Hierarchical Parallel Solution of Stochastic Systems

Size: px
Start display at page:

Download "Hierarchical Parallel Solution of Stochastic Systems"

Transcription

1 Hierarchical Parallel Solution of Stochastic Systems Second M.I.T. Conference on Computational Fluid and Solid Mechanics Contents: Simple Model of Stochastic Flow Stochastic Galerkin Scheme Resulting Equations Iterative solvers Parallel Solution Andreas Keese, Hermann G. Matthies Institute of Scientific Computing, Technical University Braunschweig

2 Model problem Geometry.5.5 Aquifier System D Model Simple Model: «κ (x) κ (x) κ (x) κ (x) «u(x) = f(x) + b.c., x R R d u hydraulic head, κ hydraulic conductivity, f sinks and sources Questions, eg: Outflow over border R, s(u) = R R n (κ(x)u(x)) dx

3 3 Stochastic Model Uncertain knowledge of System parameters e.g. κ = κ (x, ω) «κ (x, ω) κ (x, ω) κ (x, ω) random field ω Ω = probability space of all possible system s realisations. Need < κ κ(x, ω). Assume κ(x, ω) = φ(x, γ(x, ω)) of Gaussian field γ with known nd order statistics. E.g. marginal lornormal distribution if k(x, ω) = a(x) + exp(γ(x, ω))

4 4 Samples of field κ(x)

5 5 Stochastic PDE Inserting stochastic parameters into PDE gives stochastic PDE: (κ(x, ω) u(x, ω)) = f(x, ω), n (κ(x, ω)u(x, ω)) = f N(x, ω) u(x, ω) = f D (x, ω) x R x Γ N R x Γ D R Functional of interest, e.g. s(u) = Z R n (κ(x, ω)u(x, ω)) dx Compute: statistics of the solution, e.g.: E (s(u)), var(s(u)), P {s(u) s }

6 6 Example of solution Geometry.5 flow = flow out Sources 5 Dirichlet b.c. 5.5 Mean of solution 5 Realization of κ Variance of solution Realization of solution

7 7 Karhunen Loève Expansion KL mode KL mode Solving eigenvalue problem Z cov κ (x, y)g i (x) dx = λ i g j (y) R yields spectrum {λ i } and K-L eigenfunctions g i (x) representation κ(x, ω) = E (κ(x)) + X p λi g i (x)ξ i (ω) =: i= X p λi g i (x)ξ i (ω) i= with centered uncorrelated unit-variance random variables ξ i. Truncation after r largest eigenvalues Optimal expansion

8 8 Discretisation of Probability Space Represent {ξ i } in (uncorrelated ) independent Gaussian random variables ω = (ω,..., ω m ) κ(x, ω) = κ(x, ω,..., ω m ) Approximation of SPDE (κ(x, ω) u(x, ω)) = f(x, ω) in R (Ω (m), B, Γ m ). 6 4 Realisation m = 5 Ω (m) = R m with Gaussian measure Γ m (dω) = (π) m/ exp( ω /)dω. Approximation in d + m dimensional space 6 4 Realisation m =

9 9 Spatial Discretisation FEM-ansatz in spatial dimension, N(x) = (N (x),..., N n (x)) u n (x, ω) = nx N i (x)u i (ω) = N(x)u(ω) i= and Galerkin-Conditions in space K(ω)u(ω) = f(ω). Semi-discretisation, linear equations with stochastic coefficients.

10 Stochastic Discretisation Recipe: ansatz and projection in stochastic dimensions u(ω) = X β H β (ω)u (β) =: H(ω)u, H(ω) = (...H β (ω)...), u = (...u (β)...) T. H β : Hermite-polynomials (Wiener chaos, orthonormal, E (H β H γ ) = δ βγ ). Goal: Compute coefficients u (β). By stochastic Galerkin-method, γ : E`(K(ω)H(ω)u f(ω))h γ (ω) =, #dof space #dof stoch linear equations.. Non-intrusively/uncoupled, direct projection on orthonormal ansatz: β : u (β) = E (u(ω)h β (ω)), many problems of size #dof space.

