Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Size: px
Start display at page:

Download "Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/"

Transcription

1 Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/ in collaboration with preprint ESI Workshop Complex Quantum, Classical Systems and Effective Equations July 2006

2 The Model A 2d rotating Bose-Einstein Condensate (BEC) in a cylindrical trap is described by the Gross Pitaevskii (GP) Theory [Lieb, Seiringer 05] [GP Functional] E GP [Ψ] = B d r { Ψ 2 Ω(ε)Ψ LΨ + Ψ 4 ε 2 } [Ground State] E GP ε = inf Ψ =1 EGP [Ψ] = E GP [Ψ GP ε ] D GP = H 1 (B), L = i third component of the angular momentum, ϑ Ω(ε) angular velocity, ε small (semiclassical) parameter, B unit disc 2

3 Motivations [Anharmonic Trap] - The harmonic trap case is very special (upper bound for Ω(ε), Ψ GP ε in the lowest Landau level...) [Aftalion et al. 06] - In anharmonic traps very large angular velocities (Ω 1) can be reached - The flat trap is the most anharmonic trap [Very Large Angular Velocity] - Macroscopic effects of the rotation (holes, giant vortices...) [Baym, Fischer 03] 3

4 GP Theory vs. Ginzburg-Landau (GL) Theory The minimization of the GP functional is equivalent to the minimization of a GL-type functional E GP [Ψ] = B d r ( i Aε ) Ψ 2 Ω(ε) 2 r 2 Ψ ( 1 Ψ 2 ) 2 ε 2 A ε ( r) = Ω(ε) 2 ẑ r Ψ L 2 (B) = 1 [Analogies] - A ε GL magnetic field - Ψ GL order parameter [Differences] - L 2 normalization of Ψ (chemical potential) - Electric field Ω(ε) 2 4

5 Summary 1. Spontaneous Symmetry Breaking in the Ground State 2. Ω(ε) 1/ε 3. Ω(ε) 1/ε - No macroscopic effect of the rotation - Ψ GP 1 ε π (minimizer of E GP [Ψ] with Ω = 0) ε 0 - Ψ GP ε ε 0 ρ TF 1 π - Above a certain threshold ρ TF = 0 in a macroscopic region (hole) 4. Ω(ε) 1/ε - Ψ GP ε - Ψ GP ε lives near the boundary Ψ GP ε e inεϑ (giant vortex) [?] 5

6 Hole Giant Vortex [Kasamatsu et al. 02] 6

7 Spontaneous Symmetry Breaking Proposition 1 For ε sufficiently small, no minimizer of E GP [Ψ] is an eigenfunction of the angular momentum, if 6 log ε + 3 < Ω(ε) 1 ε 2 The symmetry breaking is due to the occurrence of vortices (i.e. isolated zeros of Ψ GP ε ) In the symmetry breaking regime the minimizer is not unique The first critical velocity is expected to be 2 log ε [Ignat, Millot 05] The result is expected to hold true even above 1/ε 2 In a generic trap (homogeneous potential), for any fixed Ω(ε) and for ε sufficiently small there is symmetry breaking [Seiringer 02] 7

8 Ω(ε) 1/ε Proposition 2 For any Ω(ε) such that lim ε 0 εω(ε) = 0 and for ε sufficiently small ε 2 E GP ε = 1 π O(ε2 Ω(ε) 2 ) Ψ GP ε 2 1/π L 1 (B) = O(εΩ(ε)) Proof: 1. [upper bound] trial function 1 π 2. [lower bound] E GP [Ψ] = B d r { ( i A ε )Ψ 2 Ω(ε)2 r 2 Ψ 2 4 } + Ψ 4 ε 2 Ψ 4 4 ε 2 Ω(ε)2 4 1 πε Ω(ε)

9 Ω(ε) 1/ε Fine Structure of Ψ GP ε Ω(ε) < 2 log ε - The minimizer is unique - The minimizer is a (positive) radial function Ω(ε) 2 log ε - Vortices of degree 1 start to appear in Ψ GP ε - The number of vortices is uniformly bounded - The average vortex size is ε log ε Ω(ε) 1/ε - The number of vortices is Ω(ε) - The average area of a vortex core is ε - The area covered by vortices is of order εω(ε) 0 (in accord with the convergence of the density profile) 9

