Impact of SoLID Experiment on TMDs

Size: px
Start display at page:

Download "Impact of SoLID Experiment on TMDs"

Transcription

1 Impact of SoLID Experiment on TMDs QCD Evolution Jefferson Lab, Newport News May th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin, W. Melnitchouk, Z. Ye, K. Allada, J.-P. Chen, H. Gao, Z.-B. Kang, P. Sun, F. Yuan, and the SoLID Collaboration

2 Nucleon Spin Decomposition Proton spin puzzle Spin decomposition ~ 0.3 Quark spin only contributes a small fraction to nucleon spin. J. Ashman et al., PLB 206, 364 (1988); NP B328, 1 (1989). Lattice QCD (kinetic decomposition) = JAM Collaboration, PR D 93, (2016). Access to Lq/g χqcd Collaboration, PR D 91, (2015). It is necessary to have transverse information. Coordinate space: GPDs Momentum space: TMDs 3D imaging of the nucleon. 2

3 5D Unified View of Nucleon Structure Light-front wave function Ψ (xi, kti) GTMD F(x, ΔT, kt) Generalized Transverse Momentum Dependent Wigner distribution ρ(x, bt, kt) ΔT = 0 d 2 kt d 2 kt 3D TMD f (x, kt) GPD H (x, ξ, t) ΙPD H (x, ξ, bt) d 2 kt t = 0 dx dx 1D PDF f (x) Form factor F (t) Charge density ρ (bt) dx t = 0 dbt Charge g 3

4 SIDIS differential cross section Structure Functions 18 structure functions F(x, z, Q 2, PT), model independent. (one photon exchange approximation) [Diehl&Sapeta EPJC2005] 4

5 SIDIS JLab-6GeV Hall A HRS L 16 o γ π Polarized 3 He Target e BigBite 30 o e First neutron data in SIDIS Electron beam energy: 5.9 GeV Average current: 12µA 40cm transversely polarized 3 He target Average polarization: 55.4 ± 2.8% electron arm scattered electron momentum 0.6~2.5 GeV/c hadron arm hadron momentum ~ 2.35 GeV/c Published results from E06-010: X. Qian et al., Sivers and Collins SSA of π ± production in SIDIS, Physical Review Letters 107, (2011). Y. Zhang et al., Pretzelosity SSA of π ± production in SIDIS, Physical Review C 90, (2014). Y.X. Zhao et al., Sivers and Collins SSA of K ± production in SIDIS, Physical Review C 90, (2014). J. Huang et al., Beam-target DSA of π ± production in SIDIS, Physical Review Letters 108, (2012). K. Allada et al., SSA of inclusive hadron, π ±, K ±, and proton, productions, Physical Review C 89, (R) (2014). Y.X. Zhao et al., DSA of inclusive hadron, π ±, K ±, and proton, productions, Physical Review C 92, (R) (2015). X. Yan et al., Unpolarized differential cross section of π ± production in SIDIS, Physical Review C 95, (2017). 5

6 SIDIS SSA/DSA Results from E X. Qian et al., PRL 107, (2011). Y. Zhang et al., PR C90, (2014). Y.X. Zhao et al., PR C90, (2014). J. Huang et al., PRL 108, (2012). 6

7 Differential Cross Section First measurement of unpolarized SIDIS differential cross section on 3 He target π + π X. Yan et al., Phys. Rev. C 95, (2017). 5 [x bins] 2 [PT bins] 10 [φφh bins] 7

8 Azimuthal Modulation cos φφh azimuthal modulations in unpolarized SIDIS cross section on 3 He target Fit with A (1 B cos φφh) to 10 φφh bins in each x, PT bin X. Yan et al., Phys. Rev. C 95, (2017). 8

9 Differential Cross Section First measurement of unpolarized SIDIS differential cross section on 3 He target π + π X. Yan et al., Phys. Rev. C 95, (2017). 10 [x bins] 10 [PT bins] 9