11 Stochastic Galerkin Method X Z β R N(x) E (κ(x, ω)h β (ω)h γ (ω)) N(x) t dx u (β) = E (f(ω)h γ (ω)) {z } =:f (γ) To compute residual, need to evaluate expectation, e.g. by high-dimensional integration (e.g. Monte Carlo, Smolyak quadrature) here: by expanding κ in Wiener chaos and analytic integration Rewrite Karhunen-Loève expansion: κ(x, ω) = = rx p λi ξ i (ω)g i (x) i= rx X i= α p λi ξ (α) i H α (ω)g i (x)

12 Resulting equations After inserting expansion of κ: X X X α β i Z ξ (α) i E (H α H β H γ ) {z } =: (α) β,γ N(x) p λ i g i (x) N(x) t dx {z } K i u (β) = f (γ) K i stiffness matrix of FEM discretisation for material parameter g i (x). Use deterministic FEM program in black-box-fashion. For this, we require:. Ability to set material-parameters. Function returning residuum and Jacobian K i 3. Function solving a realisation, i.e. u(ω) = K (ω)f(ω)

13 3 Tensor product structure The equations have tensor product structure K u = X i X α ξ (α) i (α) K i u = f X X α i ξ (α) i (α) β,γ K i (α) β,γ K i. β,γ K i C B β,γ K i (α) (α) u (β ). u (β N ) C A = f (γ ). f (γ N ) C A. #dof space #dof stoch linear equations. Exploit parallelism in the multiplication: parallel operator sum, distribute block vector Block matrix stored efficiently in tensor form.

14 4 Block Sparsity structure Block sparsity structure for increasing number of H α

15 5 Properties of equations K u = X i X α ξ (α) i (α) K i u = f Each K i symmetric. Block matrix K symmetric. SPDE is positive definite. But expansion in polynomials Definiteness depends on chosen stochastic fields and on stochastic expansion. To solve: Use K only as multiplication. Never construct block matrix explicitly. Krylov subspace methods (CG or MINRES) with preconditioning

16 6 Block diagonal preconditioners Let K = K = stiffness matrix for mean κ(x). Use deterministic solver as preconditioner: P = A = I K... K Good preconditioner if variance of κ not too large. Well suited for parallelisation.

17 7 Parallelisation of Matrix-Vector Product (K u) (γ) = rx i n βx β nαx α ξ (α) i (α) β,γ K i u β K i = deterministic solver. Deterministic solver may be parallel program. Parallelise Operator sum in i Run different realisations of deterministic solver in parallel. Distribute u and f Parallelise sum in β

18 8 Examples Assume: enough processors to run 4 instances of deterministic solver in parallel..) One K i per processor-group, block-vector distributed pg K u () u (3) f () f (3) pg K u (4) u (6) f (4) f (6) pg K u (7) u (9) f (7) f (9) pg 3 K 3 u () u () f () f () Parallel overhead: complete cyclic shift of u for each configuration of u: complete cyclic shift of f. Good memory usage. Much parallel overhead. Does not require to switch material parameters in running solver.

19 9 Examples.) Each K i held once, block-vector replicated 4 times. Parallel overhead: parallel sum over RHS pg K u () u () f () f () pg K u () u () f () f () pg 3 K u () u () f () f () pg 4 K 3 u () u () f () f () Poor memory usage, little parallel overhead. Does not require to switch material parameters in running solver.

