RECENT ADVANCES IN SIMULATION OF MAGNETRONS AND CROSSED-FIELD AMPLIFIERS. Abstract

Size: px
Start display at page:

Download "RECENT ADVANCES IN SIMULATION OF MAGNETRONS AND CROSSED-FIELD AMPLIFIERS. Abstract"

Transcription

1 RECENT ADVANCES IN SIMULATION OF MAGNETRONS AND CROSSED-FIELD AMPLIFIERS George E. Dombrowski 69 Birchwood Heights Road Storrs, Connecticut (860) Abstract Various improvements and enhancements of the author's earlier code (IEEE Transactions on Electron Devices, ED-35, 1988) are presented. The details of the anode vane geometry are evaluated by application of Hockney's method using Buneman's cyclic reduction. The results of this enhancement show a significant improvement over the previously used solid anode approximation. The orbit calculation has been reformulated to allow for relativistic mass increase. It has simplicity that makes it equally adapted to ordinary voltage levels. The previous code requires large storage and computation time for systems with large numbers of rf nodes. Study of the response functions shows that values are important for only a few of these: those for sources close to the test site. Reformulation reduces the data storage and computation time by a considerable fraction. This makes it feasible to handle both the 40-vane and the 104-vane Northeastern University amplifiers. I. INTRODUCTION This paper describes three improvements in the author's computer program [1] for the simulation of magnetrons and amplifiers. Some remove limitations on accuracy. Others improve the efficiency of the computer code - a matter of importance for execution on small, 'personal' computers. II. STATIC FIELD OF THE ANODE VANES Earlier simulation calculations [2] disclose the substantial interaction between the stream and the space between vanes, yet they ignore the details of the electric field at the vane tips. They use the logarithmic potential of a solid anode. This may be justified for electrons in synchronous circular orbits, as in small-signal conditions. It fails, however, under the large-signal conditions in the spokes and especially at the terminus of the orbits. Furthermore, vanes of diverse shape have been used in both magnetron and amplifier. The anodes have often been rods rather than vanes. Vane shaping has been shown to improve device performance, likely related to secondary-electron loading [2] and multipactor 236

2 between anodes [3]. Clearly this aspect must be considered in simulation. Fig. 1. Vane geometry in real and transformed space. Buneman's Cyclic Reduction The cyclic reduction calculation can be used to solve the Laplace or Poisson equation on a binary mesh (having numbers of cells in each direction equal to a power of two). The region must have regular boundaries, as ABCDEFA in Fig. 1. The radial bounds are equipotentials; the azimuthal boundary conditions are Neumann contours ( v/ θ=0), as apply at AB and EF in view of the mirror symmetry there. It would appear that this method fails to accommodate the vane contour BB'D. Hockney [4], however, devised a method to do so. The Method of Hockney Hockney's method may be described by realizing that the mesh charges may be that of free charge - the electrons - and also the surface charges on the vanes. It becomes a task to determine the surface charge distribution that corresponds to the applied anode potential. The method of determining this charge proceeds as follows. Cyclic reduction is first used to solve the Laplace equation in the regular region with the anode voltage V^, at the outer wall, the cathode potential being zero. linear matrix The potentials on the M vane contour points form a [V] = V j, j=l,m (1) and are in general different from the anode potentials, defining a deficiency [Vx] = Vb -[V] (2) The problem becomes one of determining surface charges to eliminate these differences. 237

3 In the next phase a unit charge is placed at one of the vane mesh points (the i-th). Cyclic reduction is executed, resulting in vane mesh point potentials having the nature of reciprocal capacitances that can be designated s ij. This is repeated for all source points i. The complete array [s ij ] defines a reciprocal-capacitance matrix, [S]. Its inverse is the capacitance matrix [C] which expresses the coupling between points on the vane contour. It is required that an array [Q]=[q i ] must be such that [Q] [S] = [Vx] (3) eliminating the potential deficiency noted above. Eq. 3 has the solution [C] [Q] [S] = [Q] = [C] [Vx] (4) The final step is to assign [Q] to the vane contour and execute the cyclic reduction once more. The resulting potentials are the exact solution of Laplace's equation with the vanes at V b. The computational cost of this procedure is the execution of cyclic reduction M+2 times, the inversion of the M-square matrix [S], and the matrix multiplication to compute [Q]. Fortunately, it needs to be done only once as a preliminary calculation. During the simulation the static field is computed by interpolation, taking account of the location of the electron with respect to the vanes. This technique provides the static, space-charge-free electric field. It continues to rely on the solid anode model for space-charge field evaluation. The error in so doing is considered small, since the spacecharge fields are small in comparison to the vane-tip and rf fields. The Poisson Equation As part of the simulation process, the space-charge can be assigned to the cyclic reduction mesh and the discrepancy matrix [Vx] obtained. The surface charge [Q] is then computed from Eq. 4, the inverted matrix [C] having been saved. A second cyclic reduction with space- and surface charges in place yields the space-charge potential from which the field is evaluated. The computation burden is thus a matrix multiplication and the second cyclic reduction. This part of the procedure is applicable to the simulation of magnetrons in the pi mode. It is not practical for the amplifier, for which the previous technique can reasonably be used. This technique for magnetron simulation has only recently been implemented. Simulation Results Simulations were made for the type 4J50 magnetron, with the solid anode and with the detailed vane fields. The results are compared with each other and with measurements made by J. F. Hull [6]. Table 1 shows these results for magnetic field B = 5500 Gauss and with (pulsed) anode voltage V b =20.9 kv. This is the nominal operating point. The loaded Q is