10 Ω(ε) < 2 log ε [Ignat, Millot 05] ε 2 Eε GP = 1 π + o(ε2 ) Ψ GP ε 1 π in H 1 (B) ε 0 The minimizer is unique and it is an eigenfunction of the angular momentum = no symmetry breaking Proof: construction of vortex balls (clusters of vortices) to localize the phase singularities of Ψ GP ε [Sandier, Serfaty 00] The balls are finite and disjoint All the vortices are contained inside the balls A suitable lower bound for the kinetic energy is satisfied 10

11 Ω(ε) > 2 log ε [Ignat. Millot 05] ε 2 E GP ε = 1 π + O(ε2 log ε ) Ψ GP 1 ε ε 0 π in L 2 (B) Critical velocities Ω d (ε) = 2 log ε + 2(d 1) log log ε : Ω d (ε) Ω(ε) Ω d+1 (ε) = Ψ GP ε of degree 1 has exaclty d vortices If d > 1 the minimizer is not unique (symmetry breaking) 11

12 Ω(ε) > 2 log ε [Ignat, Millot 05] Vortices are located at r ε i, i = 1,..., d Vortices are close to the origin, r ε i another, r ε i rε j C log ε C log ε and close one Setting x i = Ω(ε) r i ε, the configuration ( x 1,..., x d ) minimizes the renormalized energy W( x 1,..., x d ) = i j ln x i x j d x 2 i i=1 12

13 Ω(ε) = Ω 0 /ε 1 E TF [ρ] = 2π dr 0 The Thomas-Fermi (TF) Functional { ρ 2 (r) Ω2 0 r2 ρ(r) 4 } D TF = { ρ L 2 ([0, 1]) ρ 0 } E GP [Ψ] = ( d r iaε )Ψ 2 + ETF [ Ψ 2 ] B ε 2 The profile Ψ GP ε minimizes the TF functional The energy contribution of the TF part ( 1/ε 2 ) is much larger than the gap between the Landau levels ( 1/ε) = the minimizer is not in the lowest Landau level The kinetic contribution due to the bending of the profile Ψ GP ε is smaller The number of vortices is 1/ε and each vortex gives a kinetic contribution log ε = the total correction due to vortices is of lower order ( log ε /ε) 13

14 Ω(ε) = Ω 0 /ε The TF Functional E TF = min ρ=1 E TF [ρ] = E TF [ρ TF ] E TF = ρ TF (r) = 1 π Ω2 0 8 πω4 0 ( 768 Ω π Ω 0 ) if Ω 0 4 π if Ω 0 > 4 π 1 π Ω (1 2r2 ) if Ω 0 4 [ π Ω (r2 1) + Ω ] 0 2 if Ω 0 > 4 π π [Hole] if Ω 0 > 4 π = ρ TF = 0 for r R πω0 14

15 Ω(ε) = Ω 0 /ε Energy Asymptotics Theorem 1 For any Ω 0 > 0 and for ε sufficiently small, ε 2 E GP ε = E TF + O(ε log ε ) Proof: 1. [lower bound] E GP [Ψ] = B d r ETF [ Ψ 2 ] ε 2 ( ia ε )Ψ 2 + ETF [ Ψ 2 ] ETF ε 2 ε 2 2. [upper bound] trial function Ψ ε ( r) s.t. - Ψ ε 2 ε 0 ρ TF in L p (B) - Ψ ε has 1/ε vortices 15

16 Ω(ε) = Ω 0 /ε Energy Upper Bound (Trial Function) Ψ ε can not have the form Ψ ε ( r) = f(r)e inεθ, for n ε 1/ε: { 1 [ E GP [f(r)e inεθ ] = 2π dr f 2 nε + 0 r Ω ] } 2 0r f 2 + ETF [f 2 ] 2ε ε 2 Ψ ε can not be in the lowest Landau level (LLL): the energy correction would be too small, since for any function in the LLL ( d r iaε )Ψ 2 1 B ε while we expect it to be at least of order log ε /ε 16

17 Ω(ε) = Ω 0 /ε Energy Upper Bound [Trial Function] Ψ ε ( r) = f ε (r) χ ε ( r) g ε ( r) f ε (r) = ρ TF if Ω 0 4 π j ε ρ TF if Ω 0 > 4 π g ε (z) = z z i z z i l i l is a (square) regular lattice of spacing l ε = ε δ j ε is a cut-off function supported near R 0 χ ε ( r) = 1 if r r i ε α r r i ε α if r r i ε α α > 1/2 17