20 Examples 3a.) K i replicated, block-vector distributed pg K K u () u (3) f () f (3) pg K K 3 u (4) u (6) f (4) f (6) pg 3 K K u (7) u (9) f (7) f (9) pg 4 K K 3 u () u () f () f () Parallel overhead: Cyclic shift of u, Shifts of f inside each matrix group 3b.) Matrix replication necessary if more processor groups than K i : pg K u () u (3) f () f (3) pg K u (4) u (6) f (4) f (6) pg 3 K u (7) u (9) f (7) f (9) pg 4 K u () u () f () f ()

21 More Examples 3c.) K i are replicated on all processors groups, block-vector is not replicated Parallel overhead: Cyclic shift of u, pg K K 3 u () u (3) f () f (3) pg K K 3 u (4) u (6) f (4) f (6) pg 3 K K 3 u (7) u (9) f (7) f (9) pg 4 K K 3 u () u () f () f () Allows large ansatz-spaces with not too much parallel communication. Requires to switch material parameters in running solvers.

22 Parallelisation (K u) (γ) = X i X β X α ξ (α) i (α) β,γ K i u β Assume that n spatial solvers run in parallel. Block-vectors u and f distributed May be replicated to reduce communication. The matrices K i are distributed over the spatial solvers. May be replicated some times to reduce parallel communication. allow n > number of K i. n groups of (parallel) deterministic solvers each holding a subset of matrices K i and a subset of u and f.

23 3 Parallelisation of iterative solver We use portable communication based on MPI (Message Passing Interface) Solver: Conjugate Gradients. Parallelised by parallel matrix-vector multiplication. Preconditioner: deterministic solver, one instance on each processor group Memory requirements on each processor group: Hold local K i (i.e. hold local material properties) Hold preconditioner K (i.e. hold mean material property) Hold local part of u and f

24 4 Speedup Measurements Done on Cray T3E Constant problem size, N space = 75, N stoch = 54, (9 KL-terms, order 3 polynomial chaos), total equations, 55, 5. operators K i and mean. Distributed operator, distributed block-vector, (most efficient in terms of used memory): Efficiency Relative time used Number of processors 5 5 Number of processors

25 5 Speedup Measurements Replicated operator, distributed block-vector: Efficiency Number of processors Distributed block-vector, operators replicated Efficiency Number of processors

26 6 Conclusions Linear Stochastic PDEs were solved by a stochastic Galerkin scheme. Deterministic solver is used in black-box fashion. A large linear problem results which may be stored and solved efficiently. Iterative solvers have been presented. Parallelisation is exploited on different levels hierarchical parallelisation Shows good speedup if operator or vectors are replicated. Solver written in C ++ using portable communication (MPI). Massively parallel solver allows to tackle large problems. Thank you for your attention. a.keese@tu-bs.de

Numerical Approximation of Stochastic Elliptic Partial Differential Equations

Numerical Approximation of Stochastic Elliptic Partial Differential Equations Numerical Approximation of Stochastic Elliptic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de

More information

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications

Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Quantifying Uncertainty: Modern Computational Representation of Probability and Applications Hermann G. Matthies with Andreas Keese Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Partial Differential Equations with Stochastic Coefficients

Partial Differential Equations with Stochastic Coefficients Partial Differential Equations with Stochastic Coefficients Hermann G. Matthies gemeinsam mit Andreas Keese Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations

Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations ScientifiComputing Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations Hermann G. Matthies, Andreas Keese Institute of Scientific Computing Technical University

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

Parametric Problems, Stochastics, and Identification

Parametric Problems, Stochastics, and Identification Parametric Problems, Stochastics, and Identification Hermann G. Matthies a B. Rosić ab, O. Pajonk ac, A. Litvinenko a a, b University of Kragujevac c SPT Group, Hamburg wire@tu-bs.de http://www.wire.tu-bs.de

More information

Solving the steady state diffusion equation with uncertainty Final Presentation

Solving the steady state diffusion equation with uncertainty Final Presentation Solving the steady state diffusion equation with uncertainty Final Presentation Virginia Forstall vhfors@gmail.com Advisor: Howard Elman elman@cs.umd.edu Department of Computer Science May 6, 2012 Problem

