Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes

Size: px
Start display at page:

Download "Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes"

Transcription

1 Stability, cyclone-anticyclone asymmetry and frequency selection in rotating shallow-water wakes T. Dubos 1, G. Perret 1,2, A. Stegner 1, J.-M. Chomaz 3 and M. Farge 1 1 IPSL/Laboratoire de Meteorologie Dynamique, Ecole Normale Superieure, Paris 2 Laboratoire de Mécanique, Physique et Géosciences, Universite du Havre 3 LadHyX, Ecole Polytechnique, Palaiseau APS Division of Fluid Dynamics, 2007

2 Is This a Von Karman Wake?

3 Outline 1 Scales, Parameters, Regimes Linear Selection Nonlinear Evolution 2 Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter?

4 Outline Scales, Parameters, Regimes Linear Selection Nonlinear Evolution 1 Scales, Parameters, Regimes Linear Selection Nonlinear Evolution 2 Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter?

5 Model, Scales, Parameters One-layer, rotating shallow-water dynamics Scales, Parameters, Regimes Linear Selection Nonlinear Evolution Scale with radius R of the obstacle, upstream velocity U. Define layer thickness H(1 + λψ) with ψ = O(1) Viscosity Reynolds number Gravity wave speed c 2 = g H Coriolis Re = 2UR/ν Fr = U/c Ro = U/fR Rossby deformation radius R d = c/f Bu = (R d /R) 2 = (Ro/Fr) 2 As Ro 0, g δh/l fu λ = Ro/Bu

6 Cyclone-Anticyclone Asymmetry Scales, Parameters, Regimes Linear Selection Nonlinear Evolution Rotating tank - salt water - PIV Ro = 0.1, Bu = 1, λ = 0.1 Ro = 0.1, Bu = 0.1, λ = 1

7 Cyclone-Anticyclone Asymmetry Scales, Parameters, Regimes Linear Selection Nonlinear Evolution Potential vorticity q = f + ω H(1 + λψ) = f 1 Ro ψ Bu 1 ψ + λψ ψ +... H λ = Ro/Bu controls cyclone-anticyclone asymmetry quasi-geostrophic : Bu = O(1), λ = O(Ro) 1 frontal-geostrophic : λ = O(1), Bu = O(Ro) 1 incompressible 2D : λ 1 and Bu 1

8 Scales, Parameters, Regimes Linear Selection Nonlinear Evolution Linear Selection Linear stability analysis of symmetric parallel flow at geostrophic balance velocity profile measured just downstream the obstacle Ro = 0.1, Bu = 1, λ = 0.1

9 Nonlinear Evolution Scales, Parameters, Regimes Linear Selection Nonlinear Evolution DNS started from symmetric parallel flow Experiments

10 Outline Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter? 1 Scales, Parameters, Regimes Linear Selection Nonlinear Evolution 2 Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter?

11 Convective vs Absolute Instability Is a localized wave packet able to propagate upstream? Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter? The classical Von Karman vortex street appears after the velocity profile behind the cylinder becomes absolutely unstable. Convective Absolute

12 Spatio-Temporal Stability Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter? Parallel basic flow measured in experiments just behind the cylindrical obstacle. Feed with initial localized perturbatiom at x = x 0. Growth rate σ(v g) along ray x = x 0 + v gt. Ro = 0.1, Bu = 1, λ = 0.1 Ro = 0.1, Bu = 0.1, λ = 1 Absolute instability? Convective instability

13 Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter? Self-Sustained Oscillator or Noise Amplifier? Ro = 0.35 Bu = 0.9 Ro = 0.1 Bu = 0.16 weak upstream noise stronger upstream noise

14 Control parameter Linear Spatio-Temporal Stability Self-Sustained Oscillator or Noise Amplifier? Control parameter? 10 0 Global stability diagram Unstable Strouhal number St(Ro, Bu, Re = 200) 0.55 Ro 10 1 Bu=(Ro/Fr) 2 =cst St Von Karman Stable Fr Bu

15 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

16 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

17 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

18 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

19 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

20 Cyclone-Anticyclone Asymmetry Controlled by λ = Ro/Bu = O(1) Linear instability of parallel wake flow favors anticyclones Strong anticyclones prevent further growth of cyclones Self-Sustained Oscillator / Noise Amplifier Bu > Bu c 0.3 : Wake globally unstable, vortex street is a self-sustained oscillator Bu < Bu c 0.3 : Wake globally stable, amplifies upstream noise into vortex street, shedding frequency most convectively unstable mode Strouhal number dominantly controlled by Bu

Inertial instability of von Kármán street in a rotating shallow-water layer

Inertial instability of von Kármán street in a rotating shallow-water layer Inertial instability of von Kármán street in a rotating shallow-water layer Samuel Teinturier, Alexandre Stegner, Michael Ghil, Samuel Viboud & Henri Didelle Laboratoire de Météorologie Dynamique, CNRS,