4 Table 1. 4J50 Magnetron: B= 5500 Gauss. The solid-anode simulation shows results - anode current and rf power - that are surprisingly greater than the vane-field simulation. These in turn are much closer to the measured result of Hull. Results for higher anode voltage (not shown here) are even more dramatically different. The inference is clearly that the vane fields serve a very useful role. Further comparison with the simulation and measurement is made in Table 2, in which the slope of the Gauss line is determined. Table 2. 4J50 Magnetron: Gauss line slope data. The slope data are in good agreement here, providing further confidence in the simulation process. III. RELATIVISTIC ORBIT ALGORITHM Simulation of the relativistic magnetron [7,8] has called for suitable modification of the orbit calculation. As in the past, rf magnetic fields are assumed to have negligible effects. Also as in the past, the trajectory variables are expressed as power series in 'cyclotron time', T=ω c t. As may be needed, the orbit during a simulation interval may be subdivided into several smaller intervals in order that T«l for each. This ensures the convergence of the series. For each charge in the stream, a radially aligned Cartesian coordinate system is assigned as shown in Fig

5 Fig. 2.Coordinates for trajectory calculation These energy relations serve to monitor the orbit calculation. In particular the X and Y coordinates are accepted as computed above, and the velocity components are modified to preserve energy balance. This algorithm performs well for simulation of the MIT A6 relativistic magnetron, for which 7 may at times be as high as 3. It is used also for conventional magnetrons; in the 4J50 the relativistic mass increase may be as much as 2 percent. 240

6 IV. AMPLIFIER: RESPONSE FUNCTIONS u An essential part of the simulation of the cfa is the determination of the behavior of the rf network. This system consists of a number N of nodes corresponding to the anode vanes. At any discrete time t i. The state of the network is defined by the set of rf voltage and their time integrals, vdt V i, i =1,N (16) u i, i =1,N (17) The state of the rf network at the end of a time interval At is determined by the state at its beginning and also depends on the extent of electron stream excitation, as manifested by the electronic currents I, entering the vanes during the interval I i, I =1,N (18) There are thus two variables (v and u) to define the state, and three 'stimuli' or sources of network excitation: the initial v s and u s, and the electron current. For the amplifier, rf input signals must be added. Simulation calculations rely on a prior computation of network response functions, which are the state variables v and u resulting from independent unit stimuli. Thus, RV denotes a voltage response, i.e., an rf voltage produced by a stimulus; RU denotes a value of the time-integral u produced by a stimulus. Indices denote the source node and the node where the response appears. Lastly, subscripts are used to denote the type of stimulus producing the response. For example, The complexity of these response functions leads to limitations, especially with small computers. First, the one-time calculation of the functions can be tedious. Secondly, their use in the simulation process requires considerable memory storage. Finally, for each stored function there must be at least one multiplication and one addition; this can result in slow calculation. Each of these factors becomes more serious because the time required increases as the square of the number of vanes, N. Further study of the nature of the response functions discloses what should already be apparent from the nature of the rf network as a ladder. Table 3 lists, for a 40-vane network, a typical response function, viz., RV v (12,i). 241

7 Table 3. Response of a 40-vane network These and similar data show that for short time steps the slow-wave system responses are negligible outside the range of 5 vanes on either side of the stimuli. They make no contribution to the signals, and simply waste computer time. The computer code has accordingly been revised to eliminate them. Table 4 presents further insight into the nature of the response functions. Table 4. Response functions of a 40-vane network These data show that the response functions are principally identical functions depending on i-j. Thus the functions RV v (i,j), i=l,n, j=1,n having N 2 values, can be replaced by a simpler function RV v ( i-j ), i-j = 0,5 with 6 values. Exceptions to this rule are apparent at the ends of the rf network, where the response is influenced by connections to source and/or load. V. Conclusions Simulation of magnetrons has been improved by accurate calculation of the anode vane fields and also by accounting for relativistic electron dynamics. The effectiveness of the simulation code for amplifiers has been enhanced by use of the response functions of uniform rf networks. 242