18 Ω(ε) = Ω 0 /ε Energy Upper Bound Proposition 3 For α > 1, Ω 0 > 0 and ε sufficiently small, E TF [ Ψ ε 2 ] E TF + C Ω0 ε Theorem 2 There exists a constant C Ω0,δ independent of ε, such that for ε sufficiently small d r ( ) iaε 2 π gε Λ 2ε 2 ( Ω0 ) 2 + C Ω 0,δ log ε 2 π δ 2 ε where Λ = B\ i l B i ε and B i ε is a ball of radius ε α, α > 5/2, centered at r i 18

19 Ω(ε) = Ω 0 /ε Energy Upper Bound Proposition 3 = E TF [ Ψ ε ] ε 0 E TF choosing δ = 2π Ω 0, Theorem 2 = d r ( ) iaε 2 C Ω0,δ log ε Ψ ε B ε Remark The proof should work for any regular lattice, provided that the lattice spacing is of order ε. Indeed the estimate in Theorem 2 involves only the volume of the foundamental cell. A different choice of the lattice might improve the coefficient of the remainder. 19

20 Ω(ε) = Ω 0 /ε Convergence of the Profile Corollary 1 For any Ω 0 > 0 and for ε sufficiently small Ψ GP ε 2 ρ TF L 1 (B) = O( ε log ε ) Proposition 4 Let T ε be T ε = { r B r R 0 ε3 1 } Then for any Ω 0 > 4 π and ε sufficiently small, there exist two constants C Ω0 and C Ω 0, such that, for r T ε, Ψ GP ε ( r) 2 C Ω0 ε 1 6 log ε exp C Ω 0 dist( r, T ε ) 2 ε

21 Ω(ε) = Ω 0 /ε 1+α α > 0 The TF Profile E TF ε [ρ] = ε 2α B d r { ρ 2 Ω2 0 r2 ρ 4ε 2α } E TF ε = min Eε TF ρ=1 [ρ] = E TF ε [ρ TF ] = Ω2 0 4 ( 1 8εα 3 πω 0 ) ρ TF ε = Ω2 0 8ε 2α [ r 2 R 2 ε ] + R ε = 1 4εα πω0 The minimizer lives near the boundary: ρ TF ε δ(1 r) ε 0 21

22 Ω(ε) = Ω 0 /ε 1+α α > 0 Energy Asymptotics Theorem 3 For any Ω 0 > 0, α > 0 and ε sufficiently small ε 2+2α E GP ε = E TF ε + O(ε 2α ) + O(ε 2 log ε ) Proof: 1. [lower bound] E GP [Ψ] ETF ε [ Ψ 2 ] ε 2 ETF ε ε 2+2α 2. [upper bound] trial function Ψ ε ( r) = j ε (r) { [ ] } ρ TF Ω0 ε (r) exp i ϑ 2ε 1+α 22

23 Ω(ε) = Ω 0 /ε 1+α α > 0 Convergence of the Profile Corollary 2 Let D ε = { r r R ε }. If Ω 0 > 0, 0 < α < 2 and ε is sufficiently small Ψ GP ε Proposition 5 Let T ε = 2 L 2 (B\D ε ) = O(εα ) + O(ε 2 α log ε ) { r B r 1 ε α } 4 where α = min [α, 2 α]. Then for any Ω 0 > 0, 0 < α < 2 and ε sufficiently small, there exist constants C Ω0 and C Ω 0, such that, for r T ε, Ψ GP ε ( r) 2 C Ω0 ε α 3 log ε exp C Ω dist( r, T 0 ε ) 2 ε 1+α 2 23

24 Perspectives Ω(ε) = Ω 0 ε - The number of vortices is Ω(ε)/2 1/ε - Analysis of the fine structure of the minimizer, i.e. the vortex lattice (triangular? distorted?...) Ω(ε) 1 ε - There exists N ε Ω(ε)/2 s.t. e inεϑ Ψ GP ε is almost a radial function, i.e. L ( e inεϑ Ψ GP ) ε Cε β - The number of vortices in D ε is essentially zero, i.e. almost the whole vorticity of Ψ GP ε is concentrated where it is exponentially small Extension to generic anharmonic and anisotropic traps 24

