Modeling Climate Change in the Laboratory

Size: px
Start display at page:

Download "Modeling Climate Change in the Laboratory"

Transcription

1 Modeling Climate Change in the Laboratory Miklós Vincze MTA-ELTE Theoretical Physics Research Group ELTE Institute of Physics, von Kármán Laboratory for Enviromental Flows (HU), BTU Cottbus-Senftenberg, Department of Aerodynamics and Fluid Mechanics (DE) Intl. Conf. On Teaching Physics Innovatively Budapest, Hungary August, 2015

2 First of all: What kind of laboratory? A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 1998 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy index.hu)

3 First of all: What kind of laboratory? A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 2002 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling largescale (atmosphere, ocean) flow structures Website ( almost up-to-date Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research

4 First of all: What kind of laboratory? A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 1998 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy index.hu) LINK: [from 02:00 to 04:00]

5 Hot topics A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 2002 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy: index.hu)

6 Hot topics A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 2002 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy: index.hu)

7 Hot topics A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 2002 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy: index.hu)

8 Hot topics A Laboratory for environmental flows (aka geophysical fluid dynamics), called Kármán Laboratory of Eötvös University (hidden abbreviation: K.ár.mán. can also stand for Environmental Flow maniacs(?) in Hungarian) Founded in 2002 by Imre M. Jánosi, Tamás Tél, Gábor K. Szabó, and Viktor Horváth The principle of hydrodynamical similarity enables modeling large-scale (atmosphere, ocean) flow structures Demonstration, teaching (incl. High school groups, Researchers Night, etc.), research Website ( almost up-to-date Video (courtesy: index.hu)

9 Why to use such a lab for research purposes nowadays? - #1: Lab experiments as analog computers It always bothers me that, according to the laws as we understand them today, it takes a computing machine an infinite number of logical operations to figure out what goes on in no matter how tiny a region of space, and no matter how tiny a region of time. - R. P. Feynman (In: The Character of Physical Law, 1967)

10 Why to use such a lab for research purposes nowadays? - #2: Test-bed for Nimitz class complex flow models A somewhat provocative statement: The operational numerical methods and models for weather forasting and climate prediction can be validated only in the lab! (if at all)

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 So, what can be done? How to separate parametrization (discretization, etc.) errors from those that originate from our incomplete understanding of the system Let s build/find a physical system which behaves like the atmosphere, but still much simpler, and all the governing equations are correctly understood!

29 A minimal model of mid-latitude weather - A large variety of the typical atmospheric phenomena of the midlatitudes are primarily driven by two factors only. - Rotation + meridional temperature difference weather - Let s use a differentially heated rotating circular tank for method validation!

30 A minimal model of mid-latitude weather A differentially heated cylindrical tank, mounted on a turntable. Rotating annulus Geometrical parameters (Cottbus): a = 45 mm b = 120 mm d = 135 mm

31 A minimal model of mid-latitude weather A differentially heated cylindrical tank, mounted on a turntable. Rotating annulus Geometrical parameters (Cottbus): a = 45 mm b = 120 mm d = 135 mm

32 A minimal model of mid-latitude weather A differentially heated cylindrical tank, mounted on a turntable. Rotating annulus Geometrical parameters (Budapest): a = 45 mm b = 150 mm d = 40 mm

33 Basics: baroclinic instability

34 Basics: baroclinic instability Sideways convection no threshold in ΔT (i.e. No critical Rayleigh number ) Any temperature difference can initiate the flow

35 Basics: baroclinic instability Sideways convection no threshold in ΔT (i.e. No critical Rayleigh number ) Any temperature difference can initiate the flow

36 Basics: baroclinic instability

37 Rotation! Basics: baroclinic instability

38 Baroclinic instability Rotation! Zonal flow (thermal wind) Geostrophic theory: Tilted density surfaces

39 Baroclinic instability Rotation! Zonal flow (thermal wind) Geostrophic theory: Tilted density surfaces

40 Baroclinic instability Baroclinic instability! Rotation! Zonal flow (thermal wind) Geostrophic theory: Tilted density surfaces

41 Baroclinic waves - control parameters: rotation rate, radial temperature difference - Different planetary atmospheres can be modelled Venus: slow rotation, zonal flow Earth: fast rotation Coriolis effect cyclones ( weather )

