Size: px
Start display at page:

Download ""

Transcription

1

2

3 5

4

5 n

6 N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z).

7 f κ < f κ b κ Z Z R Z κ (b κ Z, κ ) P (Z, Z ) P : Z Z [0, 1] z P (z, B) Z B Z B P (z, B) z Z P (z, B) z Z B Z n N P n (z, B) := P (z, B)P n 1 (z, dz ) z B Z n Z h : Z R (P n h)(z) :=: E z h(z n ) := h(z )P n (z, dz ) n N 0, P 0 h := h P h := P 1 h P P h h bz Z R m Z f : Z Z R + Z f(z z)dz = 1 z Z P f P (z, B) = B f(z z) dz z Z B Z (Z n ) n 0 (Ω, F, P) (Z, Z ) P {F n } n 0 F (Z n ) n 0 P z Z 0 = z E z τ N 0 {F n } n 0 P{τ < } = 1 {τ n} F n n 0 τ = n n M {F n } n 0 Z R m (Ω, F ) Ω = n=0z F σ Z

8 t 0 Z t r(z t ) c(z t ) t+1 Z t+1 r : Z R c: Z R β (0, 1) v z Z { τ 1 } v (z) := sup E z β t c(z t ) + β τ r(z τ ). τ M t=0 τ M σ Z {0, 1} 0 1 σ τ := inf{t 0 σ(z t ) = 1} z Z ψ (z) := c(z) + β v (z )P (z, dz ). Z g : Z R + n N 0 a 1,, a 4, m, d R + βm < 1 z Z r(z ) P n (z, dz ) a 1 g(z) + a 2, c(z ) P n (z, dz ) a 3 g(z) + a 4, g(z )P (z, dz ) mg(z) + d. n = 0

9 E z r(z n ) E z c(z n ) g E z g(z t ) E z g(z t ) r c n := 0 g := r c m := 1 d := 0 v { } v (z) = max r(z), c(z) + β v (z )P (z, dz ) = max {r(z), ψ (z)}. ψ ψ (z) = c(z) + β max {r(z ), ψ (z )} P (z, dz ). Q Qψ(z) = c(z) + β max{r(z ), ψ(z )}P (z, dz ). Q ψ Q m d l: Z R ( n 1 ) n 1 l(z) := m E z r(z t ) + E z c(z t ) + g(z) + d, t=1 t=0 Q (b l Z, l ) Q b l Z ψ σ (z) = 1{r(z) ψ (z)} n = 0 l(z) = g(z) + d n = 1 l(z) = m c(z) + g(z) + d n n > n n 1 N 0 n 2 N 0 g

10 w t c 0 w t = w(z t ) (Z t ) t 0 r(z) = u(w(z))/(1 β) z u β c 0 := u( c 0 ) (Z t ) t 0 Z := R Z t+1 = ρz t + b + ε t+1, (ε t ) t 1 N(0, σ 2 ), ρ [ 1, 1]. { } u(w(z )) Qψ(z) = c 0 + β max 1 β, ψ(z ) f(z z) dz, f(z z) = N(ρz + b, σ 2 ) w(z) := e z u(w) = w1 δ 1 δ ( δ 0 δ 1) u(w) = ln w ( δ = 1). {ε t } δ 0 δ 1 ρ [0, 1) n N 0 β e ρnξ < 1 ξ := ξ 1 + ξ 2 ξ 1 := (1 δ)b ξ 2 := (1 δ) 2 σ 2 /2 e (1 δ)z P n (z, dz ) = b n e ρn (1 δ)z, b n := e ξ t 1 1 i=0 ρi +ξ t 1 2 i=0 ρ2i. {K j } Z = j=1 K j Γ(K j ) K j+1 Γ : Z 2 Z {Z t } Γ X N(µ, σ 2 ) E e sx = e sµ+s2 σ 2 /2 s R ( Z t Z 0 = z N b t 1 i=0 ρi, σ 2 t 1 i=0 ) ρ2i

11 g(z) = e ρn (1 δ)z m = d = e ρnξ, a 1 = b n (1 β)(1 δ), a 2 = a 3 = 0, a 4 = c 0. r(z) = e (1 δ)z /((1 β)(1 δ)) r(z ) P n (z, dz ) = b n e ρn (1 δ)z 1 (1 β)(1 δ) = a 1g(z) + a 2, g(z )P (z, dz ) = e ρn+1 (1 δ)z e ρn ξ 1 +ρ 2n ξ 2 (g(z) + 1) e ρnξ = mg(z) + d. ρ = 1 δ = 1 ρ [ 1, 0] c r r c r c (w t ) t 0 ln w t = ξ + ε t, (ε t ) t 0 N(0, γ ε ). ξ ξ N(µ, γ) f(w µ, γ) = LN(µ, γ+γ ε ) w ξ w N(µ, γ ) γ = 1/ (1/γ + 1/γ ε ) µ = γ (µ/γ + ln w /γ ε ).

12 h h(z )P (z, dz ) = h(w, µ, γ )f(w µ, γ) dw, µ γ { } u(w ) Qψ(µ, γ) = c 0 + β max 1 β, ψ(µ, γ ) f(w µ, γ) dw. δ 0 δ 1 n := 1 g(µ, γ) := e (1 δ)µ+(1 δ)2 γ/2 m := 1 d := 0 w 1 δ f(w µ, γ) dw = e (1 δ)2 γ ε/2 e (1 δ)µ+(1 δ)2 γ/2. r(w) := w 1 δ /((1 δ)(1 β)) c c 0 E µ,γ g(µ, γ ) := g(µ, γ )f(w µ, γ) dw = g(µ, γ) = mg(µ, γ) + d. l Q (b l Y, l ) ψ Y := R R ++ δ = 1 (µ, γ) w (w, µ, γ) r(w )f(w µ, γ) dw = e (1 δ)2 γ ε/2 e (1 δ)µ+(1 δ)2γ/2 /((1 β)(1 δ)) a 1 := e (1 δ)2 γ ε/2 /((1 β)(1 δ)) a 2 := 0 a 3 := 0 a 4 := c 0

13 Z := R p t = p(z t ) = e Zt γ > 0 β = e γ K r(z) = (p(z) K) + c 0 Qψ(z) = e γ max{(p(z ) K) +, ψ(z )}f(z z) dz. ρ ( 1, 1) ξ := b + σ 2 /2 n N 0 e γ+ ρn ξ < 1 g(z) := e ρnz + e ρnz m := d := e ρn ξ e γ+ξ < 1 n = 0 ρ [ 1, 1] Z t Z := R + r(z t ) = Z t c 0 > 0 θ > 0 F (z z) := P(Z t+1 z Z t = z) = 1 e θ(z z) (z z). Qψ(z) = c 0 + β max{z, ψ(z )} df (z z). n := 0 g(z) := z m := 1 d := 1/θ a t a t = a(z t ) = e Zt Z t Z := R c f > 0 q(a, l) = al α α (0, 1) l