8 VI. Acknowledgment The author is pleased to recognize the debt he owes to the University of Michigan - especially to Professor William G. Dow - for his education in physical electronics. VI. References 1. G. E. Dombrowski, "Simulation of Magnetrons and Crossed-Field Amplifiers,"IEEE Trans. Electron Devices, vol. ED-35, p. 2060, G. E. Dombrowski, "Computer Simulation of Primary and Secondary Anode Loading in Magnetrons," IEEE Trans. Electron Devices, vol. ED- 38, p. 2234, J. R. M. Vaughan, "Observations of Multipactor in Magnetrons,"IEEE Trans. Electron Devices, vol. ED-15, p. 883, Buneman, "A Compact Non-iterative Poisson Solver," SUIPR Report No. 294, Stanford University Institute for Plasma Research, R. W. Hockney, "The Potential Calculation and Some Applications," in Methods in Computational Physics, vol. 9, p. 162, (1970); Academic Press, New York 6. J. F. Hull, "Crossed Field Electron Interaction in Space Charge Limited Beams", D.E.E. Dissertation at Polytechnic Institute of Brooklyn, T. E. Ruden, "Relativistic Magnteron Interaction,"IEEE Conference on Plasma Science, Conf. Rec., (1982) 8. T. E. Ruden and G. E. Dombrowski, "Simulation of High-Power Relativistic Magnetron Interaction," IEEE Conference on Plasma Science, Conf. Rec., (1991) 237

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

Measurement of electric potential fields

Measurement of electric potential fields Measurement of electric potential fields Matthew Krupcale, Oliver Ernst Department of Physics, Case Western Reserve University, Cleveland Ohio, 44106-7079 18 November 2012 Abstract In electrostatics, Laplace

More information

Key-Holes Magnetron Design and Multiphysics Simulation

Key-Holes Magnetron Design and Multiphysics Simulation Key-Holes Magnetron Design and Multiphysics Simulation A. Leggieri* 1, F. Di Paolo 1, and D. Passi 1 1 Department of Electronic Engineering, University of Rome Tor Vergata, Italy *A. Leggieri: Department

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT

NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT NIST ELECTROSTATIC FORCE BALANCE EXPERIMENT John A. Kramar, David B. Newell, and Jon R. Pratt National Institute of Standards and Technology, Gaithersburg, MD, USA We have designed and built a prototype

More information

MODELING SECONDARY EMISSION IN A FINITE-ELEMENT MULTIPACTOR CODE *

MODELING SECONDARY EMISSION IN A FINITE-ELEMENT MULTIPACTOR CODE * MODELING SECONDARY EMISSION IN A FINITE-ELEMENT MULTIPACTOR CODE * S. Humphries +, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131 USA, J. Petillo, SAIC,

More information

A Simple Compact Fourth-Order Poisson Solver on Polar Geometry

A Simple Compact Fourth-Order Poisson Solver on Polar Geometry Journal of Computational Physics 182, 337 345 (2002) doi:10.1006/jcph.2002.7172 A Simple Compact Fourth-Order Poisson Solver on Polar Geometry Ming-Chih Lai Department of Applied Mathematics, National

More information

Electron Trapping in High-Current Ion Beam Pipes

Electron Trapping in High-Current Ion Beam Pipes SLAC-PUB-8367 March 2000 Electron Trapping in High-Current Ion Beam Pipes W. B. Herrmannsfeldt Contributed to 13th Internation Symposium on Heavy Ion Inertial Fusion, 3/13/2000-3/17/2000, San Diego, CA,

More information

A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS

A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS A COMPUTATIONAL STUDY OF SINGLE AND DOUBLE STAGE HALL THRUSTERS Kay Sullivan, Manuel Martínez-Sánchez, Oleg Batishchev and James Szabo Massachusetts Institue of Technology 77 Massachusetts Avenue Cambridge,

More information

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points)

THEORETICAL COMPETITION. 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Question 1 1A. SPRING CYLINDER WITH MASSIVE PISTON (5 points) Consider n=2 moles of ideal Helium gas at a pressure P 0, volume V 0 and temperature T 0 = 300 K placed in a vertical cylindrical container

More information

Pick-up Calibration in CESR Beam Position Monitors

Pick-up Calibration in CESR Beam Position Monitors Pick-up Calibration in CESR Beam Position Monitors Beau Meredith Department of Physics, Greenville College, Greenville, IL, 62246 (Dated: August 21, 2003) The beam position algorithm presently used in

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations PIC Method for Numerical Simulation Ninad Joshi NNP Group 1 Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations Motivation 3 Particle simulation Ion beams and Plasmas Accelerators