10 Multi-Hall SIDIS JLab 10

11 Overview of SoLID Solenoidal Large Intensity Device Full exploitation of JLab 12 GeV upgrade with broad physics Luminosity ~ cm -2 s -1 (open geometry) 3D nucleon structure TMD (Semi-inclusive DIS) GPD (TCS, DVMP, DVCS, DDVCS) Conformal anomaly J/ψ production near threshold Luminosity ~ cm -2 s -1 (baffled geometry) Standard model test, new physics in 10~20 TeV region Parity-violating DIS Five highly rated approved experiments Three SIDIS, one PVDIS, one J/ψ production Run group: di-hadron, TCS, inclusive SSA Strong collaboration 250+ collaborators from 70+ institutes, 13 countries Significant international collaborations and strong theoretical support 11 Target Collimator GEM Scint SoLID (SIDIS He3) EM Calorimeter (large angle) angl))) Coil and Yoke 1 m SoLID (PVDIS) Target Coil and Yoke 1 m Baffle GEM Light Gas Cherenkov Cherenkov Heavy Gas Cherenkov GEM Scint EM Calorimeter (forward angle) MRPC Beamline EM Calorimeter (forward angle) Beamline

12 Test new physics beyond SM SoLID SoLID + final Qweak E : Parity violating asymmetry in DIS with LH2 and LD2 targets. 6 GeV PVDIS [Nature2014] + other experiments Sub 1% precision over broad kinematic range High luminosity ~ cm -2 s -1 Large scattering angle large x and y Charge symmetry violation d/u ratio free of nuclear effect Precision test of SM with sensitivity to new PV physics in 10~20 TeV Search for charge symmetry violation at partonic level Test QCD higher twist corrections Measure d/u ratio for proton free of nuclear effect 12

13 Approved J/ψ near threshold production E : measure J/ψ near threshold production cross section on proton (LH2). SoLID Run group: E A Timelike Compton Scattering (TCS). Imaginary part: total cross section through the optical theorem. Real part: contains the conformal anomaly. Proton mass: Quark Energy 33 Quark Mass 11 threshold at 8.2 GeV and µ = 2 GeV Trace Anomaly 22 Gluon Energy 34 H. Gao et al., The Universe 3, no.2, 18 (2015). 13 electro- and photo- production with unprecedented precision in unexplored region Probe color force inside the nucleon Conformal anomaly (proton mass budget) A window for future J/ψ-N interaction studies

14 SoLID Approved SIDIS experiments 11/8.8 GeV E : Single Spin Asymmetry on Transversely polarized 3 He, 90 days. E : Single and Double Spin Asymmetry on Longitudinally polarized 3 He, 35 days. E : Single Spin Asymmetry on Transversely polarized proton (NH3), 120 days. Two run groups: E A, E A Dihadron process Target single spin asymmetry Ay High statistics (example) Projected data of E

15 SoLID Electron beam: 11GeV and 8.8 GeV Targets: neutron ( 3 He) and proton (NH3) Luminosity: ~ n cm -2 s -1, p cm -2 s -1 Azimuthal angle: full 2π coverage In beam polarization: ~60% ( 3 He), ~70% (NH3) 4D bins with high precision neutron ( 3 He) Q 2 (GeV 2 ) 10 COMPASS HERMES SoLID proton SoLID neutron W 2 cut =5.5GeV 2 11 GeV 8.8 GeV proton (NH3) x 11 GeV 8.8 GeV 0.3 < z < 0.7 W > 1.6 GeV Q 2 > 1.0 GeV 2 15

16 Impact of SoLID: Transversity Transversity distribution (Collinear & TMD) Chiral-odd: Unique for the quarks, no mixing with gluons, and simpler evolution effect. Collins asymmetry A transverse counter part to the longitudinal spin structure: helicity g 1L, but NOT the same. Couple to another chiral-odd function. (e.g. Collins function H1 ) SIDIS (E , E ), Drell-Yan Di-hadron (approved as run group with E ) Z.-B. Kang et al., Phys. Rev. D 93, (2016). M. Anselmino et al., Phys. Rev. D 92, (2015). 16 M. Radici et al., JHEP 05 (2015) 123.