25 References [1] A. Aftalion, X. Blanc, SIAM Math. Anal. in press (2006) [2] A. Aftalion, X. Blanc, F. Nier, Phys. Rev. A 73 (2006) [3] G. Baym, U.R. Fischer, Phys. Rev. Lett. 80 (2003) [4] R. Ignat, V. Millot, J. Funct. Anal. 233 (2006) [5] R. Ignat, V. Millot, Rev. Math. Phys. 18 (2006) [5] K. Kasamatsu, M. Tsuboda, M. Ueda, Phys. Rev. A 66 (2002) [7] E.H. Lieb, R. Seiringer, Commun. Math. Phys. 264 (2006) [8] E. Sandier, J. Funct. Anal. 152 (1998) [9] E. Sandier, S. Serfaty, Ann. Sci. Ecole Norm. Sup. 33 (2000) [10] R. Seiringer, Commun. Math. Phys. 229 (2002) [11] R. Seiringer, J. Phys. A: Math. Gen. 36 (2003) 25

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi

Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results. Michele Correggi Vortices in Rotating Bose-Einstein Condensates A Review of (Recent) Mathematical Results Michele Correggi CIRM FBK, Trento 15/09/2009 Mathematical Models of Quantum Fluids Università di Verona M. Correggi

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

arxiv: v1 [math-ph] 20 Aug 2008

arxiv: v1 [math-ph] 20 Aug 2008 Bosons in Rapid Rotation arxiv:0808.2724v1 [math-ph] 20 Aug 2008 Jakob Yngvason Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090 Vienna, Austria, Erwin Schrödinger Institute for Mathematical

More information

Energy of a rotating Bose-Einstein condensate in a harmonic trap

Energy of a rotating Bose-Einstein condensate in a harmonic trap Palestine Journal of Mathematics Vol. 6Special Issue: I 07, 56 7 Palestine Polytechnic University-PPU 07 Energy of a rotating Bose-Einstein condensate in a harmonic trap Ayman Kachmar Communicated by Salim

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrödinger International oltzmanngasse 9 Institute for Mathematical Physics -1090 Wien, ustria Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet oundary

More information

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics -1090 Wien, ustria The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate M. Correggi

More information

The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps

The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria The Limit for Rapidly Rotating Bose Gases in Anharmonic Traps J.-B. Bru M. Correggi P. Pickl

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Local Density Approximation for the Almost-bosonic Anyon Gas. Michele Correggi

Local Density Approximation for the Almost-bosonic Anyon Gas. Michele Correggi Local Density Approximation for the Almost-bosonic Anyon Gas Michele Correggi Università degli Studi Roma Tre www.cond-math.it QMATH13 Many-body Systems and Statistical Mechanics joint work with D. Lundholm

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

Incompressibility Estimates in the Laughlin Phase

Incompressibility Estimates in the Laughlin Phase Incompressibility Estimates in the Laughlin Phase Jakob Yngvason, University of Vienna with Nicolas Rougerie, University of Grenoble ESI, September 8, 2014 Jakob Yngvason (Uni Vienna) Incompressibility

More information

2D Electrostatics and the Density of Quantum Fluids

2D Electrostatics and the Density of Quantum Fluids 2D Electrostatics and the Density of Quantum Fluids Jakob Yngvason, University of Vienna with Elliott H. Lieb, Princeton University and Nicolas Rougerie, University of Grenoble Yerevan, September 5, 2016

More information

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

A Ginzburg-Landau approach to dislocations. Marcello Ponsiglione Sapienza Università di Roma

A Ginzburg-Landau approach to dislocations. Marcello Ponsiglione Sapienza Università di Roma Marcello Ponsiglione Sapienza Università di Roma Description of a dislocation line A deformed crystal C can be described by The displacement function u : C R 3. The strain function β = u. A dislocation

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals

Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals Symmetry breaking and restoration in the Ginzburg-Landau model of nematic liquid crystals Micha l Kowalczyk joint project with M. Clerc and P. Smyrnelis (LAFER/DIF and LSPS/CMM). March 1, 2018 Experimental