42 Baroclinic waves, planetary analogies - control parameters: rotation rate, radial temperature difference - Different planetary atmospheres can be modelled Venus: slow rotation, zonal flow Earth: fast rotation Coriolis effect cyclones ( weather )

43

44

45

46 The regime diagram (after Fultz)

47 The regime diagram (after Fultz)

48 The regime diagram (after Fultz)

49 The regime diagram (after Fultz)

50 Preliminary results

51 Preliminary results

52 Comments, conclusions: In the model decreasing equator-to-pole temperature difference seems to yield smaller fluctuations (in terms of magnitude) Temporal behaviour needs to be investigated! (Expectation: smaller temperature difference makes the model weather less predictable smaller velocities, smaller cyclones, more freedom for the structures to interact) Significant differences between the three runs! In many cases the trends are not even evident in the temperature anomaly records! A much-much larger ensemble is needed. (Work in progress.) Climate is what you expect, weather is what you get.

53 Thank you for your attention!

MODELING CLIMATE CHANGE IN THE LABORATORY

MODELING CLIMATE CHANGE IN THE LABORATORY Modeling climate change in the laboratory MODELING CLIMATE CHANGE IN THE LABORATORY M. Vincze MTA-ELTE Theoretical Physics Research Group, Budapest, Hungary, Brandenburg University of Technology, Cottbus-Senftenberg,

More information

The general circulation: midlatitude storms

The general circulation: midlatitude storms The general circulation: midlatitude storms Motivation for this class Provide understanding basic motions of the atmosphere: Ability to diagnose individual weather systems, and predict how they will change

More information

The Barostrat Instability: the baroclinic instability in a rotating stratified fluid

The Barostrat Instability: the baroclinic instability in a rotating stratified fluid The Barostrat Instability: the baroclinic instability in a rotating stratified fluid Patrice Le Gal 1, Miklos Vincze 2, Ion Borcia 3, Uwe Harlander 3 1 IRPHE, CNRS - Aix Marseille University - Centrale

More information

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere

DEAPS Activity 3 Weather systems and the general circulation of the atmosphere DEAPS Activity 3 Weather systems and the general circulation of the atmosphere Lodovica Illari 1 Introduction What is responsible for stormy weather? What causes relatively warm temperatures one day and

More information

Lecture 1 ATS 601. Thomas Birner, CSU. ATS 601 Lecture 1

Lecture 1 ATS 601. Thomas Birner, CSU. ATS 601 Lecture 1 Lecture 1 ATS 601 Thomas Birner, CSU About your Instructor: Thomas Birner Assistant Professor, joined CSU 10/2008 M.Sc. Physics (Condensed Matter Theory), U of Leipzig, Germany Ph.D. Atmospheric Science

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Contents

More information

General Atmospheric Circulation

General Atmospheric Circulation General Atmospheric Circulation Take away Concepts and Ideas Global circulation: The mean meridional (N-S) circulation Trade winds and westerlies The Jet Stream Earth s climate zones Monsoonal climate

More information

The Circulation of the Atmosphere:

The Circulation of the Atmosphere: The Circulation of the Atmosphere: Laboratory Experiments (see next slide) Fluid held in an annular container is at rest and is subjected to a temperature gradient. The less dense fluid near the warm wall

More information

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written 2. Meridional atmospheric structure; heat and water transport The equator-to-pole temperature difference DT was stronger during the last glacial maximum, with polar temperatures down by at least twice

More information

Laboratory experiments on large-scale geophysical flows

Laboratory experiments on large-scale geophysical flows Laboratory experiments on large-scale geophysical flows Miklós Vincze * and Imre M. Jánosi * MTA-ELTE Theoretical Physics Research Group, Budapest, Hungary Department of Physics of Complex Systems, Eötvös

More information

The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis

The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis The application of the theory of dynamical systems in conceptual models of environmental physics The thesis points of the PhD thesis Gábor Drótos Supervisor: Tamás Tél PhD School of Physics (leader: László

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week Radiative Transfer Black body radiation, Planck function, Wien s law Absorption, emission, opacity, optical depth Intensity, flux Radiative diffusion,

More information

Part-8c Circulation (Cont)

Part-8c Circulation (Cont) Part-8c Circulation (Cont) Global Circulation Means of Transfering Heat Easterlies /Westerlies Polar Front Planetary Waves Gravity Waves Mars Circulation Giant Planet Atmospheres Zones and Belts Global