17 Impact of SoLID: Transversity The improvement on transversity distributions SoLID proton target SoLID neutron target SoLID proton + neutron targets xh1(x) Q 2 =2.4 GeV 2 acceptance Q 2 =2.4GeV 2 KPSY15(u) KPSY15(d) After SoLID 0.8 δh SoLID /δh KPSY u d With both statistical and systematic errors 1 order of magnitude improvement x x x Ye, Sato, Allada, TL, Chen, Gao, Kang, Prokudin, Sun, Yuan, Phys. Lett. B 767, 91 (2017). 17

18 Impact of SoLID Data: Tensor Charge Tensor charge A fundamental QCD quantity: matrix element of local operators. Moment of the transversity distribution: valence quark dominant. Calculable in lattice QCD. SoLID impact Dyson-Schwinger equation Lattice QCD Models Phenomenology Future experiment With both statistical and systematic errors 1 order of magnitude improvement gd T gu T Pitschmann et al. (2015) Yamanaka et al. (2013) Bhattacharya et al. (2016) Abdel-Rehim et al. (2015) Gockeler et al. (2005) Cloet et al. (2008) Wakamatsu (2007) Pasquini et al. (2005) Gamberg, Goldstein (2001) Schweitzer et al. (2001) Ma, Schmidt (1998) Barone et al. (1997) Schmidt, Soffer (1997) He, Ji (1996) Kim et al. (1996) Kang et al. (2016) Radici et al. (2015) Goldstein et al. (2014) Anselmino et al. (2013) Ye et al. (2017) JLab12 SoLID

19 Tensor Charge and Neutron EDM Tensor charge and nedm 3 current g + current d T n 2 future g future g T T + current d n + future d n Electric Dipole Moment e cm -25 / 10 d u / 10 e cm d d Current neutron EDM limit: e cm, J.M.Pendlebury et al., Phys. Rev. D 92, (2015). Future neutron EDM experiments are expected to have the sensitivity of e cm. H. Gao, TL, Z. Zhao, arxiv:

20 Tensor Charge and Proton EDM Tensor charge and pedm 1 current g T future g future g T T + current d p + current d p + future d p e cm -24 / d u / 10 e cm d d Current proton EDM limit: e cm derived from mercury EDM. Future storage ring proton EDM experiment is expected to have the sensitivity of e cm. H. Gao, TL, Z. Zhao, arxiv:

21 Sivers distribution Sivers Distribution naively time-reversal odd. Test the sigh change M. Anselmino, M. Boglione, U. D Alesio, F. Murgia, A. Prokudin, JHEP 04 (2017)

22 Impact of SoLID: Sivers Projected data (example) Simultaneously fit to unpolarized and polarized data HERMES multiplicity data COMPASS, HERMES, JLab single spin asymmetry data preliminary result with a single fit xf?(1) 1T (x, Q 2 ) Error World / Error SoLID World vs. SoLID including systematics Q 2 =2.4 =2.n.4 GeV 2 Prelimi minary x On-going with N.Sato, A. Prokudin, W. Melnitchouk, Z. Ye, K. Allada, H. Gao, J.-P. Chen. 22

23 Monte Carlo Sampling Preliminary result with the nested sampling. xf1t (1) Preliminary x On-going with N.Sato, A. Prokudin, W. Melnitchouk, Z. Ye, K. Allada, H. Gao, J.-P. Chen. 23

24 Summary Lepton scattering is a powerful tool to probe the internal structure of the nucleon. Many efforts have been made in JLab 6-GeV SIDIS experiments. SIDIS experiments in JLab 12-GeV era, e.g. SoLID: high luminosity and large acceptance, multidimensional mapping with high precision. Transversity as an example: SoLID experiment will improve the precision by one order of magnitude. New physics: tensor charge together with next generation EDM experiments. Sivers as an example (ongoing): simultaneously fit to unpolarized and polarized data. Thank you! 24

25 Backup 25

26 Kinematics Differential Cross Section Analysis Systematic uncertainties: X. Yan et al., Phys. Rev. C 95, (2017). 26

27 Differential Cross Section Ratio X. Yan et al., Phys. Rev. C 95, (2017). 27

28 Tensor Charge Improvement by SoLID Z. Ye, N. Sato, K. Allada, T.L., J.-P. Chen, H. Gao, Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, Phys. Lett. B 767, 91 (2017). 28