More information

Numerical Studies and Optimization of Magnetron with Diffraction Output (MDO) Using Particle-in-Cell Simulations

Numerical Studies and Optimization of Magnetron with Diffraction Output (MDO) Using Particle-in-Cell Simulations Old Dominion University ODU Digital Commons Electrical & Computer Engineering Theses & Disssertations Electrical & Computer Engineering Fall 2015 Numerical Studies and Optimization of Magnetron with Diffraction

More information

Tracking. Particle In Cell. Wakefield

Tracking. Particle In Cell. Wakefield CST PARTICLE STUDIO STUDIO SOLVERS & APPLICATIONS 1 www.cst.com Mar-09 CST PARTICLE STUDIO Solvers Tracking Simulation of DC Particle Guns, Collectors, Magnets Tracking in static E/H fields (incl. space

More information

Simulation of a simple electron gun. David Moore 1 San Diego Miramar College

Simulation of a simple electron gun. David Moore 1 San Diego Miramar College Simulation of a simple electron gun David Moore 1 San Diego Miramar College (Dated: 3 December 2013) In this paper the properties of a cylindrically symmetric five component electron gun are calculated

More information

Resistive destabilization of cycloidal electron flow and universality of (near-) Brillouin flow in a crossed-field gap

Resistive destabilization of cycloidal electron flow and universality of (near-) Brillouin flow in a crossed-field gap Resistive destabilization of cycloidal electron flow and universality of (near-) Brillouin flow in a crossed-field gap Peggy J. Christenson, a) David P. Chernin, b) Allen L. Garner, and Y. Y. Lau c) Department

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

MIXED BOUNDARY VALUE PROBLEMS

MIXED BOUNDARY VALUE PROBLEMS MIXED BOUNDARY VALUE PROBLEMS M. Ragheb 9/19/013 INTRODUCTION Mixed boundary value problems are practical situations that are met in most potential and other mathematical physics problems. In this case

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li

ª 10 KeV. In 2XIIB and the tandem mirrors built to date, in which the plug radius R p. ª r Li Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies R. F. Post, T. K. Fowler*, R. Bulmer, J. Byers, D. Hua, L. Tung Lawrence Livermore National Laboratory *Consultant, Presenter This talk

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

Teaching Electromagnetic Fields with Computer Visualization

Teaching Electromagnetic Fields with Computer Visualization Paper # 209, ENG 107 Teaching Electromagnetic Fields with Computer Visualization Yeqin Huang, Bill W. Yang, Robert Adams, Brian Howell, James Z. Zhang, and Kenneth Burbank Department of Engineering and

More information

PH2200 Practice Final Exam Summer 2003

PH2200 Practice Final Exam Summer 2003 INSTRUCTIONS 1. Write your name and student identification number on the answer sheet. 2. Please cover your answer sheet at all times. 3. This is a closed book exam. You may use the PH2200 formula sheet

More information

A Magnetohydrodynamic study af a inductive MHD generator

A Magnetohydrodynamic study af a inductive MHD generator Excerpt from the Proceedings of the COMSOL Conference 2009 Milan A Magnetohydrodynamic study af a inductive MHD generator Augusto Montisci, Roberto Pintus University of Cagliari, Department of Electrical

More information

Hei-Wai Chan Chiping Chen onald C. Davidson. February, 1990

Hei-Wai Chan Chiping Chen onald C. Davidson. February, 1990 PFC/JA-90-5 COMPUTER SIMULATION OF RELATIVISTIC MULTIRESONATOR CYLINDRICAL MAGNETRONS by Hei-Wai Chan Chiping Chen onald C. Davidson February, 1990 This research was supported in part by SDIO/IST under

More information

Lecture 11 Linear programming : The Revised Simplex Method

Lecture 11 Linear programming : The Revised Simplex Method Lecture 11 Linear programming : The Revised Simplex Method 11.1 The Revised Simplex Method While solving linear programming problem on a digital computer by regular simplex method, it requires storing

More information

PowerApps Optimal Power Flow Formulation

PowerApps Optimal Power Flow Formulation PowerApps Optimal Power Flow Formulation Page1 Table of Contents 1 OPF Problem Statement... 3 1.1 Vector u... 3 1.1.1 Costs Associated with Vector [u] for Economic Dispatch... 4 1.1.2 Costs Associated

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

How Electronics Started! And JLab Hits the Wall!