14 p w r(z) = c(z) = Ga(z) 1 1 α cf G = (αp/w) 1 1 α (1 α)w/α ) } Qψ(z) = (Ga(z) 1 1 α cf + β max {Ga(z ) 1 1 α cf, ψ(z ) f(z z) dz. ρ [0, 1) n N 0 βe ρn ξ < 1 ξ := b 1 α + σ2 2(1 α) 2 g(z) := e ρn z/(1 α) m := d := e ρnξ ρ = 1 P z h(z )P (z, dz ) Z h c r l z r(z ) P (z, dz ) z l(z )P (z, dz ) n = 0 P c r g z E z g(z 1 ) g z E z g(z 1 ) z E z r(z t ), E z c(z t ) t = 0,..., n ψ P r P f(z z) z c l z r(z ) f(z z) dz, l(z )f(z z) dz ψ n = 0 r(z) a 1 g(z) + a 2 r, g z E z g(z 1 ) z E z r(z 1 )

15 r c r c ψ P f c z f(z z) ψ ψ P f(z z) = N(ρz + b, σ 2 ) z c c 0 g z E z g(z 1 ) z E z r(z t ) t N l z E z l(z 1 ) n = 1 P c c 0 r g (µ, γ) E µ,γ r(w ), E µ,γ g(µ, γ ) E µ,γ r(w ) := r(w ) f(w µ, γ) dw ψ ψ r(z) e z + K z (e z + K)f(z z) dz z E z r(z 1 ) & n = 0 h : Z R z h(z ) df (z z) P r c g z E z g(z 1 ) z P (z, dz ) = z θe θ(z z) dz = z + 1/θ. [z, ) ψ ψ

16 r P c z max{r(z ), ψ(z )}P (z, dz ) ψ b l Z ψ ρ 0 f(z z) = N(ρz + b, σ 2 ) z r c ψ ρ 0 ψ ψ r(w) µ µ f(w µ, γ) = N(µ, γ + γ ε ) µ E µ,γ (r(w ) ψ(µ, γ )) µ ψ µ c c 0 ψ µ Z = Z 1 Z m R m z = (z 1,..., z m ) h : Z R D j i h(z) j h z i f D j i f(z z) := j f(z z)/ (z i ) j D i c(z) z int(z) i = 1,..., m z i := (z 1,..., z i 1, z i+1,..., z m ) z 0 Z δ > 0 B δ (z0) i := {z i Z i : z i z0 i < δ} B δ (z0) i P f i = 1,..., m Di 2 f(z z) (z, z ) int(z) Z

17 (z, z ) D i f(z z) z i D 2 i f(z z) = 0 z i (z, z i ) z 0 int(z) δ > 0 A Z z / A z i (z, z i 0 ) / B δ (z i 0) z i D 2 i f(z z) = 0 z 0 int(z) z z i (z, z i 0 ) k k(z )D i f(z z) dz < z int(z) k {r, l} i = 1,..., m ψ ψ z int(z) i = 1,..., m D i ψ (z) = D i c(z) + max{r(z ), ψ (z )}D i f(z z) dz. i = 1,..., m z D i c(z) int(z) k z k(z )D i f(z z) dz int(z) k {r, l} z D i ψ (z) int(z) i = 1,..., m h(z, a) := e a(ρz+b)+a2 σ 2 /2 / 2πσ 2 2 f(z z) z 2 f(z z) z dz = ρ 2 σ π e az f(z z) z h(z, a) exp = 0 z (z ) := z b±σ ρ } { [z (ρz+b+aσ 2 )] 2 ρz + ρ(ρz+b) 2σ 2 σ 2

18 z z z ψ ψ v ψ v ψ v z = 3 ψ Θ R k P θ, r θ c θ vθ ψ θ θ Θ γ = 0.04 K = 20 b = 0.2 σ = 1 ρ = ±0.65

19 n θ a iθ m θ d θ g θ θ n := sup n θ m := sup m θ d := sup d θ ā := 4 i=1 sup a iθ θ Θ θ Θ θ Θ θ Θ θ Θ βm < 1 n, d, ā < m d l : Z Θ R ( n 1 ) n 1 l(z, θ) := m E θ z r θ (Z t ) + E θ z c θ (Z t ) + g θ (z) + d, t=1 t=0 Q b l (Z Θ) (z, θ) ψθ (z) E θ z P θ (z, ) P θ (z, ) (z, θ) h(z )P θ (z, dz ) h : Z R (z, θ) c θ (z), r θ (z), l(z, θ), rθ (z ) P θ (z, dz ), l(z, θ)p θ (z, dz ) (z, θ) ψθ (z) Θ := [ 1, 1] A B C A, B R ++, R C R Θ θ = (ρ, σ, b, c 0 ) (θ, z) ψθ (z)

20 Z R m Z = X Y X R Y R m 1 (Z t ) t 0 {(X t, Y t )} t 0 (X t ) t 0 (Y t ) t 0 X Y (X t ) t 0 (Y t ) t 0 Y t (X t+1, Y t+1 ) X t P (z, dz ) (x, y ) y F y (x, y ) P (z, dz ) = P ((x, y), d(x, y )) = df y (x, y ) c : Y R r X y Y x X r(x, y) = c(y) + β v (x, y ) df y (x, y ) X t Y t X Y x : Y X x x r( x(y), y) = ψ (y) y Y { 1{x x(y)}, r x σ (x, y) = 1{x x(y)}, r x r x x θ θ Θ (y, θ) x θ (y)

21 Y y = (y 1,..., y m 1 ) h : Y R l : X Y R D i h(y) := h(y)/ y i D i l(x, y) := l(x, y)/ y i D x l(x, y) := l(x, y)/ x r int(z) x int(y) D i x(y) = D ir( x(y), y) D i ψ (y) D x r( x(y), y) y int(y) i = 1,..., m. (x, y) r(x, y) ψ (y) x y x(y) y i y i x r X x { } u(w) v (w, µ, γ) = max 1 β, c 0 + β v (w, µ, γ )f(w µ, γ) dw,