29 Systematic Uncertainties Z. Ye, N. Sato, K. Allada, T.L., J.-P. Chen, H. Gao, Z.-B. Kang, A. Prokudin, P. Sun, F. Yuan, Phys. Lett. B 767, 91 (2017). 29

SoLID Update. Hall A Collaboration Meeting January th Tianbo Liu (SoLID Collaboration) Duke University and Duke Kunshan University

SoLID Update. Hall A Collaboration Meeting January th Tianbo Liu (SoLID Collaboration) Duke University and Duke Kunshan University SoLID Update Hall A Collaboration Meeting January 18-19 th 2017 Tianbo Liu (SoLID Collaboration) Duke University and Duke Kunshan University 1 Overview of SoLID Solenoidal Large Intensity Device Full exploitation

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

Update on Experiments using SoLID Spectrometer

Update on Experiments using SoLID Spectrometer Update on Experiments using SoLID Spectrometer Yi Qiang for SoLID Collaboration Hall A Collaboration Meeting Dec 16, 2011 Overview SoLID: Solenoidal Large Intensity Device High rate capability: allow for

More information

Transversity experiment update

Transversity experiment update Transversity experiment update Hall A collaboration meeting, Jan 20 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle 1 2 = 1 2 ΔΣ + L q + J

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Transverse Spin and TMDs

Transverse Spin and TMDs Transverse Spin and TMDs Jian-ping Chen ( 陈剑平 ), Jefferson Lab, Virginia, USA ECT* Dilepton Workshop, Nov. 6-10, 2017 Introduction Spin, Transverse Spin (Transversity), Tensor Charge TMDs: Confined Parton

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

A Whitepaper on SoLID (Solenoidal Large Intensity Device)

A Whitepaper on SoLID (Solenoidal Large Intensity Device) A Whitepaper on SoLID (Solenoidal Large Intensity Device) The SoLID Collaboration at Jefferson Lab September 9, 2014 SoLID (SIDIS & J/ψ) EM Calorimeter Scint (forward angle) GEM EM Calorimeter (large angle)

More information

SoLID (Solenoidal Large Intensity Device) Preliminary Conceptual Design Report

SoLID (Solenoidal Large Intensity Device) Preliminary Conceptual Design Report SoLID (Solenoidal Large Intensity Device) Preliminary Conceptual Design Report The SoLID Collaboration July 8, 2014 Contents 1 Introduction and Overview of SoLID Experimental Programs 1 1.1 SoLID Project

More information

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS

Measurements of unpolarized azimuthal asymmetries. in SIDIS at COMPASS Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS Trieste University and INFN on behalf of the COMPASS Collaboration Measurements of unpolarized azimuthal asymmetries in SIDIS at COMPASS

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Experimental investigation of the nucleon transverse structure

Experimental investigation of the nucleon transverse structure Electron-Nucleus Scattering XIII Experimental investigation of the nucleon transverse structure Silvia Pisano Laboratori Nazionali di Frascati INFN. The unsolved proton How do the lagrangian degrees of

More information

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado

JAMboree. Theory Center Jamboree Jefferson Lab, Dec 13, Pedro Jimenez Delgado JAMboree Theory Center Jamboree Jefferson Lab, Dec 13, 2013 Introduction Hadrons composed of quarks and gluons scattering off partons Parton distribution functions Plausible at high energies (from GeV):

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus

Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Lessons from Lepton-Nucleon and Lepton-Nuclei Interactions Probing the structure of the atomic nucleus Raphaël Dupré Disclaimer This will be only a selection of topics Like any review of a field I encourage

More information

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois

Helicity: Experimental Status. Matthias Grosse Perdekamp, University of Illinois Helicity: Experimental Status Matthias Grosse Perdekamp, University of Illinois Content o The Experimental Effort o Quark and Sea Quark Helicity è DIS, SIDIS, pp è new FFs for global analysis è results

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

Timelike Compton Scattering

Timelike Compton Scattering Timelike Compton Scattering Tanja Horn In collaboration with: Y. Illieva, F.J. Klein, P. Nadel-Turonski, R. Paremuzyan, S. Stepanyan 12 th Int. Conference on Meson-Nucleon Physics and the Structure of