More information

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017

Measurement of Rotation. Circulation. Example. Lecture 4: Circulation and Vorticity 1/31/2017 Lecture 4: Circulation and Vorticity Measurement of Rotation Circulation Bjerknes Circulation Theorem Vorticity Potential Vorticity Conservation of Potential Vorticity Circulation and vorticity are the

More information

Lecture 5: Atmospheric General Circulation and Climate

Lecture 5: Atmospheric General Circulation and Climate Lecture 5: Atmospheric General Circulation and Climate Geostrophic balance Zonal-mean circulation Transients and eddies Meridional energy transport Moist static energy Angular momentum balance Atmosphere

More information

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu

1/18/2011. Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial

More information

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu

Conservation of Mass Conservation of Energy Scaling Analysis. ESS227 Prof. Jin-Yi Yu Lecture 2: Basic Conservation Laws Conservation of Momentum Conservation of Mass Conservation of Energy Scaling Analysis Conservation Law of Momentum Newton s 2 nd Law of Momentum = absolute velocity viewed

More information

Lecture 20: Taylor Proudman Theorem

Lecture 20: Taylor Proudman Theorem Lecture 20: Taylor Proudman Theorem October 23, 2003 1 The Taylor-Proudman Theorem We have seen (last time) that if the flow is sufficiently slow and steady (small Rossby number) and frictionless (F small),

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

Why There Is Weather?

Why There Is Weather? Lecture 6: Weather, Music Of Our Sphere Weather and Climate WEATHER The daily fluctuations in atmospheric conditions. The atmosphere on its own can produce weather. (From Understanding Weather & Climate)

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION Chapter 2 - pg. 1 CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION The atmosphere is driven by the variations of solar heating with latitude. The heat is transferred to the air by direct absorption

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

Winds and Global Circulation

Winds and Global Circulation Winds and Global Circulation Atmospheric Pressure Winds Global Wind and Pressure Patterns Oceans and Ocean Currents El Nino How is Energy Transported to its escape zones? Both atmospheric and ocean transport

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance

Four ways of inferring the MMC. 1. direct measurement of [v] 2. vorticity balance. 3. total energy balance Four ways of inferring the MMC 1. direct measurement of [v] 2. vorticity balance 3. total energy balance 4. eliminating time derivatives in governing equations Four ways of inferring the MMC 1. direct

More information

ATMOSPHERIC SCIENCE-ATS (ATS)

ATMOSPHERIC SCIENCE-ATS (ATS) Atmospheric Science-ATS (ATS) 1 ATMOSPHERIC SCIENCE-ATS (ATS) Courses ATS 150 Science of Global Climate Change Credits: 3 (3-0-0) Physical basis of climate change. Energy budget of the earth, the greenhouse

More information

Modeling the atmosphere of Jupiter

Modeling the atmosphere of Jupiter Modeling the atmosphere of Jupiter Bruce Turkington UMass Amherst Collaborators: Richard S. Ellis (UMass Professor) Andrew Majda (NYU Professor) Mark DiBattista (NYU Postdoc) Kyle Haven (UMass PhD Student)

More information

By STEVEN B. FELDSTEINI and WALTER A. ROBINSON* University of Colorado, USA 2University of Illinois at Urbana-Champaign, USA. (Received 27 July 1993)

By STEVEN B. FELDSTEINI and WALTER A. ROBINSON* University of Colorado, USA 2University of Illinois at Urbana-Champaign, USA. (Received 27 July 1993) Q. J. R. Meteorol. SOC. (1994), 12, pp. 739-745 551.513.1 Comments on Spatial structure of ultra-low frequency variability of the flow in a simple atmospheric circulation model by I. N. James and P. M.