22 x := w R ++ =: X y := (µ, γ) R R ++ =: Y w : Y R w µ µ

23 Q β = 0.95 γ ε = 1.0 c 0 = 0.6 δ = 3, 4, 5, 6 (µ, γ) [ 10, 10] [10 4, 10] 200 µ 100 γ µ γ µ γ µ µ γ µ 178 f t R {f t } h f h(f) df < x t x t = ξ t +ε x t {ε x t } N(0, γ x ) ξ t ε x t 10 4 σ = 3, 4, 5, 6 w [10 4, 10] 50 µ γ f t < 0

24 ξ t = ρξ t 1 + ε ξ t, {ε ξ t} N(0, γ ξ ). y t+1 t y t = ξ t + ε y t {ε y t } N(0, γ y ) ξ N(µ, γ) y ξ y N(µ, γ ) γ = 1/ ( 1/γ + ρ 2 /(γ ξ + γ y ) ) µ = γ (µ/γ + ρy /(γ ξ + γ y )). u(x) = (1 e ax ) /a a > 0 ( ) r(f, µ, γ) := E µ,γ [u(x)] f = 1 e aµ+a2 (γ+γ x)/2 /a f c 0 x := f R =: X y := (µ, γ) R R ++ =: Y Qψ(µ, γ) = β max {E µ,γ [u(x )] f, ψ(µ, γ )} p(f, y µ, γ) d(f, y ), p(f, y µ, γ) = h(f )l(y µ, γ) l(y µ, γ) = N(ρµ, ρ 2 γ +γ ξ +γ y ) n := 1 g(µ, γ) := e µ+a2 γ/2 m := 1 d := 0 l f : Y R Q (b l Y, l ) ψ f(µ, γ) = E µ,γ [u(x)] ψ (µ, γ) ψ f ρ 0 ψ µ ρ {ξ t } β = 0.95 a = 0.2 γ x = 0.1 γ y = 0.05 h = LN(0, 0.01) ρ = 1 γ ξ = 0 (µ, γ) [ 2, 10] [10 4, 10] 100 {f t } R

25 { P f f(µ, γ) } µ γ µ γ 921 w t = η t + θ t ξ t, ln θ t = ρ ln θ t 1 + ln u t, ρ [ 1, 1]. {ξ t } h {η t } v η 1 v(η) dη < {u t } LN(0, γ u ) {ξ t } {η t } {θ t } 10 4 f [10 4, 10] µ γ

26 θ t ξ t η t Qψ(θ) = c 0 + β { } u(w ) max 1 β, ψ(θ ) f(θ θ)h(ξ )v(η ) d(θ, ξ, η ), w = η + θ ξ f(θ θ) = LN(ρ ln θ, γ u ) w R ++ =: X θ R ++ =: Y w δ δ = 1 ρ ( 1, 1) n N 0 βe ρ2n γ u < 1 g(θ) := θ ρn + θ ρn m := d := e ρ2n γ u ρ ( 1, 1) Q (b l Y, l ) ψ w(θ) = e (1 β)ψ (θ) ψ w w (θ) = (1 β) w(θ)ψ (θ). ρ 0 ψ w θ w w θ w θ θ w ψ (θ) [(1 β) w(θ)] 1 βe γu/2 < 1 ρ = 1 ρ = 1 δ 0 δ 1 β = 0.95 c 0 = 0.6 γ u = 10 4 v = LN(0, 10 6 ) h = LN(0, ) ρ [0, 1] 100

27 θ [10 4, 10] 200 θ ρ = 0 {θ t } LN(0, γ u ) θ θ θ ρ > 0 θ θ ρ ρ θ < 1 ρ θ > w π

28 ρ = 0.75 β = 0.95 c 0 = 0.6 γ u = 10 4 v = LN(0, 10 6 ) h = LN(0, ) (θ, w) [10 4, 10] 2 (θ, w) (200, 200) (200, 300) (200, 400) (300, 200) (300, 300) (300, 400) (400, 200) (400, 300) (400, 400) 10 4 t Z t c(z t ) t + 1 s(z t ) t + 1 α Z g : Z R + n N 0 a 1,, a 4 m, d R + βm < 1 z Z s(z ) P n (z, dz ) a 1 g(z) + a 2

29 c(z ) P n (z, dz ) a 3 g(z) + a 4 g(z )P (z, dz ) mg(z) + d v (z) r (z) z Z v r { } v (z) = max r (z), c(z) + β v (z )P (z, dz ), r (z) = s(z) + αβ v (z )P (z, dz ) + (1 α)β r (z )P (z, dz ). ψ := c + βp v v = r ψ ψ r ψ = c + βp (r ψ) r = s + αβp (r ψ) + (1 α)βp r. m d κ : Z R + n 1 κ(z) := m E z [ s(z t ) + c(z t ) ] + g(z) + d t=0 (b κ Z b κ Z, ρ κ ) ρ κ b κ Z b κ Z ρ κ ((ψ, r), (ψ, r )) = ψ ψ κ r r κ. (b κ Z b κ Z, ρ κ ) (b κ Z, κ ) L b κ Z b κ Z ( ) ( ) ψ c + βp (r ψ) L =. r s + αβp (r ψ) + (1 α)βp r m d κ

30 L (b κ Z b κ Z, ρ κ ) L b κ Z b κ Z h := (ψ, r ) b 1, b 2 R + z Z v (z) n 1 t=0 βt E z [ r(z t ) + c(z t ) ] + b 1 g(z) + b 2 ψ (z) n 1 t=1 βt E z r(z t ) + n 1 t=0 βt E z c(z t ) + b 1 g(z) + b 2 m 1 E z r(z n ) a 1 g(z) + a 2 E z c(z n ) a 3 g(z) + a 4 E z g(z 1 ) mg(z) + d z Z t 1 E z g(z t ) = E z [E z (g(z t ) F t 1 )] = E z ( E Zt 1 g(z 1 ) ) m E z g(z t 1 ) + d. t 0 E z g(z t ) m t g(z) + 1 mt d. 1 m t n E z r(z t ) = E z [E z ( r(z t ) F t n )] = E z ( E Zt n r(z n ) ) a 1 E z g(z t n ) + a 2.