More information

ESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING BY INHOMO- GENEITIES IN TYPE II SUPERCONDUCTORS

ESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING BY INHOMO- GENEITIES IN TYPE II SUPERCONDUCTORS Chin. Ann. Math. 5B:4(004,493 506. ESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING BY INHOMO- GENEITIES IN TYPE II SUPERCONDUCTORS K. I. KIM LIU Zuhan Abstract The effect of an applied magnetic

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Incompressibility Estimates in the Laughlin Phase

Incompressibility Estimates in the Laughlin Phase Incompressibility Estimates in the Laughlin Phase Jakob Yngvason, University of Vienna with Nicolas Rougerie, University of Grenoble București, July 2, 2014 Jakob Yngvason (Uni Vienna) Incompressibility

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

NONEXISTENCE OF MINIMIZER FOR THOMAS-FERMI-DIRAC-VON WEIZSÄCKER MODEL. x y

NONEXISTENCE OF MINIMIZER FOR THOMAS-FERMI-DIRAC-VON WEIZSÄCKER MODEL. x y NONEXISTENCE OF MINIMIZER FOR THOMAS-FERMI-DIRAC-VON WEIZSÄCKER MODEL JIANFENG LU AND FELIX OTTO In this paper, we study the following energy functional () E(ϕ) := ϕ 2 + F(ϕ 2 ) dx + D(ϕ 2,ϕ 2 ), R 3 where

More information

Effective dynamics of many-body quantum systems

Effective dynamics of many-body quantum systems Effective dynamics of many-body quantum systems László Erdős University of Munich Grenoble, May 30, 2006 A l occassion de soixantiéme anniversaire de Yves Colin de Verdiére Joint with B. Schlein and H.-T.

More information

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol 4, No, pp 35-6 Commun Comput Phys July 8 A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems Weizhu Bao, and Ming-Huang

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Robert Seiringer IST Austria Mathematical Horizons for Quantum Physics IMS Singapore, September 18, 2013 R. Seiringer Bose Gases,

More information

Homework 1: BEC in a trap

Homework 1: BEC in a trap Homework : BEC in a trap Homework is due Tuesday September 9th. As a reminder, collaboration between students is encouraged, but everyone must turn in their own solutions. This problem is based on NJP

More information

Spectral theory for magnetic Schrödinger operators and applicatio. (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan)

Spectral theory for magnetic Schrödinger operators and applicatio. (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan) Spectral theory for magnetic Schrödinger operators and applications to liquid crystals (after Bauman-Calderer-Liu-Phillips, Pan, Helffer-Pan) Ryukoku (June 2008) In [P2], based on the de Gennes analogy

More information

Max Lewandowski. Axel Pelster. March 12, 2012

Max Lewandowski. Axel Pelster. March 12, 2012 Primordial Models for Dissipative Bose-Einstein Condensates Max Lewandowski Institut für Physik und Astronomie, Universität Potsdam Axel Pelster Hanse-Wissenschaftskolleg, Delmenhorst March 12, 2012 Experiment

More information

MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW

MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW MEAN CURVATURE FLOW OF ENTIRE GRAPHS EVOLVING AWAY FROM THE HEAT FLOW GREGORY DRUGAN AND XUAN HIEN NGUYEN Abstract. We present two initial graphs over the entire R n, n 2 for which the mean curvature flow

More information

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates

Bifurcations of Multi-Vortex Configurations in Rotating Bose Einstein Condensates Milan J. Math. Vol. 85 (2017) 331 367 DOI 10.1007/s00032-017-0275-8 Published online November 17, 2017 2017 Springer International Publishing AG, part of Springer Nature Milan Journal of Mathematics Bifurcations

More information

Turbulence in quantum hydrodynamics

Turbulence in quantum hydrodynamics Turbulence in quantum hydrodynamics Michikazu Kobayashi Department Physics, Kyoto University By numerically solving the Gross-Piteavskii equation with the energy injection and dissipation, we study quantum

More information

Will be published: Phys. Rev. Lett. 96, (2006)

Will be published: Phys. Rev. Lett. 96, (2006) Will be published: Phys. Rev. Lett. 96, 230402 (2006) Vortex-lattice melting in a one-dimensional optical lattice Michiel Snoek and H. T. C. Stoof Institute for Theoretical Physics, Utrecht University,

More information

Interaction energy between vortices of vector fields on Riemannian surfaces

Interaction energy between vortices of vector fields on Riemannian surfaces Interaction energy between vortices of vector fields on Riemannian surfaces Radu Ignat 1 Robert L. Jerrard 2 1 Université Paul Sabatier, Toulouse 2 University of Toronto May 1 2017. Ignat and Jerrard (To(ulouse,ronto)

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Thomas-Fermi approximation for coexisting two. two component Bose-Einstein condensates and nonexistence of vortices for small rotation.