More information

The Turbulent Oscillator: A Mechanism of Low-Frequency Variability

The Turbulent Oscillator: A Mechanism of Low-Frequency Variability The Turbulent Oscillator: A Mechanism of Low-Frequency Variability of the Wind-Driven Ocean Gyres People: Pavel Berloff 1,2 Andy Hogg 3 William Dewar 4 Institutions: 1 Woods Hole Oceanographic Institution,

More information

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean Lecture 3: Weather/Disturbance Transients and Eddies Climate Roles Mid-Latitude Cyclones Tropical Hurricanes Mid-Ocean Eddies Transient and Eddy Transient: deviations from time mean Time Mean Eddy: deviations

More information

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base Pole Eq Lecture 3: ATMOSPHERE (Outline) JS JP Hadley Cell Ferrel Cell Polar Cell (driven by eddies) L H L H Basic Structures and Dynamics General Circulation in the Troposphere General Circulation in the

More information

ATMOSPHERIC MOTION I (ATM S 441/503 )

ATMOSPHERIC MOTION I (ATM S 441/503 ) http://earth.nullschool.net/ ATMOSPHERIC MOTION I (ATM S 441/503 ) INSTRUCTOR Daehyun Kim Born in 1980 B.S. 2003 Ph.D. 2010 2010-2013 2014- Assistant Professor at Dept. of Atmospheric Sciences Office:

More information

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Jean-Baptiste GILET, Matthieu Plu and Gwendal Rivière CNRM/GAME (Météo-France, CNRS) 3rd THORPEX International Science Symposium Monterey,

More information

Tímea Haszpra 1 and Mátyás Herein 2

Tímea Haszpra 1 and Mátyás Herein 2 Tímea Haszpra 1 and Mátyás Herein 2 1 Institute for Theoretical Physics, Eötvös Loránd University, Hungary 2 MTA ELTE Theoretical Physics Research Group, Eötvös Loránd University, Hungary September 4,

More information

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015 Chapter 7: Forces and Force Balances Forces that Affect Atmospheric Motion Fundamental force - Apparent force - Pressure gradient force Gravitational force Frictional force Centrifugal force Forces that

More information

HYDRODYNAMICS OF THE ATMOSPHERE AND NUMERICAL

HYDRODYNAMICS OF THE ATMOSPHERE AND NUMERICAL 1650 GEOPHYSICS: J. G. CHARNEY PROC. N. A. S. tracers of the flow. The atmospheric involvement in the chemical balance of the earth and especially of the oceans, is an interesting aspect of geochemistry.

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0

( u,v). For simplicity, the density is considered to be a constant, denoted by ρ 0 ! Revised Friday, April 19, 2013! 1 Inertial Stability and Instability David Randall Introduction Inertial stability and instability are relevant to the atmosphere and ocean, and also in other contexts

More information

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape

Planetary Atmospheres. Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Planetary Atmospheres Structure Composition Clouds Photochemistry Meteorology Atmospheric Escape Photochemistry We can characterize chemical reactions in the atmosphere in the following way: 1. Photolysis:

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

The Eady problem of baroclinic instability described in section 19a was shown to

The Eady problem of baroclinic instability described in section 19a was shown to 0. The Charney-Stern Theorem The Eady problem of baroclinic instability described in section 19a was shown to be remarkably similar to the Rayleigh instability of barotropic flow described in Chapter 18.

More information

Introduction to Atmospheric Circulation

Introduction to Atmospheric Circulation Introduction to Atmospheric Circulation Start rotating table Cloud Fraction Dice Results from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/ from http://eos.atmos.washington.edu/erbe/

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Researcher. Department of Atmospheric and Oceanic Sciences. University of Wisconsin-Madison W. Dayton Street, Madison, WI 53706

Researcher. Department of Atmospheric and Oceanic Sciences. University of Wisconsin-Madison W. Dayton Street, Madison, WI 53706 Researcher Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison 1225 W. Dayton Street, Madison, WI 53706 http://www.aos.wisc.edu/~meteor75 rowe1@wisc.edu PUBLICATIONS Rowe, S.

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS

ATMOSPHERIC AND OCEANIC FLUID DYNAMICS ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Large-scale Circulation G E O F F R E Y K. V A L L I S Princeton University, New Jersey CAMBRIDGE UNIVERSITY PRESS An asterisk indicates more advanced

More information

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April

GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April GFD 2 Spring 2010 P.B. Rhines Problem set 1-solns out: 5 April back: 12 April 1 The Gulf Stream has a dramatic thermal-wind signature : the sloping isotherms and isohalines (hence isopycnals) not only

More information

THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS

THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS THE IMPACT OF SATELLITE-DERIVED WINDS ON GFDL HURRICANE MODEL FORECASTS Brian J. Soden 1 and Christopher S. Velden 2 1) Geophysical Fluid Dynamics Laboratory National Oceanic and Atmospheric Administration

