIC BODY: RANGES OF VALIDITY OF MONOMIAL APPROXIMATIONS AND A TRANSITION MODEL A Thesis Presented By Fouad Oweiss to The Department of Mechanical and Industrial Engineering

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.123 Ultra-strong Adhesion of Graphene Membranes Steven P. Koenig, Narasimha G. Boddeti, Martin L. Dunn, and J. Scott Bunch* Department of Mechanical Engineering,

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

The velocity dependence of frictional forces in point-contact friction

The velocity dependence of frictional forces in point-contact friction Appl. Phys. A, S3 S7 (199) Applied Physics A Materials Science & Processing Springer-Verlag 199 The velocity dependence of frictional forces in point-contact friction O. Zwörner, H. Hölscher, U. D. Schwarz,

More information

Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation based experimental data with DEM simulation Part A

Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation based experimental data with DEM simulation Part A Faculty of Science and Technology Chair of Surface and Materials Technology Institute of Materials Engineering Rolling, Sliding and Torsion friction of single silica microspheres: Comparison of nanoindentation

More information

A detailed 3D finite element analysis of the peeling behavior of a gecko spatula

A detailed 3D finite element analysis of the peeling behavior of a gecko spatula A detailed 3D finite element analysis of the peeling behavior of a gecko spatula Roger A. Sauer 1 Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University,

More information

Supplementary Note 1: Grain size of the graphene grown on SiO 2 /Si

Supplementary Note 1: Grain size of the graphene grown on SiO 2 /Si Supplementary Note 1: Grain size of the graphene grown on SiO 2 /Si flat substrate In order to estimate the grain size, contact-mode AFM measurement of the graphene films on SiO 2 flat substrate is conducted.

More information

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix

The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix JOURNAL OF MATERIALS SCIENCE 39 (2 004)4481 4486 The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix K. Q. XIAO, L. C. ZHANG School of Aerospace, Mechanical and Mechatronic

More information

Q1. Which of the following is the correct combination of dimensions for energy?

Q1. Which of the following is the correct combination of dimensions for energy? Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

More information

Thermally Activated Friction

Thermally Activated Friction Tribol Lett (7) 7:113 117 DOI 1.17/s119-7-9- ORIGINAL PAPER Thermally Activated Friction Xueying Zhao Æ Matt Hamilton Æ W. Gregory Sawyer Æ Scott S. Perry Received: November 6 / Accepted: 7 March 7 / Published

More information

Supporting Information. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

Supporting Information. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition Supporting Information Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition David S. Bergsman, Richard G. Closser, Christopher J. Tassone, Bruce M. Clemens

More information

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

Thermodynamic calculations on the catalytic growth of carbon nanotubes

Thermodynamic calculations on the catalytic growth of carbon nanotubes Thermodynamic calculations on the catalytic growth of carbon nanotubes Christian Klinke, Jean-Marc Bonard and Klaus Kern Ecole Polytechnique Federale de Lausanne, CH-05 Lausanne, Switzerland Max-Planck-Institut

More information

Nanotube AFM Probe Resolution

Nanotube AFM Probe Resolution Influence of Elastic Deformation on Single-Wall Carbon Nanotube AFM Probe Resolution Ian R. Shapiro, Santiago D. Solares, Maria J. Esplandiu, Lawrence A. Wade, William A. Goddard,* and C. Patrick Collier*

More information

Supporting Information. Edge orientation dependent nanoscale friction

Supporting Information. Edge orientation dependent nanoscale friction Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Edge orientation dependent nanoscale friction Hongwei Zhang, a,b Tienchong

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

background (the broad feature running bottom left to top right is a smooth depression 100 pm deep).

background (the broad feature running bottom left to top right is a smooth depression 100 pm deep). d e amplitude (arb.) c amplitude (arb.) a 2 1 5 1 kvertical (μm-1) 2 1 15 16 17 kradial (μm-1) height (pm) b 2-2 5 1 lateral position (nm) 15 2 Supplementary Figure 1: Uniformity of stripe-superlattice

More information

Simulation of atomic force microscopy operation via three-dimensional finite element modelling

Simulation of atomic force microscopy operation via three-dimensional finite element modelling IOP PUBLISHING Nanotechnology 20 (2009) 065702 (14pp) NANOTECHNOLOGY doi:10.1088/0957-4484/20/6/065702 Simulation of atomic force microscopy operation via three-dimensional finite element modelling JLChoi

More information

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson

Chapter 5 Torsion STRUCTURAL MECHANICS: CE203. Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson STRUCTURAL MECHANICS: CE203 Chapter 5 Torsion Notes are based on Mechanics of Materials: by R. C. Hibbeler, 7th Edition, Pearson Dr B. Achour & Dr Eng. K. El-kashif Civil Engineering Department, University