31 t n ( E z r(z t ) a 1 m t n g(z) + 1 ) mt n 1 m d t n ( E z c(z t ) a 3 E z g(z t n ) + a 4 a 3 m t n g(z) + 1 ) mt n 1 m d + a 2. S(z) := t 1 βt E z [ r(z t ) + c(z t ) ] + a 4. n 1 S(z) β t E z [ r(z t ) + c(z t ) ] + a 1 + a 3 1 βm g(z) + (a 1 + a 3 )d + a 2 + a 4. (1 βm)(1 β) t=1 v r + c + S ψ c + S b 1 := a 1+a 3 1 βm b 2 := (a 1+a 3 )d+a 2 +a 4 (1 βm)(1 β) (X, X, ν) (Y, Y, u) p : Y X R x q : Y X R x q p Y X x q(y, x)u(dy) x p(y, x)u(dy) ( ) E z sup k 1 k 0 t=0 βt c(z t ) + β k r(z k ) < z Z k 1 sup β t c(z t ) + β k r(z k 0 k ) β t [ r(z t ) + c(z t ) ] t=0 t 0 P z z Z

32 d 1 := a 1 + a 3 d 2 := a 2 + a 4 βm < 1 m d m + d 1 m > 1 β(m + d 1 m ) < 1 d (d 2 m + d)/(m + d 1 m 1) Q Qψ Qϕ ψ, ϕ b l Z ψ ϕ Q0 b l Z Qψ Z ψ b l Z Q(ψ +al) Qψ +aβ(m+d 1 m )l a R + ψ b l Z (Q0)(z) c(z) r(z l(z) l(z) + β ) l(z) P (z, dz ) (1 + β)/m < z Z Q0 l < Qψ E z r(z t ) P (z, dz ) = E z r(z t+1 ) E z c(z t ) P (z, dz ) = E z c(z t+1 ). h(z) := n 1 t=1 E z r(z t ) + n 1 t=0 E z c(z t ) n n h(z )P (z, dz ) = E z r(z t ) + E z c(z t ). t=2 m d m+d 1 m > 1 (d 2 m +d+d )/(m+d 1 m ) d ( n ) n l(z )P (z, dz ) = m E z r(z t ) + E z c(z t ) t=2 t=2 t=1 ( n 1 ) n 1 m E z r(z t ) + E z c(z t ) t=1 t=1 + g(z )P (z, dz ) + d + (m + d 1 m )g(z) + d 2 m + d + d ( (m + d 1 m m ) m + d 1 m h(z) + g(z) + d 2m + d + d ) m + d 1 m (m + d 1 m )l(z). ψ b l Z a R + z Z Q(ψ + al)(z) = c(z) + β max { r(z ), ψ(z ) + al(z ) } P (z, dz ) c(z) + β max { r(z ), ψ(z ) } P (z, dz ) + aβ l(z )P (z, dz ) Qψ(z) + aβ(m + d 1 m )l(z).

33 ψ Q ψ b l Z ψ Q b l Z τ := inf{t 0 : v (Z t ) = r(z t )} b l cz b l Z l b l cz b l Z ψ Q(b l cz) b l cz ψ b l cz h(z) := max{r(z), ψ(z)} G R + h(z) r(z) + Gl(z) =: h(z) z h(z) ± h(z) (z m ) m 0 Z z m z Z ( h(z ) ± h(z )) P (z, dz ) lim inf ( h(z ) ± h(z )) P (z m, dz ). m lim m h(z )P (z m, dz ) = h(z )P (z, dz ) ( ) ± h(z )P (z, dz ) lim inf ± h(z )P (z m, dz ), m (a m ) m 0 (b m ) m 0 R lim a m lim inf (a m + b m ) = lim a m + lim inf b m m m m m lim sup h(z )P (z m, dz ) h(z )P (z, dz ) lim inf h(z )P (z m, dz ), m m z h(z )P (z, dz ) c Qψ b l cz Q(b l cz) b l cz ψ b l iz b l Z ψ Q(b l iz) b l iz µ(z) := max{r(z ), ψ (z )}f(z z) dz µ i (z) := max{r(z ), ψ (z )}D i f(z z) dz

34 i = 1,..., m P f D i f(z z) (z, z ) int(z) Z z 0 int(z) δ > 0 k {r, l} k(z ) sup D i f(z z) dz < z i B δ (z0 i ) D i µ(z) = µ i (z) z int(z) i = 1,..., m (z i = z i 0 ). z 0 int(z) {z n } int(z) z i n z i 0 zi n z i 0 z i n = z i 0 n N δ > 0 N N zn i B δ (z0 i ) n N z i = z0 i ξ i (z, z n, z 0 ) B δ (z0 i ) i (z, z n, z 0 ) := f(z z n ) f(z z 0 ) zn i z0 i = D i f(z z) z i =ξ i (z,z n,z 0 ) sup D i f(z z). z i B δ (z0 i ) ψ Gl G R + n N max{r(z ), ψ (z )} i (z, z n, z 0 ) ( r(z ) + Gl(z )) sup D i f(z z) z i B δ (z0 i ) ( r(z ) + Gl(z )) sup D i f(z z) dz < z i B δ (z0 i ) max{r(z ), ψ (z )} i (z, z n, z 0 ) max{r(z ), ψ (z )}D i f(z z 0 ) n µ(z n ) µ(z 0 ) z i n z i 0 = max{r(z ), ψ (z )} i (z, z n, z 0 ) dz max{r(z ), ψ (z )}D i f(z z 0 ) dz = µ i (z 0 ). D i µ(z 0 ) = µ i (z 0 ) z 0 int(z) δ > 0 A Z z / A z i (z, z i 0 ) / B δ(z i 0 ) z i = z i 0 sup D i f(z z) = D i f(z z) z z i B i δ (z0 i ) =z0 i +δ D if(z z) z i =z0 i δ =: hδ (z, z 0 ).

35 G R + z i = z i 0 sup D i f(z z) sup D i f(z z) 1(z A) + h δ (z, z 0 ) 1(z A c ) z i B δ (z0 i ) z A,z i B δ (z0 i ) ) G 1(z A) + ( D i f(z z) z i =z i0 +δ + D if(z z) z i =z i0 δ 1(z A c ). D i ψ (z) = D i c(z) + µ i (z) z int(z) D i ψ (z) = D i c(z) + µ i (z) int(z) D i c(z) ψ z µ i (z) int(z) ψ Gl G R + max{r(z ), ψ (z )}D i f(z z) ( r(z ) + Gl(z )) D i f(z z), z, z Z. z z [ r(z ) + Gl(z )] D i f(z z) dz z µ i (z) r(f, µ, γ ) ( ) 1/a + e a2 γ x/2 /a e aµ +a 2 γ /2 + f. e aµ +a 2 γ /2 P (z, dz ) = e aµ +a 2 γ /2 l(y µ, γ) dy = e aµ+a2γ/2. µ f := f h(f) df r(f, µ, γ ) ( ) P (z, dz ) (1/a + µ f ) + e a2 γ x/2 /a e aµ+a2γ/2. n := 1 g(µ, γ) := e aµ+a2 γ/2 m := 1 d := 0 P (µ, γ) (µ, γ) (µ, γ) E µ,γ r(z 1 ) g