How Electronics Started! And JLab Hits the Wall! How Electronics Started! And JLab Hits the Wall! In electronics, a vacuum diode or tube is a device used to amplify, switch, otherwise modify, or create an electrical signal by controlling the movement

More information

Design and numerical simulation of thermionic electron gun

Design and numerical simulation of thermionic electron gun Design and numerical simulation of thermionic electron gun M.Hoseinzade 1;1), A.Sadighzadeh 1) Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI,

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

CGDg% C,g% C GS=- AaQG

CGDg% C,g% C GS=- AaQG A CHARGE-ORIENTED MODEL FOR MOS TRANSISTOR CAPACITANCES Donald E. Ward and Robert W. Dutton Integrated Circuits Laboratory Department of Electrical Engineering Stanford University Stanford, CA 94305 ABSTRACT

More information

Review of the Shockley Ramo theorem and its application in semiconductor gamma-ray detectors

Review of the Shockley Ramo theorem and its application in semiconductor gamma-ray detectors Nuclear Instruments and Methods in Physics Research A 463 (2001) 250 267 Review of the Shockley Ramo theorem and its application in semiconductor gamma-ray detectors Zhong He* Department of Nuclear Engineering

More information

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine 1 AT/P5-05 H - Ion Source with Inverse Gas Magnetron Geometry for SNS Project V.A. Baturin, P.A. Litvinov, S.A. Pustovoitov, A.Yu. Karpenko Institute of Applied Physics, National Academy of Sciences of

More information

Limits to Statics and Quasistatics

Limits to Statics and Quasistatics Limits to Statics and Quasistatics Reading Haus and Melcher - Ch. 3 Outline Limits to Statics Quasistatics Limits to Quasistatics 1 Electric Fields Magnetic Fields GAUSS FARADAY GAUSS AMPERE For Statics

More information

Large Plasma Device (LAPD)

Large Plasma Device (LAPD) Large Plasma Device (LAPD) Over 450 Access ports Computer Controlled Data Acquisition Microwave Interferometers Laser Induced Fluorescence DC Magnetic Field: 0.05-4 kg, variable on axis Highly Ionized

More information

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update E. R. (Randy) Collins, PhD, PE Dept. of Electrical and Computer Engineering Clemson University Clemson, South Carolina Stray Voltage Panel

More information

Magnetron Sputter Coater Design Software. The most important thing we build is trust. Probe and perfect magnetron design with Opera

Magnetron Sputter Coater Design Software. The most important thing we build is trust. Probe and perfect magnetron design with Opera Magnetron Sputter Coater Design Software The most important thing we build is trust Probe and perfect magnetron design with Opera Magnetron Sputter Coater Design Software Accelerate and optimize your design

More information

In a recent paper [1], we reported on development of a multiscale model for self-consistent computation of

In a recent paper [1], we reported on development of a multiscale model for self-consistent computation of JANNAF-4022 Hall Thruster Simulations with a Two-Dimensional Potential Solver and Kinetic Mobility Model Lubos Brieda Particle In Cell Consulting LLC, Falls Church, VA 22046 Michael Keidar The George Washington

More information

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction

Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction 16/05/2017, CTU in Prague Tight-Focusing of Short Intense Laser Pulses in Particle-in-Cell Simulations of Laser-Plasma Interaction Bc. Petr Valenta (petr.valenta@eli-beams.eu) Supervisors: doc. Ing. Ondrej

More information

Harmonic Modeling of Networks

Harmonic Modeling of Networks Harmonic Modeling of Networks Thomas H. Ortmeyer ECE Dept. Clarkson University Potsdam, NY 13699-5720 M. Fayyaz Akram Dept. of Elec. Eng. Univ. of Engineering and Technology Lahore, Pakistan Takashi Hiyama

More information

J09M.1 - Coupled Pendula

J09M.1 - Coupled Pendula Part I - Mechanics J09M.1 - Coupled Pendula J09M.1 - Coupled Pendula Two simple pendula, each of length l and mass m, are coupled by a spring of force constant k. The spring is attached to the rods of

More information

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J. TECHCON 98 Las Vegas, Nevada September 9-11, 1998 MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL Ron L. Kinder and Mark J. Kushner Department of

More information

CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION

CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION 96 CHAPTER 5 ANALYSIS OF ELECTRIC FIELD AND VOLTAGE DISTRIBUTION 5.1 INTRODUCTION The electric field distribution of polymeric insulator is different when compared to porcelain and glass insulators. Generally

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

A COMPUTER PROGRAM FOR SHORT CIRCUIT ANALYSIS OF ELECTRIC POWER SYSTEMS

A COMPUTER PROGRAM FOR SHORT CIRCUIT ANALYSIS OF ELECTRIC POWER SYSTEMS NIJOTECH VOL. 5 NO. 1 MARCH 1981 EJEBE 46 A COMPUTER PROGRAM FOR SHORT CIRCUIT ANALYSIS OF ELECTRIC POWER SYSTEMS BY G.C. EJEBE DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING UNIVERSITY OF NIGERIA, NSUKKA.