Thomas-Fermi approximation for coexisting two. two component Bose-Einstein condensates and nonexistence of vortices for small rotation. Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation Amandine Aftalion, Benedetta Noris, Christos Sourdis To cite this version:

More information

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term Peter Sternberg In collaboration with Dmitry Golovaty (Akron) and Raghav Venkatraman (Indiana) Department of Mathematics

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Condensation of fermion pairs in a domain

Condensation of fermion pairs in a domain Condensation of fermion pairs in a domain Marius Lemm (Caltech) joint with Rupert L. Frank and Barry Simon QMath 13, Georgia Tech, October 8, 2016 BCS states We consider a gas of spin 1/2 fermions, confined

More information

Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement

Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement Etienne Sandier and Sylvia Serfaty November 8, 00 Abstract We prove some improved estimates for the Ginzburg-Landau energy with

More information

Bose-Einstein Condensates with Strong Disorder: Replica Method

Bose-Einstein Condensates with Strong Disorder: Replica Method Bose-Einstein Condensates with Strong Disorder: Replica Method January 6, 2014 New Year Seminar Outline Introduction 1 Introduction 2 Model Replica Trick 3 Self-Consistency equations Cardan Method 4 Model

More information

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada

Dynamics of interacting vortices on trapped Bose-Einstein condensates. Pedro J. Torres University of Granada Dynamics of interacting vortices on trapped Bose-Einstein condensates Pedro J. Torres University of Granada Joint work with: P.G. Kevrekidis (University of Massachusetts, USA) Ricardo Carretero-González

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Institut Universitaire de France Jean-Michel Coron s 60th birthday, June

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

Isoperimetric inequalities and cavity interactions

Isoperimetric inequalities and cavity interactions Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie - Paris 6, CNRS May 17, 011 Motivation [Gent & Lindley 59] [Lazzeri & Bucknall 95 Dijkstra & Gaymans 93] [Petrinic et al. 06] Internal rupture

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Probing Holographic Superfluids with Solitons

Probing Holographic Superfluids with Solitons Probing Holographic Superfluids with Solitons Sean Nowling Nordita GGI Workshop on AdS4/CFT3 and the Holographic States of Matter work in collaboration with: V. Keränen, E. Keski-Vakkuri, and K.P. Yogendran

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Courant Institute, NYU Rivière-Fabes symposium, April 28-29, 2017 The Ginzburg-Landau equations u : Ω R 2 C u = u ε 2 (1 u 2 ) Ginzburg-Landau

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

3d Crystallization. FCC structures. Florian Theil. Macroscopic Modeling of Materials with Fine Structure May Warwick University

3d Crystallization. FCC structures. Florian Theil. Macroscopic Modeling of Materials with Fine Structure May Warwick University FCC structures 1 Mathematics Institute Warwick University Macroscopic Modeling of Materials with Fine Structure May 2011 Outline 1 2 Outline 1 2 Extremum principles Crystalline structure is the minimizer

More information

(1) BEC (2) BEC (1) (BEC) BEC BEC (5) BEC (LT) (QFS) BEC (3) BEC. 3 He. 4 He. 4 He 3 He

(1) BEC (2) BEC (1) (BEC) BEC BEC (5) BEC (LT) (QFS) BEC (3) BEC. 3 He. 4 He. 4 He 3 He 22 (BEC) 4 He BEC We study theoretically and experimentally quantum hydrodynamics in quantum condensed phases at low temperature, namely superfluid helium and atomic Bose-Einstein condensates (BECs). Quantum

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Aug 1999

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Aug 1999 Interference of a Bose-Einstein condensate in a hard-wall trap: Formation of vorticity arxiv:cond-mat/9908095v1 [cond-mat.stat-mech] 6 Aug 1999 J. Ruostekoski, B. Kneer, and W. P. Schleich Abteilung für