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Study of the hadron structure using the polarised Drell-Yan process at COMPASS

Study of the hadron structure using the polarised Drell-Yan process at COMPASS Study of the hadron structure using the polarised Drell-Yan process at COMPASS Márcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration 7 th July 6, MENU 6 Kyoto COMPASS CERN/FIS-NUC/7/5 Márcia

More information

Polarised Drell-Yan Process in the COMPASS Experiment

Polarised Drell-Yan Process in the COMPASS Experiment Polarised Drell-Yan Process in the COMPASS Experiment Ma rcia Quaresma, LIP - Lisbon on behalf of the COMPASS collaboration 1th April 16, DIS 16 Hamburg COMPASS Ma rcia Quaresma (LIP) CERN/FIS-NUC/17/15

More information

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010

Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC. Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Flavor Decomposition of Nucleon Spin via polarized SIDIS: JLab 12 GeV and EIC Andrew Puckett Los Alamos National Laboratory INT 09/24/2010 Outline Nucleon Structure Nucleon spin structure Flavor decomposition

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015

Generalized Parton Distributions Program at COMPASS. QCD Evolution 2015 Generalized Parton Distributions Program at COMPASS Eric Fuchey (CEA Saclay) On behalf of COMPASS Collaboration QCD Evolution 2015 Thomas Jefferson National Accelerator Facility (May 26-30 2014) Generalized

More information

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab)

Present and Future of Polarized Target Experiment at CLAS12. Harut Avakian (JLab) Present and Future of Polarized Target Experiment at CLAS12 Harut Avakian (JLab) CLAS Collaboration Meeting February 20th 1 QCD: from testing to understanding 0h DIS Testing stage: pqcd predictions observables

More information

TMDs and simulations for EIC

TMDs and simulations for EIC POETIC 2012, August 19 22, Indiana University Jefferson Lab TMDs and simulations for EIC F E Nucleon landscape Nucleon is a many body dynamical system of quarks and gluons Changing x we probe different

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015

Studying Evolution with Jets at STAR. Renee Fatemi University of Kentucky May 28 th, 2015 Studying Evolution with Jets at STAR Renee Fatemi University of Kentucky May 28 th, 2015 Relativistic Heavy Ion Collider Absolute Polarimeter (H jet) RHIC pc Polarimeters Siberian Snakes PHOBOS PHENIX

More information

arxiv: v1 [hep-ph] 1 Oct 2018

arxiv: v1 [hep-ph] 1 Oct 2018 First extraction of transversity from data on lepton-hadron scattering and hadronic collisions arxiv:1810.00496v1 [hep-ph] 1 Oct 2018 Marco Radici INFN - Sezione di Pavia, I-27100 Pavia, ITALY We present

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN)

Drell-Yan experiments at Fermilab/RHIC/J-PARC. QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Drell-Yan experiments at Fermilab/RHIC/J-PARC QCD Frontier 2013 Jefferson Lab October 21, 2013 Yuji Goto (RIKEN) Outline Fermilab Drell-Yan experiments Unpolarized program Flavor asymmetry of sea-quark

More information

Physics Opportunities at the MEIC at JLab

Physics Opportunities at the MEIC at JLab Physics Opportunities at the MEIC at JLab Pawel Nadel-Turonski Jefferson Lab QCD Evolution Workshop, JLab, May 16, 2012 1 The physics program of an EIC Map the spin and spatial structure of sea quarks

More information

Experimental Overview Generalized Parton Distributions (GPDs)

Experimental Overview Generalized Parton Distributions (GPDs) Experimental Overview Generalized Parton Distributions (GPDs) Latifa Elouadrhiri Jefferson Lab Lattice Hadron Physics July 31 August 3, 2006 Outline Generalized Parton Distributions - a unifying framework

More information

TMD physics with e.m. probes at COMPASS

TMD physics with e.m. probes at COMPASS INT-18-3-PROBING NUCLEONS AND NUCLEI IN HIGH ENERGY COLLISIONS SYMPOSIUM 22-26 OCTOBER, UW, SEATTLE TMD physics with e.m. probes at COMPASS Andrea Bressan University of Trieste and INFN (on behalf of the