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

Sampling and Low-Rank Tensor Approximations

Sampling and Low-Rank Tensor Approximations Sampling and Low-Rank Tensor Approximations Hermann G. Matthies Alexander Litvinenko, Tarek A. El-Moshely +, Brunswick, Germany + MIT, Cambridge, MA, USA wire@tu-bs.de http://www.wire.tu-bs.de $Id: 2_Sydney-MCQMC.tex,v.3

More information

Stochastic Finite Elements: Computational Approaches to SPDEs

Stochastic Finite Elements: Computational Approaches to SPDEs Stochastic Finite Elements: Computational Approaches to SPDEs Hermann G. Matthies Andreas Keese, Elmar Zander, Alexander Litvinenko, Bojana Rosić Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

Non-Intrusive Solution of Stochastic and Parametric Equations

Non-Intrusive Solution of Stochastic and Parametric Equations Non-Intrusive Solution of Stochastic and Parametric Equations Hermann G. Matthies a Loïc Giraldi b, Alexander Litvinenko c, Dishi Liu d, and Anthony Nouy b a,, Brunswick, Germany b École Centrale de Nantes,

More information

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion:

Lecture 1: Center for Uncertainty Quantification. Alexander Litvinenko. Computation of Karhunen-Loeve Expansion: tifica Lecture 1: Computation of Karhunen-Loeve Expansion: Alexander Litvinenko http://sri-uq.kaust.edu.sa/ Stochastic PDEs We consider div(κ(x, ω) u) = f (x, ω) in G, u = 0 on G, with stochastic coefficients

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering

Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Optimisation under Uncertainty with Stochastic PDEs for the History Matching Problem in Reservoir Engineering Hermann G. Matthies Technische Universität Braunschweig wire@tu-bs.de http://www.wire.tu-bs.de

More information

arxiv: v2 [math.na] 8 Sep 2017

arxiv: v2 [math.na] 8 Sep 2017 arxiv:1704.06339v [math.na] 8 Sep 017 A Monte Carlo approach to computing stiffness matrices arising in polynomial chaos approximations Juan Galvis O. Andrés Cuervo September 3, 018 Abstract We use a Monte

More information

Collocation based high dimensional model representation for stochastic partial differential equations

Collocation based high dimensional model representation for stochastic partial differential equations Collocation based high dimensional model representation for stochastic partial differential equations S Adhikari 1 1 Swansea University, UK ECCM 2010: IV European Conference on Computational Mechanics,

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA

UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA UNCERTAINTY ASSESSMENT USING STOCHASTIC REDUCED BASIS METHOD FOR FLOW IN POROUS MEDIA A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY RESOURCES ENGINEERING OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT

More information

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models

A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models A Posteriori Adaptive Low-Rank Approximation of Probabilistic Models Rainer Niekamp and Martin Krosche. Institute for Scientific Computing TU Braunschweig ILAS: 22.08.2011 A Posteriori Adaptive Low-Rank

More information

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE tifica NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE Alexander Litvinenko 1, Hermann G. Matthies 2, Elmar Zander 2 http://sri-uq.kaust.edu.sa/ 1 Extreme Computing Research Center, KAUST, 2 Institute of Scientific

More information

Sampling and low-rank tensor approximation of the response surface

Sampling and low-rank tensor approximation of the response surface Sampling and low-rank tensor approximation of the response surface tifica Alexander Litvinenko 1,2 (joint work with Hermann G. Matthies 3 ) 1 Group of Raul Tempone, SRI UQ, and 2 Group of David Keyes,

More information

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 569 PARALLEL COMPUTATION OF 3D WAVE PROPAGATION BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD Riki Honda

More information

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs

Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Implementation of Sparse Wavelet-Galerkin FEM for Stochastic PDEs Roman Andreev ETH ZÜRICH / 29 JAN 29 TOC of the Talk Motivation & Set-Up Model Problem Stochastic Galerkin FEM Conclusions & Outlook Motivation