36 g(µ, γ) = E µ,γ g(µ, γ ) l µ ρ 0 w = η + θξ ln w 1/w + w ln w P (z, dz ) (1/η + η )v(η ) dη + ξ h(ξ ) dξ θ f(θ θ) dθ = µ η + µ + η + µ ξ e γu/2 θ ρ, µ + η := ηv(η) dη µ η := η 1 v(η) dη µ ξ := ξh(ξ) dξ ( ln w P t (z, dz ) a (t) 1 θ ρt + a (t) 2 a (t) 1 θ ρt + θ ρt) + a (t) 2 a (t) 1 a(t) 2 > 0 θ t N n g m d θ ρn+1 + θ ρn+1 θ ρn + θ ρn + 1 θ > 0 ρ [ 1, 1] g(θ )f(θ θ) dθ = ( θ ρn+1 + θ ρn+1) e ρ2n γ u/2 mg(θ) + d. θ f(θ θ) θ (θ, θ ) f(θ θ)/ θ 2 f(θ θ)/ θ 2 = 0 : θ = θ (θ ) = ã i e ln θ /ρ, i = 1, 2 ã 1, ã 2 > 0 ρ > 0 (< 0) θ (θ ) (0) θ θ (θ ) 0 ( ) θ 0 f(θ θ) ρ > 0 X LN(µ, σ 2 ) E X s = e sµ+s2 σ 2 /2 s R

37 d 1 := a 1 + a 3 d 2 := a 2 + a 4 βm < 1 m, d > 0 m + d 1 m > 1 β(m + d 1 m ) < 1 d d 2m +d m+d 1 m 1 κ(z )P (z, dz ) (m + d 1 m )κ(z). z Z L: (b κ Z b κ Z, ρ κ ) (b κ Z b κ Z, ρ κ ) h := (ψ, r) b κ Z b κ Z p(z) := c(z) + β max{r(z ), ψ(z )}P (z, dz ) q(z) := s(z) + αβ max{r(z ), ψ(z )}P (z, dz ) + (1 α)β r(z )P (z, dz ) p q Z G R + z Z p(z) q(z) κ(z) c(z) s(z) κ(z) + βg κ(z )P (z, dz ) κ(z) 1 m + β(m + d 1m )G <. p b κ Z q b κ Z Lh b κ Z b κ Z L (b κ Z b κ Z, ρ κ ) h 1 := (ψ 1, r 1 ) h 2 := (ψ 2, r 2 ) b κ Z b κ Z ρ κ (Lh 1, Lh 2 ) = I J I := βp (r 1 ψ 1 ) βp (r 2 ψ 2 ) κ J := αβ[p (r 1 ψ 1 ) P (r 2 ψ 2 )] + (1 α)β(p r 1 P r 2 ) κ z Z P (r 1 ψ 1 )(z) P (r 2 ψ 2 )(z) r 1 ψ 1 r 2 ψ 2 (z )P (z, dz ) ( ψ 1 ψ 2 r 1 r 2 )(z )P (z, dz ) ρ κ (h 1, h 2 ) κ(z )P (z, dz ), a b a b a a b b I β(m + d 1 m )ρ κ (h 1, h 2 ) J β(m + d 1 m )ρ κ (h 1, h 2 ) L (b κ Z b κ Z, ρ κ ) β(m + d 1 m ) ρ κ (Lh 1, Lh 2 ) = I J β(m + d 1 m )ρ κ (h 1, h 2 ). ψ r h := (ψ, r ) L h b κ Z b κ Z max{ r (z), ψ (z) } β t E z [ s(z t ) + c(z t ) ], t=0

38

39

40

41

Optimal Timing of Decisions: A General Theory Based on Continuation Values 1

Optimal Timing of Decisions: A General Theory Based on Continuation Values 1 Optimal Timing of Decisions: A General Theory Based on Continuation Values 1 Qingyin Ma a and John Stachurski b a, b Research School of Economics, Australian National University April 17, 2017 ABSTRACT.

More information

Solving Sequential Decision Problems via Continuation Values 1

Solving Sequential Decision Problems via Continuation Values 1 Solving Sequential Decision Problems via Continuation Values 1 Qingyin Ma a and John Stachurski b a, b Research School of Economics, Australian National University September 1, 016 ABSTRACT. We study a

More information

Continuation Value Methods for Sequential Decisions: Optimality and Efficiency 1

Continuation Value Methods for Sequential Decisions: Optimality and Efficiency 1 Continuation Value Methods for Sequential Decisions: Optimality and Efficiency 1 Qingyin Ma a and John Stachurski b a, b Research School of Economics, Australian National University December 13, 2017 ABSTRACT.

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Math 715 Homework 1 Solutions

Math 715 Homework 1 Solutions . [arrier, Krook and Pearson Section 2- Exercise ] Show that no purely real function can be analytic, unless it is a constant. onsider a function f(z) = u(x, y) + iv(x, y) where z = x + iy and where u

More information

ERRATA: Probabilistic Techniques in Analysis

ERRATA: Probabilistic Techniques in Analysis ERRATA: Probabilistic Techniques in Analysis ERRATA 1 Updated April 25, 26 Page 3, line 13. A 1,..., A n are independent if P(A i1 A ij ) = P(A 1 ) P(A ij ) for every subset {i 1,..., i j } of {1,...,

More information

Selected Solutions To Problems in Complex Analysis

Selected Solutions To Problems in Complex Analysis Selected Solutions To Problems in Complex Analysis E. Chernysh November 3, 6 Contents Page 8 Problem................................... Problem 4................................... Problem 5...................................