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

On the Thomas Fermi ground state in a harmonic potential

On the Thomas Fermi ground state in a harmonic potential Asymptotic Analysis 73 0 53 96 53 DOI 0.333/ASY-0-034 IOS Press On the Thomas Fermi ground state in a harmonic potential Clément Gallo a, and Dmitry Pelinovsky b, a Institut de Mathématiques et de Modélisation

More information

Vortex collisions and energy-dissipation rates in the Ginzburg Landau heat flow

Vortex collisions and energy-dissipation rates in the Ginzburg Landau heat flow J. Eur. Math. Soc. 9, 177 17 c European Mathematical Society 007 Sylvia Serfaty Vortex collisions and energy-dissipation rates in the Ginzburg Landau heat flow Part I: Study of the perturbed Ginzburg Landau

More information

Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit. Michele Correggi

Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit. Michele Correggi Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit Michele Correggi Dipartimento di Matematica Quantum Mean Field and Related Problems LAGA Université Paris 13 joint work

More information

Superfluidity versus Bose-Einstein Condensation

Superfluidity versus Bose-Einstein Condensation Superfluidity versus Bose-Einstein Condensation Jakob Yngvason University of Vienna IHES, Bures-sur-Yvette, March 19, 2015 Jakob Yngvason (Uni Vienna) Superfluidity vs BEC 1 / 42 Concepts Bose Einstein

More information

LOCALIZATION OF RELATIVE ENTROPY IN BOSE-EINSTEIN CONDENSATION OF TRAPPED INTERACTING BOSONS

LOCALIZATION OF RELATIVE ENTROPY IN BOSE-EINSTEIN CONDENSATION OF TRAPPED INTERACTING BOSONS LOCALIZATION OF RELATIVE ENTROPY IN BOSE-EINSTEIN CONDENSATION OF TRAPPED INTERACTING BOSONS LAURA M. MORATO 1 AND STEFANIA UGOLINI 2 1 Facoltà di Scienze, Università di Verona, Strada le Grazie, 37134

More information

equations in the semiclassical regime

equations in the semiclassical regime Adaptive time splitting for nonlinear Schrödinger equations in the semiclassical regime Local error representation and a posteriori error estimator Workshop, Numerical Analysis of Evolution Equations Vill,

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Γ-CONVERGENCE OF THE GINZBURG-LANDAU ENERGY

Γ-CONVERGENCE OF THE GINZBURG-LANDAU ENERGY Γ-CONVERGENCE OF THE GINZBURG-LANDAU ENERGY IAN TICE. Introduction Difficulties with harmonic maps Let us begin by recalling Dirichlet s principle. Let n, m be integers, Ω R n be an open, bounded set with

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Courant Institute, NYU & LJLL, Université Pierre et Marie Curie Conference in honor of Yann Brenier, January 13, 2017 Fields Institute, 2003

More information

Derivation of Pekar s polaron from a microscopic model of quantum crystal

Derivation of Pekar s polaron from a microscopic model of quantum crystal Derivation of Pekar s polaron from a microscopic model of quantum crystal Mathieu LEWIN Mathieu.Lewin@math.cnrs.fr (CNRS & University of Cergy-Pontoise) joint work with Nicolas Rougerie (Grenoble, France)

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Stanley Alama / Research Description

Stanley Alama / Research Description Stanley Alama / Research Description My research is in elliptic partial differential equations and systems and in the calculus of variations. I am especially interested in finding solutions and mathematical

More information

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas: Lecture 1 2D quantum gases: the static case Low dimension quantum physics Quantum wells and MOS structures Jean Dalibard, Laboratoire Kastler Brossel*, ENS Paris * Research unit of CNRS, ENS, and UPMC

More information

The Γ-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy.

The Γ-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy. The Γ-limit of the two-dimensional Ohta-Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy. Dorian Goldman, Cyrill B. Muratov and Sylvia Serfaty October 17,

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region J. K. Nilsen 1), J. Mur-Petit 2), M. Guilleumas 2), M. Hjorth-Jensen 1), and A.Polls 2) 1 ) Department of Physics, University

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Instructor Prof. Seth Aubin Office: room 245, Millington Hall, tel: 1-3545

More information