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering

Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering QCD Evolution 2017, JLab, May 22-26, 2017 Double-Longitudinal Spin Asymmetry in Single- Inclusive Lepton Scattering Marc Schlegel Institute for Theoretical Physics University of Tübingen in collaboration

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS

Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Deeply Virtual Compton Scattering and Meson Production at JLab/CLAS Hyon-Suk Jo for the CLAS collaboration IPN Orsay PANIC 2011 M.I.T. Cambridge - July 25, 2011 19th Particles & Nuclei International Conference

More information

Global Analysis for the extraction of Transversity and the Collins Function

Global Analysis for the extraction of Transversity and the Collins Function Global Analysis for the extraction of Transversity and the Collins Function Torino In collaboration with M. Anselmino, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin Summary Introduction: Introduction strategy

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Transversity: present and future. Alessandro Bacchetta

Transversity: present and future. Alessandro Bacchetta Transversity: present and future Alessandro Bacchetta Outline Trento, 11.06.07 Alessandro Bacchetta Transversity: present and future 2 Outline Overview of experimental possibilities Trento, 11.06.07 Alessandro

More information

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1

THE GPD EXPERIMENTAL PROGRAM AT JEFFERSON LAB. C. Muñoz Camacho 1 Author manuscript, published in "XIX International Baldin Seminar on High Energy Physics Problems, Relativistic Nuclear Physics and Quantum Chromodynamics, Dubna : Russie (8)" THE GPD EXPERIMENTAL PROGRAM

More information

Nucleon Valence Quark Structure

Nucleon Valence Quark Structure Nucleon Valence Quark Structure Z.-E. Meziani, S. Kuhn, O. Rondon, W. Melnitchouk Physics Motivation Nucleon spin and flavor structure High-x quark distributions Spin-flavor separation Moments of structure

More information

Single Spin Asymmetries on proton at COMPASS

Single Spin Asymmetries on proton at COMPASS Single Spin Asymmetries on proton at COMPASS Stefano Levorato on behalf of COMPASS collaboration Outline: Transverse spin physics The COMPASS experiment 2007 Transverse Proton run Data statistics Asymmetries

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

& Tech Note: Jin Huang (M.I.T.), Yi Qiang (JLab) Hall A Analysis Workshop Dec 8, JLab

& Tech Note:  Jin Huang (M.I.T.), Yi Qiang (JLab) Hall A Analysis Workshop Dec 8, JLab & Tec Note: ttp://www.jlab.org/~jinuang/transversity/mle.pdf Jin Huang (M.I.T., Yi Qiang (JLab Hall A Analysis Worksop Dec 8, 010 @ JLab Wat are Azimutal Asymmetries TMD & SIDIS Definition Related Experiments

More information

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN)

GPDs and TMDs at Electron-Ion Collider. Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) GPDs and TMDs at Electron-Ion Collider Workshop on hadron tomography at J-PARC and KEKB January 6 th, 2017 KEK, Tsukuba, Japan Yuji Goto (RIKEN) Electron-Ion Collider World s first polarized electron +

More information

Qweak Transverse Asymmetry Measurements

Qweak Transverse Asymmetry Measurements Qweak Transverse Asymmetry Measurements Buddhini Waidyawansa For the Qweak Collaboration Hall C Collaboration Meeting 02-21-2014 Outline Physics of transverse asymmetries Qweak transverse data set Analysis

More information

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng

PoS(INPC2016)305. Measuring gluon sivers function at a future Electron-Ion Collider. Liang Zheng Measuring gluon sivers function at a future Electron-Ion Collider Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China

More information

Recent transverse spin results from STAR

Recent transverse spin results from STAR 1 STAR! Recent transverse spin results from STAR Qinghua Xu, Shandong University PanSpin215, Taipei, October 8, 215! Outline 2 Introduction Single spin asymmetries in the forward region Mid-rapidity hadron-jet

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES

Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at HERMES Single-Spin Asymmetries in SIDIS off Transversely Polarised Protons at L. L. Pappalardo (On behalf of the Collaboration) INFN Università degli Studi di Ferrara - Dipartimento di Fisica Polo Scientifico