More information

27 th IEEE International Conference on Plasma Science New Orleans, LA June 4-7, Optimization of Hall Thruster Magnetic Field Topography

27 th IEEE International Conference on Plasma Science New Orleans, LA June 4-7, Optimization of Hall Thruster Magnetic Field Topography 27 th IEEE International Conference on Plasma Science New Orleans, LA June 4-7, Optimization of Hall Thruster Magnetic Field Topography Richard R. Hofer, James M. Haas, Peter Y. Peterson, Rafael A. Martinez

More information

Featured Articles Advanced Research into AI Ising Computer

Featured Articles Advanced Research into AI Ising Computer 156 Hitachi Review Vol. 65 (2016), No. 6 Featured Articles Advanced Research into AI Ising Computer Masanao Yamaoka, Ph.D. Chihiro Yoshimura Masato Hayashi Takuya Okuyama Hidetaka Aoki Hiroyuki Mizuno,

More information

Due Date 1 (for confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm

Due Date 1 (for  confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission): Friday May 14 at 5pm ! ME345 Modeling and Simulation, Spring 2010 Case Study 3 Assigned: Friday April 16! Due Date 1 (for email confirmation of final grade): Monday May 10 at 11:59pm Due Date 2 (absolute latest possible submission):

More information

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling

Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Accurate Estimating Simultaneous Switching Noises by Using Application Specific Device Modeling Li Ding and Pinaki Mazumder Department of Electrical Engineering and Computer Science The University of Michigan,

More information

Ion Optics Simulations

Ion Optics Simulations Ion Optics Simulations What it is. How it s useful. The SIMION ion optics software. How it works. Limitations and cautions Demonstrations and examples A little hands on exploring 1 Ion Optics Simulations

More information

Exact Expressions of the Orbit-curvature and Curvature-radius of the Toroidal/Helical Orbits

Exact Expressions of the Orbit-curvature and Curvature-radius of the Toroidal/Helical Orbits 470 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 Exact Expressions of the Orbit-curvature and Curvature-radius of the Toroidal/Helical Orbits R. A. Speciale Research

More information

Lab 6 - Electron Charge-To-Mass Ratio

Lab 6 - Electron Charge-To-Mass Ratio Lab 6 Electron Charge-To-Mass Ratio L6-1 Name Date Partners Lab 6 - Electron Charge-To-Mass Ratio OBJECTIVES To understand how electric and magnetic fields impact an electron beam To experimentally determine

More information

NOTE. Application of Contour Dynamics to Systems with Cylindrical Boundaries

NOTE. Application of Contour Dynamics to Systems with Cylindrical Boundaries JOURNAL OF COMPUTATIONAL PHYSICS 145, 462 468 (1998) ARTICLE NO. CP986024 NOTE Application of Contour Dynamics to Systems with Cylindrical Boundaries 1. INTRODUCTION Contour dynamics (CD) is a widely used

More information

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 1, JANUARY /$ IEEE

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 1, JANUARY /$ IEEE IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 1, JANUARY 2007 195 Analysis of Half-Turn Effect in Power Transformers Using Nonlinear-Transient FE Formulation G. B. Kumbhar, S. V. Kulkarni, Member,

More information

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor

Output intensity measurement on a diagnostic ultrasound machine using a calibrated thermoacoustic sensor Institute of Physics Publishing Journal of Physics: Conference Series 1 (2004) 140 145 doi:10.1088/1742-6596/1/1/032 Advanced Metrology for Ultrasound in Medicine Output intensity measurement on a diagnostic

More information

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained

More information

A Preliminary Investigation of an Electrodynamic Wheel for Simultaneously Creating Levitation and Propulsion

A Preliminary Investigation of an Electrodynamic Wheel for Simultaneously Creating Levitation and Propulsion A Preliminary Investigation of an Electrodynamic Wheel for Simultaneously Creating Levitation and Propulsion J. Bird, T.A. Lipo University of Wisconsin-Madison 1415 Engineering Drive Madison, WI, 53706-1691

More information

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN,

Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, Generating of fusion plasma neutron source with AFSI for Serpent MC neutronics computing Serpent UGM 2015 Knoxville, TN, 14.10.2015 Paula Sirén VTT Technical Research Centre of Finland, P.O Box 1000, 02044

More information

LAB 5. INTRODUCTION Finite Difference Method

LAB 5. INTRODUCTION Finite Difference Method LAB 5 In previous two computer labs, you have seen how the analytical techniques for solving electrostatic problems can be approximately solved using numerical methods. For example, you have approximated

More information

Computer Algebra for Physics Examples

Computer Algebra for Physics Examples Computer Algebra for Physics Examples Electrostatics, Magnetism, Circuits and Mechanics of Charged Particles Part 4 Mechanics of Charged Particles Leon Magiera and Josef Böhm V. Mechanics of Charged Particles

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE PLASMA PHYSICS THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE M. TOMA, I. A. RUSU, D. O. DOROHOI Plasma Physics Department, A. I. Cuza University,

More information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES* 25th IEEE International Conference on Plasma Science Raleigh, North Carolina June 1-4, 1998 SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(,n) MODES* Ron L. Kinder and Mark J.