More information

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Institut für Numerische Mathematik und Optimierung Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques Oliver Ernst Computational Methods with Applications Harrachov, CR,

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

STOCHASTIC SAMPLING METHODS

STOCHASTIC SAMPLING METHODS STOCHASTIC SAMPLING METHODS APPROXIMATING QUANTITIES OF INTEREST USING SAMPLING METHODS Recall that quantities of interest often require the evaluation of stochastic integrals of functions of the solutions

More information

Introduction to Computational Stochastic Differential Equations

Introduction to Computational Stochastic Differential Equations Introduction to Computational Stochastic Differential Equations Gabriel J. Lord Catherine E. Powell Tony Shardlow Preface Techniques for solving many of the differential equations traditionally used by

More information

A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients

A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients SIAM/ASA J. UNCERTAINTY QUANTIFICATION Vol., pp. 452 493 c 23 Society for Industrial and Applied Mathematics and American Statistical Association A Data-Driven Stochastic Method for Elliptic PDEs with

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

An Empirical Chaos Expansion Method for Uncertainty Quantification

An Empirical Chaos Expansion Method for Uncertainty Quantification An Empirical Chaos Expansion Method for Uncertainty Quantification Melvin Leok and Gautam Wilkins Abstract. Uncertainty quantification seeks to provide a quantitative means to understand complex systems

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 1 / 23 Lecture outline

More information

arxiv: v2 [math.na] 8 Apr 2017

arxiv: v2 [math.na] 8 Apr 2017 A LOW-RANK MULTIGRID METHOD FOR THE STOCHASTIC STEADY-STATE DIFFUSION PROBLEM HOWARD C. ELMAN AND TENGFEI SU arxiv:1612.05496v2 [math.na] 8 Apr 2017 Abstract. We study a multigrid method for solving large

More information

Block-diagonal preconditioning for spectral stochastic finite-element systems

Block-diagonal preconditioning for spectral stochastic finite-element systems IMA Journal of Numerical Analysis (2009) 29, 350 375 doi:0.093/imanum/drn04 Advance Access publication on April 4, 2008 Block-diagonal preconditioning for spectral stochastic finite-element systems CATHERINE

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient

A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient A Reduced Basis Approach for Variational Problems with Stochastic Parameters: Application to Heat Conduction with Variable Robin Coefficient Sébastien Boyaval a,, Claude Le Bris a, Yvon Maday b, Ngoc Cuong

More information

Chapter 2 Spectral Expansions

Chapter 2 Spectral Expansions Chapter 2 Spectral Expansions In this chapter, we discuss fundamental and practical aspects of spectral expansions of random model data and of model solutions. We focus on a specific class of random process

More information

A Polynomial Chaos Approach to Robust Multiobjective Optimization

A Polynomial Chaos Approach to Robust Multiobjective Optimization A Polynomial Chaos Approach to Robust Multiobjective Optimization Silvia Poles 1, Alberto Lovison 2 1 EnginSoft S.p.A., Optimization Consulting Via Giambellino, 7 35129 Padova, Italy s.poles@enginsoft.it

More information

Sparse polynomial chaos expansions in engineering applications

Sparse polynomial chaos expansions in engineering applications DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Sparse polynomial chaos expansions in engineering applications B. Sudret G. Blatman (EDF R&D,

More information

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials Dr. Noemi Friedman Contents of the course Fundamentals

More information

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion

Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Numerical methods for the discretization of random fields by means of the Karhunen Loève expansion Wolfgang Betz, Iason Papaioannou, Daniel Straub Engineering Risk Analysis Group, Technische Universität

More information

A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor

A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor TECHNISCHE MECHANIK,,, (), 79 submitted: April, A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor A. Dridger, I. Caylak,. Mahnken

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Fast Numerical Methods for Stochastic Computations