More information

Quarkonium Production at J-PARC

Quarkonium Production at J-PARC Quarkonium Production at J-PARC Jen-Chieh Peng University of Illinois at Urbana-Champaign J-PARC Meeting for Spin and Hadron Physics RIKEN, April 7-8, 008 Outline Quarkonium Production at J-PARC with Unpolarized

More information

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

Spin Structure with JLab 6 and 12 GeV

Spin Structure with JLab 6 and 12 GeV Spin Structure with JLab 6 and 12 GeV Jian-ping Chen ( 陈剑平 ), Jefferson Lab, USA 4 th Hadron Workshop / KITPC Program, Beijing, China, July, 2012 Introduction Selected Results from JLab 6 GeV Moments of

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Study of transverse momentum dependent distributions from polarised Drell-Yan at COMPASS

Study of transverse momentum dependent distributions from polarised Drell-Yan at COMPASS EPJ Web of Conferences 73, (14) DOI:.51/epjconf/1473 C Owned by the authors, published by EDP Sciences, 14 Study of transverse momentum dependent distributions from polarised Drell-Yan at COMPASS Márcia

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

The future COMPASS-II Drell-Yan program

The future COMPASS-II Drell-Yan program The future COMPASS-II Drell-Yan program M. Alexeev INFN sez. di Trieste. On behalf of the COMPASS collaboration. Drell-Yan Process and its Kinematics P ab ( ) 2 ( ( a) ( b) ), 2 a( b) / (2 a( b) ),, F

More information

Plans to measure J/ψ photoproduction on the proton with CLAS12

Plans to measure J/ψ photoproduction on the proton with CLAS12 Plans to measure J/ψ photoproduction on the proton with CLAS12 Pawel Nadel-Turonski Jefferson Lab Nuclear Photoproduction with GlueX, April 28-29, 2016, JLab Outline Introduction J/ψ on the proton in CLAS12

More information

Spin Structure of the Nucleon: quark spin dependence

Spin Structure of the Nucleon: quark spin dependence Spin Structure of the Nucleon: quark spin dependence R. De Vita Istituto Nazionale di Fisica Nucleare Electromagnetic Interactions with Nucleons and Nuclei EINN005 Milos September, 005 The discovery of

More information

Update on the Hadron Structure Explored at Current and Future Facilities

Update on the Hadron Structure Explored at Current and Future Facilities 3D Nucleon Tomography Workshop Modeling and Extracting Methodology Update on the Hadron Structure Explored at Current and Future Facilities Jianwei Qiu September 25-29, 2017 Salamanca, Spin Atomic Structure

More information

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives

Deeply Virtual Compton Scattering off 4. He: New results and future perspectives Deeply Virtual Compton Scattering off 4 He: New results and future perspectives M. Hattawy (On behalf of the CLAS collaboration) 2016 JLab Users Group Workshop and Annual Meeting June 20-22, Jefferson

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Development of a framework for TMD extraction from SIDIS data. Harut Avakian (JLab)

Development of a framework for TMD extraction from SIDIS data. Harut Avakian (JLab) Development of a framework for TMD extraction from SIDIS data Harut Avakian (JLab) DPWG, JLab, 2015, Oct 22 Spin-Azimuthal asymmetries in SIDIS Defining the output (multiplicities, asymmetries, ) Examples

More information

The Electron-Ion Collider (EIC)

The Electron-Ion Collider (EIC) The Electron-Ion Collider (EIC) A. Accardi, R. Ent, V. Guzey, T. Horn, C. Hyde, P. Nadel-Turonski, A. Prokudin, C. Weiss,... + CASA / accelerator team + lots of JLab of users! JLab Users' Town Hall Meeting,

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

Probing Generalized Parton Distributions in Exclusive Processes with CLAS

Probing Generalized Parton Distributions in Exclusive Processes with CLAS Probing Generalized Parton Distributions in Exclusive Processes with CLAS Volker D. Burkert Jefferson Lab The nucleon: from structure to dynamics First GPD related results in DVCS and DVMP Experimental

More information

陽子スピンの分解 八田佳孝 ( 京大基研 )