More information

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping. Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle

More information

Medical Physics & Science Applications

Medical Physics & Science Applications Power Conversion & Electromechanical Devices Medical Physics & Science Applications Transportation Power Systems 1-5: Introduction to the Finite Element Method Introduction Finite Element Method is used

More information

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories

CMOS Digital Integrated Circuits Lec 13 Semiconductor Memories Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Read-Only Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask

More information

Pre-lab Quiz/PHYS 224 Coulomb s Law and Coulomb Constant. Your name Lab section

Pre-lab Quiz/PHYS 224 Coulomb s Law and Coulomb Constant. Your name Lab section Pre-lab Quiz/PHYS 4 Coulomb s Law and Coulomb Constant Your name Lab section 1. What do you investigate in this lab?. Two identical parallel conducting plates in vacuum form a capacitor. The surface area

More information

Today in Physics 217: boundary conditions and electrostatic boundary-value problems

Today in Physics 217: boundary conditions and electrostatic boundary-value problems Today in Physics 17: boundary conditions and electrostatic boundary-value problems Boundary conditions in electrostatics Simple solution of Poisson s equation as a boundary-value problem: the space-charge

More information

Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Cutting Torch

Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Cutting Torch Numerical Simulation of Fluid Flow and Heat Transfer in a Plasma Cutting Torch ASAD A.SALEM College of Science & Technology Texas A&M University- Corpus Christi Corpus Christi, TX 78412-5797 USA Abstract:

More information

Scattering of ECRF waves by edge density fluctuations and blobs

Scattering of ECRF waves by edge density fluctuations and blobs PSFC/JA-14-7 Scattering of ECRF waves by edge density fluctuations and blobs A. K. Ram and K. Hizanidis a June 2014 Plasma Science and Fusion Center, Massachusetts Institute of Technology Cambridge, MA

More information

Weak focusing I. mv r. Only on the reference orbit is zero

Weak focusing I. mv r. Only on the reference orbit is zero Weak focusing I y x F x mv r 2 evb y Only on the reference orbit is zero r R x R(1 x/ R) B y R By x By B0y x B0y 1 x B0 y x R Weak focusing (II) Field index F x mv R 2 x R 1 n Betatron frequency 2 Fx mx

More information

S Subdivide, Preprocess and Conquer: Micromagnetism FEM/BEM-Simulations on Single-Node/Multi-GPU Systems

S Subdivide, Preprocess and Conquer: Micromagnetism FEM/BEM-Simulations on Single-Node/Multi-GPU Systems S4283 - Subdivide, : Micromagnetism FEM/BEM-Simulations on Single-Node/Multi-GPU Systems Elmar Westphal - Forschungszentrum Jülich GmbH 1 Contents Micromagnetism TetraMag, a FEM/BEM Micromagnetism Simulator

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO

Lab 6 - ELECTRON CHARGE-TO-MASS RATIO 101 Name Date Partners OBJECTIVES OVERVIEW Lab 6 - ELECTRON CHARGE-TO-MASS RATIO To understand how electric and magnetic fields impact an electron beam To experimentally determine the electron charge-to-mass

More information

Number Representation and Waveform Quantization

Number Representation and Waveform Quantization 1 Number Representation and Waveform Quantization 1 Introduction This lab presents two important concepts for working with digital signals. The first section discusses how numbers are stored in memory.

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

ANALOGY BETWEEN ELECTROSTATIC FIELD AND HEAT TRANSFER SIMPLE MODELS

ANALOGY BETWEEN ELECTROSTATIC FIELD AND HEAT TRANSFER SIMPLE MODELS ANALOGY BETWEEN ELECTROSTATIC FIELD AND HEAT TRANSFER SIMPLE MODELS PROF. RNDR ING. MILOSLAV KOŠEK, CSC. ING. JAN VODOLAN. Abstract: The perfect analogy allows solving of heat transfer problems by a lot

More information

Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction

Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction 28/03/2017, CTU in Prague Tight-Focusing of Short Intense Laser Beams in Particle-in-Cell Simulations of Laser-Plasma Interaction Bc. Petr Valenta (petr.valenta@eli-beams.eu) Supervisors: doc. Ing. Ondrej

More information

Divergent Fields, Charge, and Capacitance in FDTD Simulations

Divergent Fields, Charge, and Capacitance in FDTD Simulations Divergent Fields, Charge, and Capacitance in FDTD Simulations Christopher L. Wagner and John B. Schneider August 2, 1998 Abstract Finite-difference time-domain (FDTD) grids are often described as being