Fast Numerical Methods for Stochastic Computations Fast AreviewbyDongbinXiu May 16 th,2013 Outline Motivation 1 Motivation 2 3 4 5 Example: Burgers Equation Let us consider the Burger s equation: u t + uu x = νu xx, x [ 1, 1] u( 1) =1 u(1) = 1 Example:

More information

Solving the stochastic steady-state diffusion problem using multigrid

Solving the stochastic steady-state diffusion problem using multigrid IMA Journal of Numerical Analysis (2007) 27, 675 688 doi:10.1093/imanum/drm006 Advance Access publication on April 9, 2007 Solving the stochastic steady-state diffusion problem using multigrid HOWARD ELMAN

More information

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1

H(div) Preconditioning for a Mixed Finite Element Formulation of the Stochastic Diffusion Problem 1 University of Maryland Department of Computer Science CS-TR-4918 University of Maryland Institute for Advanced Computer Studies UMIACS-TR-2008-15 H(div) Preconditioning for a Mixed Finite Element Formulation

More information

Foundations of the stochastic Galerkin method

Foundations of the stochastic Galerkin method Foundations of the stochastic Galerkin method Claude Jeffrey Gittelson ETH Zurich, Seminar for Applied Mathematics Pro*oc Workshop 2009 in isentis Stochastic diffusion equation R d Lipschitz, for ω Ω,

More information

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA

ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA International Journal for Uncertainty Quantification, 11):19 33, 2011 ASSESSMENT OF COLLOCATION AND GALERKIN APPROACHES TO LINEAR DIFFUSION EQUATIONS WITH RANDOM DATA Howard C. Elman, 1, Christopher W.

More information

Multi-Element Probabilistic Collocation Method in High Dimensions

Multi-Element Probabilistic Collocation Method in High Dimensions Multi-Element Probabilistic Collocation Method in High Dimensions Jasmine Foo and George Em Karniadakis Division of Applied Mathematics, Brown University, Providence, RI 02912 USA Abstract We combine multi-element

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

A Data-Driven Stochastic Method

A Data-Driven Stochastic Method A ata-riven Stochastic Method Mulin Cheng, Thomas Y. Hou, Pengchong Yan Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 96 Abstract Stochastic partial differential

More information

Uncertainty Quantification and related areas - An overview

Uncertainty Quantification and related areas - An overview Uncertainty Quantification and related areas - An overview Alexander Litvinenko, talk given at Department of Mathematical Sciences, Durham University Bayesian Computational Statistics & Modeling, KAUST

More information

Dipartimento di Scienze Matematiche

Dipartimento di Scienze Matematiche Exploiting parallel computing in Discrete Fracture Network simulations: an inherently parallel optimization approach Stefano Berrone stefano.berrone@polito.it Team: Matìas Benedetto, Andrea Borio, Claudio

More information

Conjugate Gradient Method

Conjugate Gradient Method Conjugate Gradient Method direct and indirect methods positive definite linear systems Krylov sequence spectral analysis of Krylov sequence preconditioning Prof. S. Boyd, EE364b, Stanford University Three

More information

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion

Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based Karhunen-Loève Expansion Mathematical Problems in Engineering Volume 2012, Article ID 215109, 15 pages doi:10.1155/2012/215109 Research Article Multiresolution Analysis for Stochastic Finite Element Problems with Wavelet-Based

More information

Fast Algorithm for Computing Karhunen-Loève Expansion

Fast Algorithm for Computing Karhunen-Loève Expansion Fast Algorithm for Computing Karhunen-Loève Expansion Qian-Yong Chen Abstract Karhunen Loève expansion has been proven to be an efficient way to approximate second-order random processes. But numerical

More information

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland

Multilevel accelerated quadrature for elliptic PDEs with random diffusion. Helmut Harbrecht Mathematisches Institut Universität Basel Switzerland Multilevel accelerated quadrature for elliptic PDEs with random diffusion Mathematisches Institut Universität Basel Switzerland Overview Computation of the Karhunen-Loéve expansion Elliptic PDE with uniformly