More information

Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization

Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization University of Pennsylvania ScholarlyCommons Departmental Papers (MEAM) Department of Mechanical Engineering & Applied Mechanics 5--006 Lateral force calibration in atomic force microscopy: A new lateral

More information

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING Q. Yang 1, C. Xiao 1, R. Sammynaiken 2 and A. Hirose 1 1 Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place Saskatoon, SK

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Large scale growth and characterization of atomic hexagonal boron. nitride layers Supporting on-line material Large scale growth and characterization of atomic hexagonal boron nitride layers Li Song, Lijie Ci, Hao Lu, Pavel B. Sorokin, Chuanhong Jin, Jie Ni, Alexander G. Kvashnin, Dmitry

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids Application Note Introduction Atomic force microscopy (AFM) is a powerful technique in revealing the microscopic structure

More information

Supplementary Figures

Supplementary Figures Fracture Strength (GPa) Supplementary Figures a b 10 R=0.88 mm 1 0.1 Gordon et al Zhu et al Tang et al im et al 5 7 6 4 This work 5 50 500 Si Nanowire Diameter (nm) Supplementary Figure 1: (a) TEM image

More information

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA Improving the accuracy of Atomic Force Microscope based nanomechanical measurements Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA How can we improve accuracy in our nanomechanical measurements?

More information

Magnetic nanoparticles containing soft-hard diblock

Magnetic nanoparticles containing soft-hard diblock Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Magnetic nanoparticles containing soft-hard diblock copolymer

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES I LECTURE 4: FORCE-DISTANCE CURVES Outline : LAST TIME : ADDITIONAL NANOMECHANICS INSTRUMENTATION COMPONENTS... 2 PIEZOS TUBES : X/Y SCANNING... 3 GENERAL COMPONENTS OF A NANOMECHANICAL DEVICE... 4 HIGH

More information

Ultra-hard carbon film from epitaxial two-layer graphene

Ultra-hard carbon film from epitaxial two-layer graphene Ultra-hard carbon film from epitaxial two-layer graphene Yang Gao 1,2*, Tengfei Cao 1,3*, Filippo Cellini 1, Claire Berger 2,4, Walt de Heer 2, Erio Tosatti 5,6, Elisa Riedo 1,2,7,8, and Angelo Bongiorno

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

d. Determine the power output of the boy required to sustain this velocity.

d. Determine the power output of the boy required to sustain this velocity. AP Physics C Dynamics Free Response Problems 1. A 45 kg boy stands on 30 kg platform suspended by a rope passing over a stationary pulley that is free to rotate. The other end of the rope is held by the

More information

M. Enachescu Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720

M. Enachescu Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 12 15 JUNE 2004 The role of contaminants in the variation of adhesion, friction, and electrical conduction properties of carbide-coated scanning probe tips

More information

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials 3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials Abstract: Talapady S. Bhat and T. A. Venkatesh Department of Material Science and Engineering Stony Brook University,

More information

Introductory guide to measuring the mechanical properties of nanoobjects/particles

Introductory guide to measuring the mechanical properties of nanoobjects/particles Jeremias Seppä MIKES Metrology, VTT Technical Research Centre of Finland Ltd P.O. Box 1000, FI-02044 VTT, Finland Contents: AFM Cantilever calibration F-d curves and cantilever bending Hitting the particles

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Ultralow friction of ink-jet printed graphene flakes SUPPLEMENTARY INFORMATION

Ultralow friction of ink-jet printed graphene flakes SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Ultralow friction of ink-jet printed graphene flakes R. Buzio a *, A. Gerbi a, S. Uttiya a,b,

More information

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force Ž. Applied Surface Science 144 145 1999 627 632 Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force H.-Y. Nie ), M.J.

More information

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread.

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread. To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and sin θ. Inclined plane

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide Supporting online material Konstantin V. Emtsev 1, Aaron Bostwick 2, Karsten Horn

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

Lecture 11 Friction Lubrication, and Wear

Lecture 11 Friction Lubrication, and Wear Lecture 11 Friction, Lubrication and Wear Definitions Friction force between the interacting surfaces that resists or hinders their relative movement Static friction force to overcome to start movement

More information

Physics 101 Fall 2006: Final Exam Free Response and Instructions

Physics 101 Fall 2006: Final Exam Free Response and Instructions Last Name: First Name: Physics 101 Fall 2006: Final Exam Free Response and Instructions Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiplechoice question

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Structural and Mechanical Properties of Nanostructures

Structural and Mechanical Properties of Nanostructures Master s in nanoscience Nanostructural properties Mechanical properties Structural and Mechanical Properties of Nanostructures Prof. Angel Rubio Dr. Letizia Chiodo Dpto. Fisica de Materiales, Facultad

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Unit 21 Couples and Resultants with Couples

Unit 21 Couples and Resultants with Couples Unit 21 Couples and Resultants with Couples Page 21-1 Couples A couple is defined as (21-5) Moment of Couple The coplanar forces F 1 and F 2 make up a couple and the coordinate axes are chosen so that

More information

Figure 43. Some common mechanical systems involving contact.