陽子スピンの分解 八田佳孝 ( 京大基研 ) 陽子スピンの分解 八田佳孝 ( 京大基研 ) Outline QCD spin physics Proton spin decomposition: Problems and resolution Orbital angular momentum Twist analysis Transverse polarization Method to compute G on a lattice 1101.5989

More information

arxiv: v1 [nucl-ex] 3 Sep 2018

arxiv: v1 [nucl-ex] 3 Sep 2018 A Plan for Electron Ion Collider in China arxiv:89.448v [nucl-ex] 3 Sep 28 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 73, China E-mail: xchen@impcas.ac.cn One of the frontier research

More information

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE rhtjhtyhy EINN 2017 NOVEMBER 1, 2017 PAPHOS, CYPRUS THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE KAWTAR HAFIDI Argonne National Laboratory is a U.S. Department of Energy laboratory

More information

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS

Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS Journal of Physics: Conference Series PAPER OPEN ACCESS Sivers, Boer-Mulders and transversity distributions in the difference cross sections in SIDIS To cite this article: Ekaterina Christova and Elliot

More information

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory

DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory. Alexei Prokudin Jefferson Laboratory DIS 2011 Newport News, VA Summary of WG6: Spin Physics Theory Alexei Prokudin Jefferson Laboratory WG6:Spin Physics TOTAL 60 talks Theory - 26 talks Experiment - 34 talks Theory Experiment WG6:Spin Physics

More information

COMPASS Drell-Yan. Michela Chiosso, University of Torino and INFN. TMD ECT* Workshop April 2016

COMPASS Drell-Yan. Michela Chiosso, University of Torino and INFN. TMD ECT* Workshop April 2016 COMPASS Drell-Yan Michela Chiosso, University of Torino and INFN TMD ECT* Workshop 11-15 April 2016 Outline Single polarized Drell-Yan at COMPASS DY vs SIDIS at COMPASS Experimental setup Spin-dependent

More information

SSA Measurements with Primary Beam at J-PARC

SSA Measurements with Primary Beam at J-PARC SSA Measurements with Primary Beam at J-PARC Joint UNM/RBRC Workshop on Orbital Angular Momentum in Albuquerque February 25 th, 2006 Yuji Goto (RIKEN/RBRC) February 25, 2006 Yuji Goto (RIKEN/RBRC) 2 Introduction

More information

DVCS and DVMP: results from CLAS and the experimental program of CLAS12

DVCS and DVMP: results from CLAS and the experimental program of CLAS12 DVCS and DVMP: results from CLAS and the eperimental program of CLAS12 e e g N N GPDs Accessing GPDs via DVCS and DVMP Recent results from Jefferson Lab Silvia Niccolai IPN Orsay & CLAS Collaboration What

More information

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction

Single and double polarization asymmetries from deeply virtual exclusive π 0 electroproduction Single and double polarization asymmetries from deeply virtual exclusive π electroproduction University of Connecticut E-mail: kenjo@jlab.org Harut Avakian, Volker Burkert et al. (CLAS collaboration) Jefferson

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

TMDs in covariant approach

TMDs in covariant approach TMDs in covariant approach Petr Zavada Institute of Physics AS CR, Prague, Czech Rep. (based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev) Newport News, VA, May, 16-19, 2016

More information

TMD phenomenology: from HERMES and COMPASS to JLAB and EIC. Alexei Prokudin. Alexei Prokudin 1

TMD phenomenology: from HERMES and COMPASS to JLAB and EIC. Alexei Prokudin. Alexei Prokudin 1 TMD phenomenology: from HERMES and COMPASS to JLAB and EIC Alexei Prokudin Alexei Prokudin Semi Inclusive Deep Inelastic Scattering l W P q l xp Cross section xp + q X h dσ Y l + P l + h + X Kinematical

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Spin physics at Electron-Ion Collider

Spin physics at Electron-Ion Collider Spin physics at Electron-Ion Collider Jianwei Qiu Brookhaven National Laboratory Workshop on The Science Case for an EIC November 16-19, 2010; INT, University of Washington, Seattle, WA Outline of my talk

More information