More information

Modelling and implementation of algorithms in applied mathematics using MPI

Modelling and implementation of algorithms in applied mathematics using MPI Modelling and implementation of algorithms in applied mathematics using MPI Lecture 3: Linear Systems: Simple Iterative Methods and their parallelization, Programming MPI G. Rapin Brazil March 2011 Outline

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

AND ELISABETH ULLMANN

AND ELISABETH ULLMANN Proceedings of ALGORITMY 25 pp. 1 1 COMPUTATIONAL ASPECTS OF THE STOCHASTIC FINITE ELEMENT METHO MICHAEL EIERMANN, OLIVER G. ERNST AN ELISABETH ULLMANN Abstract. We present an overview of the stochastic

More information

Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach

Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach Probabilistic Structural Dynamics: Parametric vs. Nonparametric Approach S Adhikari School of Engineering, Swansea University, Swansea, UK Email: S.Adhikari@swansea.ac.uk URL: http://engweb.swan.ac.uk/

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Numerical Solution for Random Forced SPDE via Galerkin Finite Element Method

Numerical Solution for Random Forced SPDE via Galerkin Finite Element Method Journal of mathematics and computer science 9 (014), 71-8 umerical Solution for Random Forced SE via Galerkin Finite Element ethod Rasoul aseri, A. alek 1 epartment of Applied athematics, Faculty of athematical

More information

Uncertainty Quantification in Computational Science

Uncertainty Quantification in Computational Science DTU 2010 - Lecture I Uncertainty Quantification in Computational Science Jan S Hesthaven Brown University Jan.Hesthaven@Brown.edu Objective of lectures The main objective of these lectures are To offer

More information

Dynamic response of structures with uncertain properties

Dynamic response of structures with uncertain properties Dynamic response of structures with uncertain properties S. Adhikari 1 1 Chair of Aerospace Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK International

More information

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed

Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Nonlinear stochastic Galerkin and collocation methods: application to a ferromagnetic cylinder rotating at high speed Eveline Rosseel Herbert De Gersem Stefan Vandewalle Report TW 541, July 29 Katholieke

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS

EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS EFFICIENT STOCHASTIC GALERKIN METHODS FOR RANDOM DIFFUSION EQUATIONS DONGBIN XIU AND JIE SHEN Abstract. We discuss in this paper efficient solvers for stochastic diffusion equations in random media. We

More information

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION

MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOW EQUATIONS AND APPLICATION TO UNCERTAINTY QUANTIFICATION P. DOSTERT, Y. EFENDIEV, AND T.Y. HOU Abstract. In this paper, we study multiscale

More information

Fast Structured Spectral Methods

Fast Structured Spectral Methods Spectral methods HSS structures Fast algorithms Conclusion Fast Structured Spectral Methods Yingwei Wang Department of Mathematics, Purdue University Joint work with Prof Jie Shen and Prof Jianlin Xia

More information

A Vector-Space Approach for Stochastic Finite Element Analysis

A Vector-Space Approach for Stochastic Finite Element Analysis A Vector-Space Approach for Stochastic Finite Element Analysis S Adhikari 1 1 Swansea University, UK CST2010: Valencia, Spain Adhikari (Swansea) Vector-Space Approach for SFEM 14-17 September, 2010 1 /

More information

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme

Concepts. 3.1 Numerical Analysis. Chapter Numerical Analysis Scheme Chapter 3 Concepts The objective of this work is to create a framework to implement multi-disciplinary finite element applications. Before starting, it is necessary to explain some basic concepts of the

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt.