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Prediction of wind load acting on telecommunication masts

Prediction of wind load acting on telecommunication masts Prediction of wind load acting on telecommunication masts Márton BALCZÓ Ph.D. Student, István GORICSÁN Ph.D., Ass. Professor Tamás LAJOS Ph.D., Dr.Sc. Professor, Tamás RÉGERT Ph.D. Ass. Professor, Budapest

More information

In two-dimensional barotropic flow, there is an exact relationship between mass

In two-dimensional barotropic flow, there is an exact relationship between mass 19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass streamfunction ψ and the conserved quantity, vorticity (η) given by η = 2 ψ.the evolution of the

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued Outline Planetary Atmospheres Chapter 10 General comments about terrestrial planet atmospheres Atmospheric structure & the generic atmosphere Greenhouse effect Magnetosphere & the aurora Weather & climate

More information

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education: MS-ESS2-1 Earth's Systems Students who demonstrate understanding can: MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification

More information

General Comments about the Atmospheres of Terrestrial Planets

General Comments about the Atmospheres of Terrestrial Planets General Comments about the Atmospheres of Terrestrial Planets Mercury Very little atmosphere Contents: vaporized micrometeorites, solar wind Sky is black Venus Very thick (10% density of water), dense

More information

The Faraday Paradox and Newton s Rotating Bucket

The Faraday Paradox and Newton s Rotating Bucket The Faraday Paradox and Newton s Rotating Bucket Frederick David Tombe Belfast, Northern Ireland, United Kingdom, Formerly a Physics Teacher at College of Technology Belfast, and Royal Belfast Academical

More information

On Derivation and Interpretation of Kuo Eliassen Equation

On Derivation and Interpretation of Kuo Eliassen Equation 1 On Derivation and Interpretation of Kuo Eliassen Equation Jun-Ichi Yano 1 1 GAME/CNRM, Météo-France and CNRS, 31057 Toulouse Cedex, France Manuscript submitted 22 September 2010 The Kuo Eliassen equation

More information

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Instructor: Leif Thomas TA: Gonçalo Zo Zo Gil http://pangea.stanford.edu/courses/eess146bweb/ Course Objectives Identify and characterize

More information

Earth s Atmosphere About 10 km thick

Earth s Atmosphere About 10 km thick 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties vary with altitude? Earth s Atmosphere About 10 km thick

More information

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory General Circulation Nili Harnik DEES, Lamont-Doherty Earth Observatory nili@ldeo.columbia.edu Latitudinal Radiation Imbalance The annual mean, averaged around latitude circles, of the balance between the

More information

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations

Chapter 9. Barotropic Instability. 9.1 Linearized governing equations Chapter 9 Barotropic Instability The ossby wave is the building block of low ossby number geophysical fluid dynamics. In this chapter we learn how ossby waves can interact with each other to produce a

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Mars, Venus, Earth What is an atmosphere? An atmosphere is a (usually very thin) layer of gas that surrounds a world. How does the greenhouse effect warm a planet? No

More information

The impacts of stochastic noise on climate models

The impacts of stochastic noise on climate models The impacts of stochastic noise on climate models Paul Williams Department of Meteorology, University of Reading, UK The impacts of στοχαστικός noise on climate models Paul Williams Department of Meteorology,

More information

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B

Lecture 4:the observed mean circulation. Atmosphere, Ocean, Climate Dynamics EESS 146B/246B Lecture 4:the observed mean circulation Atmosphere, Ocean, Climate Dynamics EESS 146B/246B The observed mean circulation Lateral structure of the surface circulation Vertical structure of the circulation

More information

Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones

Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones Chapter 10: Mid-latitude Cyclones Mid-Latitude Cyclones Mid-latitude cyclones form along a boundary separating polar air from warmer air to the south. Life Cycle of Cyclone Cyclone Structures Steering

More information

Chapter 10: Mid-latitude Cyclones

Chapter 10: Mid-latitude Cyclones Chapter 10: Mid-latitude Cyclones Life Cycle of Cyclone Cyclone Structures Steering of Cyclone Mid-Latitude Cyclones Mid-latitude cyclones form along a boundary separating polar air from warmer air to

More information

Can problems in the geosciences inspire fundamental research in the mathematical and statistical sciences?