More information

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan Monte-Carlo MMD-MA, Université Paris-Dauphine Xiaolu Tan tan@ceremade.dauphine.fr Septembre 2015 Contents 1 Introduction 1 1.1 The principle.................................. 1 1.2 The error analysis

More information

Aero III/IV Conformal Mapping

Aero III/IV Conformal Mapping Aero III/IV Conformal Mapping View complex function as a mapping Unlike a real function, a complex function w = f(z) cannot be represented by a curve. Instead it is useful to view it as a mapping. Write

More information

MS 3011 Exercises. December 11, 2013

MS 3011 Exercises. December 11, 2013 MS 3011 Exercises December 11, 2013 The exercises are divided into (A) easy (B) medium and (C) hard. If you are particularly interested I also have some projects at the end which will deepen your understanding

More information

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4) :23 /4/2000 TOPIC Characteristic functions This lecture begins our study of the characteristic function φ X (t) := Ee itx = E cos(tx)+ie sin(tx) (t R) of a real random variable X Characteristic functions

More information

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces 8 8 THE RIEMANN MAPPING THEOREM 8.1 Simply Connected Surfaces Our aim is to prove the Riemann Mapping Theorem which states that every simply connected Riemann surface R is conformally equivalent to D,

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

Technische Universität Dresden Herausgeber: Der Rektor

Technische Universität Dresden Herausgeber: Der Rektor Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor The Gradient of the Squared Residual as Error Bound an Application to Karush-Kuhn-Tucker Systems Andreas Fischer MATH-NM-13-2002

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

Complex Analysis Qual Sheet

Complex Analysis Qual Sheet Complex Analysis Qual Sheet Robert Won Tricks and traps. traps. Basically all complex analysis qualifying exams are collections of tricks and - Jim Agler Useful facts. e z = 2. sin z = n=0 3. cos z = z

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

Transformations from R m to R n.

Transformations from R m to R n. Transformations from R m to R n 1 Differentiablity First of all because of an unfortunate combination of traditions (the fact that we read from left to right and the way we define matrix multiplication

More information

Problems for MATH-6300 Complex Analysis

Problems for MATH-6300 Complex Analysis Problems for MATH-63 Complex Analysis Gregor Kovačič December, 7 This list will change as the semester goes on. Please make sure you always have the newest version of it.. Prove the following Theorem For

More information

MORE NOTES FOR MATH 823, FALL 2007

MORE NOTES FOR MATH 823, FALL 2007 MORE NOTES FOR MATH 83, FALL 007 Prop 1.1 Prop 1. Lemma 1.3 1. The Siegel upper half space 1.1. The Siegel upper half space and its Bergman kernel. The Siegel upper half space is the domain { U n+1 z C

More information

Complex qual study guide James C. Hateley

Complex qual study guide James C. Hateley Complex qual study guide James C. Hateley General Complex Analysis Problem: Let p(z) be a polynomial. Suppose that p(z) for R(z) >. Prove that p (z) for R(z) >. Solution: Let p(z) be such a polynomial.

More information

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft Complex Variables........Review Problems Residue Calculus Comments)........Fall 22 Initial Draft ) Show that the singular point of fz) is a pole; determine its order m and its residue B: a) e 2z )/z 4,

More information

Solutions to Exercises 6.1

Solutions to Exercises 6.1 34 Chapter 6 Conformal Mappings Solutions to Exercises 6.. An analytic function fz is conformal where f z. If fz = z + e z, then f z =e z z + z. We have f z = z z += z =. Thus f is conformal at all z.

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

5.3 The Upper Half Plane

5.3 The Upper Half Plane Remark. Combining Schwarz Lemma with the map g α, we can obtain some inequalities of analytic maps f : D D. For example, if z D and w = f(z) D, then the composition h := g w f g z satisfies the condition

More information

The Poincare map for randomly perturbed periodic mo5on

The Poincare map for randomly perturbed periodic mo5on The Poincare map for randomly perturbed periodic mo5on Georgi Medvedev Drexel University SIAM Conference on Applica1ons of Dynamical Systems May 19, 2013 Pawel Hitczenko and Georgi Medvedev, The Poincare

More information

11 COMPLEX ANALYSIS IN C. 1.1 Holomorphic Functions

11 COMPLEX ANALYSIS IN C. 1.1 Holomorphic Functions 11 COMPLEX ANALYSIS IN C 1.1 Holomorphic Functions A domain Ω in the complex plane C is a connected, open subset of C. Let z o Ω and f a map f : Ω C. We say that f is real differentiable at z o if there

More information

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2 2 S 2 2 2 2 2 M M 4 S 2 S 2 z, w : C S 2 z = 1/w e iψ S 1 S 2 σ 1 = 1 ( ) [ zd z zdz dψ + 2i 2 1 + z 2, σ 2 = Re 2 e i ψ 2 dz 1 + z 2 ], σ 3 = Im [ 2 e i ψ 2 dz 1 + z 2 σ 2 σ 3 (σ 2 ) 2 (σ 3 ) 2 σ 2 σ

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ Remarks. 1. So far we have seen that holomorphic is equivalent to analytic. Thus, if f is complex differentiable in an open set, then it is infinitely many times complex differentiable in that set. This

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Complex Representation in Two-Dimensional Theory of Elasticity

Complex Representation in Two-Dimensional Theory of Elasticity Complex Representation in Two-Dimensional Theory of Elasticity E. Vondenhoff 7-june-2006 Literature: Muskhelishvili : Some Basic Problems of the Mathematical Theory of Elasticity, Chapter 5 Prof. ir. C.

More information

Proof of a conjecture by Ðoković on the Poincaré series of the invariants of a binary form

Proof of a conjecture by Ðoković on the Poincaré series of the invariants of a binary form Proof of a conjecture by Ðoković on the Poincaré series of the invariants of a binary form A. Blokhuis, A. E. Brouwer, T. Szőnyi Abstract Ðoković [3] gave an algorithm for the computation of the Poincaré

More information

Conformal Mappings. Chapter Schwarz Lemma

Conformal Mappings. Chapter Schwarz Lemma Chapter 5 Conformal Mappings In this chapter we study analytic isomorphisms. An analytic isomorphism is also called a conformal map. We say that f is an analytic isomorphism of U with V if f is an analytic

More information

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo CHAPTER 9 Conformal Mapping and Bilinear Transformation BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University of Kalyani West Bengal, India E-mail : sahoopulak@gmail.com Module-3:

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

CHAPTER 2. CONFORMAL MAPPINGS 58

CHAPTER 2. CONFORMAL MAPPINGS 58 CHAPTER 2. CONFORMAL MAPPINGS 58 We prove that a strong form of converse of the above statement also holds. Please note we could apply the Theorem 1.11.3 to prove the theorem. But we prefer to apply the

More information

MATH COMPLEX ANALYSIS. Contents

MATH COMPLEX ANALYSIS. Contents MATH 3964 - OMPLEX ANALYSIS ANDREW TULLOH AND GILES GARDAM ontents 1. ontour Integration and auchy s Theorem 2 1.1. Analytic functions 2 1.2. ontour integration 3 1.3. auchy s theorem and extensions 3