Kernel-based Approximation. Methods using MATLAB. Gregory Fasshauer. Interdisciplinary Mathematical Sciences. Michael McCourt. SINGAPORE SHANGHAI Vol TAIPEI - Interdisciplinary Mathematical Sciences 19 Kernel-based Approximation Methods using MATLAB Gregory Fasshauer Illinois Institute of Technology, USA Michael McCourt University

More information

Fast Sparse Spectral Methods for Higher Dimensional PDEs

Fast Sparse Spectral Methods for Higher Dimensional PDEs Fast Sparse Spectral Methods for Higher Dimensional PDEs Jie Shen Purdue University Collaborators: Li-Lian Wang, Haijun Yu and Alexander Alekseenko Research supported by AFOSR and NSF ICERM workshop, June

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

Polynomial chaos expansions for sensitivity analysis

Polynomial chaos expansions for sensitivity analysis c DEPARTMENT OF CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING CHAIR OF RISK, SAFETY & UNCERTAINTY QUANTIFICATION Polynomial chaos expansions for sensitivity analysis B. Sudret Chair of Risk, Safety & Uncertainty

More information

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method

Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Characterization of heterogeneous hydraulic conductivity field via Karhunen-Loève expansions and a measure-theoretic computational method Jiachuan He University of Texas at Austin April 15, 2016 Jiachuan

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

Introduction to Iterative Solvers of Linear Systems

Introduction to Iterative Solvers of Linear Systems Introduction to Iterative Solvers of Linear Systems SFB Training Event January 2012 Prof. Dr. Andreas Frommer Typeset by Lukas Krämer, Simon-Wolfgang Mages and Rudolf Rödl 1 Classes of Matrices and their

More information

arxiv: v1 [math.na] 18 Dec 2017

arxiv: v1 [math.na] 18 Dec 2017 A Bramble-Pasciak conjugate gradient method for discrete Stokes problems with lognormal random viscosity arxiv:1712.06472v1 [math.na] 18 Dec 2017 Christopher Müller 1,2, Sebastian Ullmann 1,2, and Jens

More information

Random Eigenvalue Problems Revisited

Random Eigenvalue Problems Revisited Random Eigenvalue Problems Revisited S Adhikari Department of Aerospace Engineering, University of Bristol, Bristol, U.K. Email: S.Adhikari@bristol.ac.uk URL: http://www.aer.bris.ac.uk/contact/academic/adhikari/home.html

More information

Jae Heon Yun and Yu Du Han

Jae Heon Yun and Yu Du Han Bull. Korean Math. Soc. 39 (2002), No. 3, pp. 495 509 MODIFIED INCOMPLETE CHOLESKY FACTORIZATION PRECONDITIONERS FOR A SYMMETRIC POSITIVE DEFINITE MATRIX Jae Heon Yun and Yu Du Han Abstract. We propose

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C. Lecture 9 Approximations of Laplace s Equation, Finite Element Method Mathématiques appliquées (MATH54-1) B. Dewals, C. Geuzaine V1.2 23/11/218 1 Learning objectives of this lecture Apply the finite difference

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017 ACM/CMS 17 Linear Analysis & Applications Fall 217 Assignment 2: PDEs and Finite Element Methods Due: 7th November 217 For this assignment the following MATLAB code will be required: Introduction http://wwwmdunloporg/cms17/assignment2zip

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity

Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Approximating Infinity-Dimensional Stochastic Darcy s Equations without Uniform Ellipticity Marcus Sarkis Jointly work with Juan Galvis USC09 Marcus Sarkis (WPI) SPDE without Uniform Ellipticity USC09

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition

Dimensionality reduction of parameter-dependent problems through proper orthogonal decomposition MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 01.2016 January 2016 (New 25.05.2016) Dimensionality

More information

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models

Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Proper Generalized Decomposition for Linear and Non-Linear Stochastic Models Olivier Le Maître 1 Lorenzo Tamellini 2 and Anthony Nouy 3 1 LIMSI-CNRS, Orsay, France 2 MOX, Politecnico Milano, Italy 3 GeM,

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information