Can problems in the geosciences inspire fundamental research in the mathematical and statistical sciences? Can problems in the geosciences inspire fundamental research in the mathematical and statistical sciences? Grady B. Wright Department of Mathematics Center for the Geophysical Investigation of the Shallow

More information

3. Midlatitude Storm Tracks and the North Atlantic Oscillation

3. Midlatitude Storm Tracks and the North Atlantic Oscillation 3. Midlatitude Storm Tracks and the North Atlantic Oscillation Copyright 2006 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without permission. EFS 3/1 Review of key results

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification

Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Model equations for planetary and synoptic scale atmospheric motions associated with different background stratification Stamen Dolaptchiev & Rupert Klein Potsdam Institute for Climate Impact Research

More information

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith.

Atmospheric Fronts. The material in this section is based largely on. Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts The material in this section is based largely on Lectures on Dynamical Meteorology by Roger Smith. Atmospheric Fronts 2 Atmospheric Fronts A front is the sloping interfacial region of

More information

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case

Climate of an Earth- like Aquaplanet: the high- obliquity case and the <dally- locked case Climate of an Earth- like Aquaplanet: the high- obliquity case and the

More information

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons.

C) D) 2. The model below shows the apparent path of the Sun as seen by an observer in New York State on the first day of one of the four seasons. 1. Which diagram best represents the regions of Earth in sunlight on June 21 and December 21? [NP indicates the North Pole and the shading represents Earth's night side. Diagrams are not drawn to scale.]

More information

Towards a new understanding of monsoon depressions

Towards a new understanding of monsoon depressions Towards a new understanding of monsoon depressions William Boos Dept. of Geology & Geophysics May 2, 25 with contributions from John Hurley & Naftali Cohen Financial support: What is a monsoon low pressure

More information

Identifying the MJO Skeleton in Observational Data

Identifying the MJO Skeleton in Observational Data . Identifying the MJO Skeleton in Observational Data Sam Stechmann, Wisconsin Andrew Majda, NYU World Weather Open Science Conference August 20, 2014 Montreal, Canada Theoretical prediction of MJO structure

More information

Spatiotemporal Chaos in Rayleigh-Bénard Convection

Spatiotemporal Chaos in Rayleigh-Bénard Convection Spatiotemporal Chaos in Rayleigh-Bénard Convection Michael Cross California Institute of Technology Beijing Normal University June 2006 Janet Scheel, Keng-Hwee Chiam, Mark Paul Henry Greenside, Anand Jayaraman

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan

Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations. Cristiana Stan Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on the General Circulation of the Atmosphere and Oceans: a Modern Perspective

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Conference on Teleconnections in the Atmosphere and Oceans November 2008

Conference on Teleconnections in the Atmosphere and Oceans November 2008 1968-38 Conference on Teleconnections in the Atmosphere and Oceans 17-20 November 2008 Mid-latitude - MJO teleconnection over East Asia in the Northern winter KIM Baekmin Yonsei University Dept. of Atmospheric

More information

Nonlinear Balance on an Equatorial Beta Plane

Nonlinear Balance on an Equatorial Beta Plane Nonlinear Balance on an Equatorial Beta Plane David J. Raymond Physics Department and Geophysical Research Center New Mexico Tech Socorro, NM 87801 April 26, 2009 Summary Extension of the nonlinear balance

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions. Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Extratropical and Polar Cloud Systems

Extratropical and Polar Cloud Systems Extratropical and Polar Cloud Systems Gunilla Svensson Department of Meteorology & Bolin Centre for Climate Research George Tselioudis Extratropical and Polar Cloud Systems Lecture 1 Extratropical cyclones

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

Weather and Climate: Detailed Outline

Weather and Climate: Detailed Outline Weather and Climate: Detailed Outline Day 1, AM: Radiation (Atmospheric Greenhouse Effect) Radiation is an important means of energy transfer. Understanding radiation means understanding some properties

More information

Which Climate Model is Best?

Which Climate Model is Best? Which Climate Model is Best? Ben Santer Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory, Livermore, CA 94550 Adapting for an Uncertain Climate: Preparing

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes

Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes T. Dubos 1, G. Perret 1,2, A. Stegner 1, J.-M. Chomaz 3 and M. Farge 1 1 IPSL/Laboratoire de Meteorologie

More information