More information

Introduction to Probability and Stocastic Processes - Part I

Introduction to Probability and Stocastic Processes - Part I Introduction to Probability and Stocastic Processes - Part I Lecture 2 Henrik Vie Christensen vie@control.auc.dk Department of Control Engineering Institute of Electronic Systems Aalborg University Denmark

More information

MATH8811: COMPLEX ANALYSIS

MATH8811: COMPLEX ANALYSIS MATH8811: COMPLEX ANALYSIS DAWEI CHEN Contents 1. Classical Topics 2 1.1. Complex numbers 2 1.2. Differentiability 2 1.3. Cauchy-Riemann Equations 3 1.4. The Riemann Sphere 4 1.5. Möbius transformations

More information

l t 1 2 2 2 2 2 B B m t t m 0 ṁ t = e ref a t m t B e ref a t t t x t a t δ a t0 = 0 ȧ t = x t δa t c(x t ) c x t, c (x t ) 0 c (x t ) 0 c(x t ) 0 c (x t ) c c (x t ) x t t

More information

I. Relationship with previous work

I. Relationship with previous work x x i t j J t = {0, 1,...J t } j t (p jt, x jt, ξ jt ) p jt R + x jt R k k ξ jt R ξ t T j = 0 t (z i, ζ i, G i ), ζ i z i R m G i G i (p j, x j ) i j U(z i, ζ i, x j, p j, ξ j ; G i ) = u(ζ i, x j,

More information

Oblique derivative problems for elliptic and parabolic equations, Lecture II

Oblique derivative problems for elliptic and parabolic equations, Lecture II of the for elliptic and parabolic equations, Lecture II Iowa State University July 22, 2011 of the 1 2 of the of the As a preliminary step in our further we now look at a special situation for elliptic.

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Complex Variables & Integral Transforms

Complex Variables & Integral Transforms Complex Variables & Integral Transforms Notes taken by J.Pearson, from a S4 course at the U.Manchester. Lecture delivered by Dr.W.Parnell July 9, 007 Contents 1 Complex Variables 3 1.1 General Relations

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

Dynamic Identification of DSGE Models

Dynamic Identification of DSGE Models Dynamic Identification of DSGE Models Ivana Komunjer and Serena Ng UCSD and Columbia University All UC Conference 2009 Riverside 1 Why is the Problem Non-standard? 2 Setup Model Observables 3 Identification

More information

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1 MATH 85: COMPLEX ANALYSIS FALL 2009/0 PROBLEM SET 9 SOLUTIONS. Consider the functions defined y g a (z) = eiπz/2 e iπz/2 + Show that g a maps the set to D(0, ) while g maps the set and g (z) = eπz/2 e

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong. Chapter 9 Analytic Continuation For every complex problem, there is a solution that is simple, neat, and wrong. - H. L. Mencken 9.1 Analytic Continuation Suppose there is a function, f 1 (z) that is analytic

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

Complex Analysis Study Guide

Complex Analysis Study Guide Complex Analysis Study Guide. Equivalences Of Holomorphicity For a domain D C, f(z) = u + iv is holomorphic in D if and only if f z = : (a) If and only if u and v satisfy the Cauchy-Riemann Equations =

More information

Quasi-stationary-states in Hamiltonian mean-field dynamics

Quasi-stationary-states in Hamiltonian mean-field dynamics Quasi-stationary-states in Hamiltonian mean-field dynamics STEFANO RUFFO Dipartimento di Energetica S. Stecco, Università di Firenze, and INFN, Italy Statistical Mechanics Day III, The Weizmann Institute

More information

An Inverse Problem for Gibbs Fields with Hard Core Potential

An Inverse Problem for Gibbs Fields with Hard Core Potential An Inverse Problem for Gibbs Fields with Hard Core Potential Leonid Koralov Department of Mathematics University of Maryland College Park, MD 20742-4015 koralov@math.umd.edu Abstract It is well known that

More information

Complex Analysis Important Concepts

Complex Analysis Important Concepts Complex Analysis Important Concepts Travis Askham April 1, 2012 Contents 1 Complex Differentiation 2 1.1 Definition and Characterization.............................. 2 1.2 Examples..........................................

More information

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f),

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f), 1 Part I Exercise 1.1. Let C n denote the number of self-avoiding random walks starting at the origin in Z of length n. 1. Show that (Hint: Use C n+m C n C m.) lim n C1/n n = inf n C1/n n := ρ.. Show that

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Math 185 Homework Exercises II

Math 185 Homework Exercises II Math 185 Homework Exercises II Instructor: Andrés E. Caicedo Due: July 10, 2002 1. Verify that if f H(Ω) C 2 (Ω) is never zero, then ln f is harmonic in Ω. 2. Let f = u+iv H(Ω) C 2 (Ω). Let p 2 be an integer.

More information

Functions of a Complex Variable and Integral Transforms

Functions of a Complex Variable and Integral Transforms Functions of a Complex Variable and Integral Transforms Department of Mathematics Zhou Lingjun Textbook Functions of Complex Analysis with Applications to Engineering and Science, 3rd Edition. A. D. Snider

More information

Homoclinic Orbits for Asymptotically Linear Hamiltonian Systems

Homoclinic Orbits for Asymptotically Linear Hamiltonian Systems ISSN: 1401-5617 Homoclinic Orbits for Asymptotically Linear Hamiltonian Systems Andrzej Szulkin Wenming Zou esearch eports in Mathematics Number 9, 1999 Department of Mathematics Stockholm University Electronic

More information

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations This is an updated version of the paper published in: Contemporary Mathematics, Volume 277, 2001, pp. 87-112. Growth Theorems and Harnack Inequality for Second Order Parabolic Equations E. Ferretti and

More information

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014 Math 3 - Spring 4 Solutions to Assignment # 8 ompletion Date: Friday May 3, 4 Question. [p 49, #] By finding an antiderivative, evaluate each of these integrals, where the path is any contour between the

More information

Alberto Bressan. Department of Mathematics, Penn State University

Alberto Bressan. Department of Mathematics, Penn State University Non-cooperative Differential Games A Homotopy Approach Alberto Bressan Department of Mathematics, Penn State University 1 Differential Games d dt x(t) = G(x(t), u 1(t), u 2 (t)), x(0) = y, u i (t) U i

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Evaluation of integrals

Evaluation of integrals Evaluation of certain contour integrals: Type I Type I: Integrals of the form 2π F (cos θ, sin θ) dθ If we take z = e iθ, then cos θ = 1 (z + 1 ), sin θ = 1 (z 1 dz ) and dθ = 2 z 2i z iz. Substituting