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

Nature-inspired Analog Computing on Silicon

Nature-inspired Analog Computing on Silicon Nature-inspired Analog Computing on Silicon Tetsuya ASAI and Yoshihito AMEMIYA Division of Electronics and Information Engineering Hokkaido University Abstract We propose CMOS analog circuits that emulate

More information

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION

EXPERIMENT 2-6. e/m OF THE ELECTRON GENERAL DISCUSSION Columbia Physics: Lab -6 (ver. 10) 1 EXPERMENT -6 e/m OF THE ELECTRON GENERAL DSCUSSON The "discovery" of the electron by J. J. Thomson in 1897 refers to the experiment in which it was shown that "cathode

More information

Received February 12, 1991 ABSTRACT

Received February 12, 1991 ABSTRACT International Journal of Infrared and Millimeter Waves, Vol. 12, No. 4, 1991 A DEPRESSED COLLECTOR SYSTEM FOR A QUASI-OPTICAL GYROTRON WITH PRECISELY CONTROLLED MAGNETIC FLUX LINES.1 A Singhfl V.L. Granatsteinfl

More information

THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL

THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL THE APPROACH TO THE ANALYSIS OF ELECTRICAL FIELD DISTRIBUTION IN THE SETUP OF PAPER INSULATED ELECTRODES IN OIL Pawel Rozga, PhD Dariusz Hantsz, MSc Technical University of Lodz, Poland Abstract Article

More information

August 7, 2007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION

August 7, 2007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION August 7, 007 NUMERICAL SOLUTION OF LAPLACE'S EQUATION PURPOSE: This experiment illustrates the numerical solution of Laplace's Equation using a relaxation method. The results of the relaxation method

More information

MICROWAVE GASEOUS DISCHARGES

MICROWAVE GASEOUS DISCHARGES II. MICROWAVE GASEOUS DISCHARGES Prof. S. C. Brown R. R. Brown II W. R. Kittredge Prof. W. P. Allis C. D. Buntschuh J. J. McCarthy Prof. D. O. Akhurst S. Frankenthal R. G. Meyerand, Jr. Dr. G. Bekefi J.

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Effect of parasitic capacitances on impedance measurements in microsensors structures: a numerical study

Effect of parasitic capacitances on impedance measurements in microsensors structures: a numerical study Effect of parasitic capacitances on impedance measurements in microsensors structures: a numerical study Nicolás H. Beltrán a,, Ricardo A. Finger a, Jorge Santiago-Aviles b, Patricio Espinoza-Vallejos

More information

Analysis and design of a new SRAM memory cell based on vertical lambda bipolar transistor

Analysis and design of a new SRAM memory cell based on vertical lambda bipolar transistor Microelectronics Journal 34 (003) 855 863 www.elsevier.com/locate/mejo Analysis and design of a new SRAM memory cell based on vertical lambda bipolar transistor Shang-Ming Wang*, Ching-Yuan Wu Institute

More information

Multipole-Based Preconditioners for Sparse Linear Systems.

Multipole-Based Preconditioners for Sparse Linear Systems. Multipole-Based Preconditioners for Sparse Linear Systems. Ananth Grama Purdue University. Supported by the National Science Foundation. Overview Summary of Contributions Generalized Stokes Problem Solenoidal

More information

The importance of including XMHD physics in HED codes

The importance of including XMHD physics in HED codes The importance of including XMHD physics in HED codes Charles E. Seyler, Laboratory of Plasma Studies, School of Electrical and Computer Engineering, Cornell University Collaborators: Nat Hamlin (Cornell)

More information

arxiv: v1 [physics.plasm-ph] 3 Oct 2016

arxiv: v1 [physics.plasm-ph] 3 Oct 2016 arxiv:1610.00604v1 [physics.plasm-ph] 3 Oct 2016 Simulation of a Hyperbolic Field Energy Analyzer Angel Gonzalez-Lizardo, Ernesto Ulloa Abstract Energy analyzers are important plasma diagnostic tools with

More information

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet

Impact of a Jet. Experiment 4. Purpose. Apparatus. Theory. Symmetric Jet Experiment 4 Impact of a Jet Purpose The purpose of this experiment is to demonstrate and verify the integral momentum equation. The force generated by a jet of water deflected by an impact surface is

More information

AQA Physics A-level Section 7: Fields and Their Consequences

AQA Physics A-level Section 7: Fields and Their Consequences AQA Physics A-level Section 7: Fields and Their Consequences Key Points Gravitational fields A force field is a region in which a body experiences a non-contact force. Gravity is a universal force acting

More information