Figure 43. Some common mechanical systems involving contact. 33 Demonstration: experimental surface measurement ADE PhaseShift Whitelight Interferometer Surface measurement Surface characterization - Probability density function - Statistical analyses - Autocorrelation

More information

b imaging by a double tip potential

b imaging by a double tip potential Supplementary Figure Measurement of the sheet conductance. Resistance as a function of probe spacing including D and 3D fits. The distance is plotted on a logarithmic scale. The inset shows corresponding

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Supplementary Information. Large Scale Graphene Production by RF-cCVD Method

Supplementary Information. Large Scale Graphene Production by RF-cCVD Method Supplementary Information Large Scale Graphene Production by RF-cCVD Method Enkeleda Dervishi, *a,b Zhongrui Li, b Fumiya Watanabe, b Abhijit Biswas, c Yang Xu, b Alexandru R. Biris, d Viney Saini, a,b

More information

force measurements using friction force microscopy (FFM). As discussed previously, the

force measurements using friction force microscopy (FFM). As discussed previously, the 3. Force Calibration 3.1 Introduction In this chapter we consider a number of specific issues related to the calibration of force measurements using friction force microscopy (FFM). As discussed previously,

More information

TRACTION AND WEAR MECHANISMS DURING ROLL-SLIP CONTACT

TRACTION AND WEAR MECHANISMS DURING ROLL-SLIP CONTACT TRACTION AND WEAR MECHANISMS DURING ROLL-SLIP CONTACT J. De Pauw 1, J. Van Wittenberghe 1, P. De Baets 1 1 Ghent University, Laboratory Soete, Belgium Abstract In the transportation industry every vehicle

More information

Carbon-nanotubes on graphite: alignment of lattice structure

Carbon-nanotubes on graphite: alignment of lattice structure INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 36 (2003 818 822 PII: S0022-3727(0357144-3 Carbon-nanotubes on graphite: alignment of lattice structure C Rettig

More information

2015 ENGINEERING MECHANICS

2015 ENGINEERING MECHANICS Set No - 1 I B. Tech I Semester Supplementary Examinations Aug. 2015 ENGINEERING MECHANICS (Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, AME, Min E, PE, Metal E) Time: 3 hours Max. Marks: 70 Question

More information

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

More information

Dept of ECE, SCMS Cochin

Dept of ECE, SCMS Cochin B B2B109 Pages: 3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017 Course Code: BE 100 Course Name: ENGINEERING MECHANICS Max. Marks: 100 Duration:

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

APPLIED MATHEMATICS HIGHER LEVEL

APPLIED MATHEMATICS HIGHER LEVEL L.42 PRE-LEAVING CERTIFICATE EXAMINATION, 203 APPLIED MATHEMATICS HIGHER LEVEL TIME : 2½ HOURS Six questions to be answered. All questions carry equal marks. A Formulae and Tables booklet may be used during

More information

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities.

b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities. Ch.6 Friction Types of friction a) Dry friction: occurs when non smooth (non ideal) surfaces of two solids are in contact under a condition of sliding or a tendency to slide. (also called Coulomb friction)

More information

ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE-

ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE- ULTRASONIC INVESTIGATION OF THE STIFFNESS OF GRAPHITE- GRAPHITE INTERFACES A. M. Robinson, B. W. Drinkwater Department of Mechanical Engineering, Queen's Building, University Walk, University of Bristol,

More information

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES

EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES Oct 14 th 16 th 015, Brno, Czech Republic, EU EFFECTIVE SIMULATION APPROACH FOR STUDY OF CARBON NANOTUBE MECHANICAL PROPERTIES SVATOŠ Vojtěch *1,, NEUŽIL Pavel 1,, HRSTKA Miroslav 3, HUBÁLEK Jaromír 1,

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

2 Symmetry. 2.1 Structure of carbon nanotubes

2 Symmetry. 2.1 Structure of carbon nanotubes 2 Symmetry Carbon nanotubes are hollow cylinders of graphite sheets. They can be viewed as single molecules, regarding their small size ( nm in diameter and µm length), or as quasi-one dimensional crystals

More information

AFM Studies of Pristine PCBM Changes Under Light Exposure. Erin Chambers

AFM Studies of Pristine PCBM Changes Under Light Exposure. Erin Chambers AFM Studies of Pristine PCBM Changes Under Light Exposure Erin Chambers Faculty of health, science, and technology Department of engineering and physics 15 cr Krister Svensson Lars Johansson 28 March 2013

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information