More information

Hilbert Transform Pairs of Wavelets. September 19, 2007

Hilbert Transform Pairs of Wavelets. September 19, 2007 Hilbert Transform Pairs of Wavelets September 19, 2007 Outline The Challenge Hilbert Transform Pairs of Wavelets The Reason The Dual-Tree Complex Wavelet Transform The Dissapointment Background Characterization

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε. 6. Residue calculus Let z 0 be an isolated singularity of f(z), then there exists a certain deleted neighborhood N ε = {z : 0 < z z 0 < ε} such that f is analytic everywhere inside N ε. We define Res(f,

More information

The Uniformization Theorem

The Uniformization Theorem The Uniformization Theorem JWR Tuesday December 11, 2001, 9:03 AM The proof given here is a loose translation of [3]. There is another proof of the Uniformization Theorem in [2] where it is called the

More information

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003 Statistical Approaches to Learning and Discovery Week 4: Decision Theory and Risk Minimization February 3, 2003 Recall From Last Time Bayesian expected loss is ρ(π, a) = E π [L(θ, a)] = L(θ, a) df π (θ)

More information

Appendix A Vector Analysis

Appendix A Vector Analysis Appendix A Vector Analysis A.1 Orthogonal Coordinate Systems A.1.1 Cartesian (Rectangular Coordinate System The unit vectors are denoted by x, ŷ, ẑ in the Cartesian system. By convention, ( x, ŷ, ẑ triplet

More information

Quasi-conformal maps and Beltrami equation

Quasi-conformal maps and Beltrami equation Chapter 7 Quasi-conformal maps and Beltrami equation 7. Linear distortion Assume that f(x + iy) =u(x + iy)+iv(x + iy) be a (real) linear map from C C that is orientation preserving. Let z = x + iy and

More information

1 Several complex variables

1 Several complex variables 1 Several complex variables To think that the analysis of several complex variables is more or less the one variable theory with some more indices turns out to be incorrect. Completely new phenomena appear

More information

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables Lecture 14 Conformal Mapping MATH-GA 2451.001 Complex Variables 1 Conformality 1.1 Preservation of angle The open mapping theorem tells us that an analytic function such that f (z 0 ) 0 maps a small neighborhood

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

6.2 Mean value theorem and maximum principles

6.2 Mean value theorem and maximum principles Hence g = u x iu y is analytic. Since is simply connected, R g(z) dz =forany closed path =) g has an integral function, G = g in. Call G = U + iv. For analytic functions d G = d G. Hence dz dx g = d dz

More information

Properties for systems with weak invariant manifolds

Properties for systems with weak invariant manifolds Statistical properties for systems with weak invariant manifolds Faculdade de Ciências da Universidade do Porto Joint work with José F. Alves Workshop rare & extreme Gibbs-Markov-Young structure Let M

More information

Composition operators: the essential norm and norm-attaining

Composition operators: the essential norm and norm-attaining Composition operators: the essential norm and norm-attaining Mikael Lindström Department of Mathematical Sciences University of Oulu Valencia, April, 2011 The purpose of this talk is to first discuss the

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

FIXED POINT AND COMMON FIXED POINT THEOREMS IN CONE BALL-METRIC SPACES. 1. Introduction and preliminaries

FIXED POINT AND COMMON FIXED POINT THEOREMS IN CONE BALL-METRIC SPACES. 1. Introduction and preliminaries Asia Pacific Journal of Mathematics, Vol. 1, No. 1 (2014), 67-85 ISSN 2357-2205 FIXED POINT AND COMMON FIXED POINT THEOREMS IN CONE BALL-METRIC SPACES ANIMESH GUPTA Department of Applied Mathematics, Vidhyapeeth

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep Complex Variables Notes for Math 703. Updated Fall 20 Anton R. Schep CHAPTER Holomorphic (or Analytic) Functions. Definitions and elementary properties In complex analysis we study functions f : S C,

More information

Homework #6 : final examination Due on March 22nd : individual work

Homework #6 : final examination Due on March 22nd : individual work Université de ennes Année 28-29 Master 2ème Mathématiques Modèles stochastiques continus ou à sauts Homework #6 : final examination Due on March 22nd : individual work Exercise Warm-up : behaviour of characteristic

More information

THE STEINER REARRANGEMENT IN ANY CODIMENSION

THE STEINER REARRANGEMENT IN ANY CODIMENSION THE STEINER REARRANGEMENT IN ANY CODIMENSION GIUSEPPE MARIA CAPRIANI Abstract. We analyze the Steiner rearrangement in any codimension of Sobolev and BV functions. In particular, we prove a Pólya-Szegő

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Conformal Mapping, Möbius Transformations. Slides-13

Conformal Mapping, Möbius Transformations. Slides-13 , Möbius Transformations Slides-13 Let γ : [a, b] C be a smooth curve in a domain D. Let f be a function defined at all points z on γ. Let C denotes the image of γ under the transformation w = f (z).

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

arxiv: v2 [math-ph] 30 Aug 2016

arxiv: v2 [math-ph] 30 Aug 2016 ON BULK SINGULARITIES IN THE RANDOM NORMAL MATRIX MODEL arxiv:1603.06761v2 [math-ph] 30 Aug 2016 YAIN AMEUR AND SEONG-MI SEO Abstract. We extend the method of rescaled Ward identities from [4] to study

More information

On a question by D. I. Mendeleev A. Markov read in the session of the Physicomathematical Section on 24 October 1889

On a question by D. I. Mendeleev A. Markov read in the session of the Physicomathematical Section on 24 October 1889 On a question by D. I. Mendeleev A. Markov read in the session of the Physicomathematical Section on 4 October 88 In the present work, we will consider the set of all polynomials [lit. entire functions]

More information

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1 3 3 THE RIEMANN SPHERE 31 Models for the Riemann Sphere One dimensional projective complex space P(C ) is the set of all one-dimensional subspaces of C If z = (z 1, z ) C \ 0 then we will denote by [z]

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity EE27 Tutorial 7 omplex Numbers, omplex Functions, Limits and ontinuity Exercise 1. These are elementary exercises designed as a self-test for you to determine if you if have the necessary pre-requisite

More information

Part II. Riemann Surfaces. Year

Part II. Riemann Surfaces. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 96 Paper 2, Section II 23F State the uniformisation theorem. List without proof the Riemann surfaces which are uniformised

More information

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n ANALYSIS QUALIFYING EXAM FALL 206: SOLUTIONS Problem. Let m be Lebesgue measure on R. For a subset E R and r (0, ), define E r = { x R: dist(x, E) < r}. Let E R be compact. Prove that m(e) = lim m(e /n).

More information