More information

Island Wakes in Shallow Water

Island Wakes in Shallow Water Island Wakes in Shallow Water Changming Dong, James C. McWilliams, et al Institute of Geophysics and Planetary Physics, University of California, Los Angeles 1 ABSTRACT As a follow-up work of Dong et al

More information

(a) Re=150 (Spanwise domain: 8D) (b) Re=200 (Spanwise domain: 8D) (c) Re=300 (Spanwise domain: 4D) (d) Re=1000 (Spanwise domain: 4D) Fig.5 Isovorticity surface of instantaneous dynamic wake at Re=150,

More information

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory) Applied Thermal and Fluid Engineering Energy Engineering (Thermal Engineering Laboratory) Professor Assoc. Professor Hajime Nakamura Shunsuke Yamada Outline of Research In our laboratory, we have been

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Vortex Induced Vibrations

Vortex Induced Vibrations Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why

More information

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

Ageostrophic instabilities of a front in a stratified rotating fluid

Ageostrophic instabilities of a front in a stratified rotating fluid 8 ème Congrès Français de Mécanique Grenoble, 27-3 août 27 Ageostrophic instabilities of a front in a stratified rotating fluid J. Gula, R. Plougonven & V. Zeitlin Laboratoire de Météorologie Dynamique

More information

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder Ali Kianifar, Edris Yousefi Rad Abstract In many applications the flow that past bluff bodies have frequency nature (oscillated)

More information

Primary, secondary instabilities and control of the rotating-disk boundary layer

Primary, secondary instabilities and control of the rotating-disk boundary layer Primary, secondary instabilities and control of the rotating-disk boundary layer Benoît PIER Laboratoire de mécanique des fluides et d acoustique CNRS Université de Lyon École centrale de Lyon, France

More information

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder The Lecture Contains: Description of Flow past a Circular Cylinder Experimental Results for Circular Cylinder Flow file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture12/12_1.htm[12/24/2014

More information

Résonance et contrôle en cavité ouverte

Résonance et contrôle en cavité ouverte Résonance et contrôle en cavité ouverte Jérôme Hœpffner KTH, Sweden Avec Espen Åkervik, Uwe Ehrenstein, Dan Henningson Outline The flow case Investigation tools resonance Reduced dynamic model for feedback

More information

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.) INL 1 (3 cr.) 3 sets of home work problems (for 10 p. on written exam) 1 laboration TEN1 (4.5 cr.) 1 written exam

More information

FINMED Preparing next generation fine scale experiments in Med Sea Juin 2017

FINMED Preparing next generation fine scale experiments in Med Sea Juin 2017 FINMED Preparing next generation fine scale experiments in Med Sea 26-28 Juin 2017 The automatic eddy detection algorithm AMEDA and the cyclo-geostrophic correction in the Mediterranean Sea. B. Le Vu (1)

More information

Absolute Instabilities and Transition in a Rotating Cavity with Throughflow

Absolute Instabilities and Transition in a Rotating Cavity with Throughflow Absolute Instabilities and Transition in a Rotating Cavity with Throughflow Bertrand Viaud (*), Eric Serre (+) & Jean-Marc Chomaz (o) (*)Ecole de l Air, CReA, BA701 13661 Salon Air bviaud@cr-ea.net (+)

More information

Modeling Large-Scale Atmospheric and Oceanic Flows 2

Modeling Large-Scale Atmospheric and Oceanic Flows 2 Modeling Large-Scale Atmospheric and Oceanic Flows V. Zeitlin known s of the Laboratoire de Météorologie Dynamique, Univ. P. and M. Curie, Paris Mathematics of the Oceans, Fields Institute, Toronto, 3

More information

Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements

Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements Turbulent Rotating Rayleigh-Bénard Convection: DNS and SPIV Measurements Rudie Kunnen 1 Herman Clercx 1,2 Bernard Geurts 1,2 1 Fluid Dynamics Laboratory, Department of Physics Eindhoven University of Technology

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

Understanding inertial instability on the f-plane with complete Coriolis force

Understanding inertial instability on the f-plane with complete Coriolis force Understanding inertial instability on the f-plane with complete Coriolis force Abstract Vladimir Zeitlin Laboratory of Dynamical Meteorology, University P. and M. Curie and Ecole Normale Supérieure, Paris,

More information

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD

NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD NUMERICAL SIMULATION OF THE FLOW AROUND A SQUARE CYLINDER USING THE VORTEX METHOD V. G. Guedes a, G. C. R. Bodstein b, and M. H. Hirata c a Centro de Pesquisas de Energia Elétrica Departamento de Tecnologias

More information

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes

FLUID MECHANICS. ! Atmosphere, Ocean. ! Aerodynamics. ! Energy conversion. ! Transport of heat/other. ! Numerous industrial processes SG2214 Anders Dahlkild Luca Brandt FLUID MECHANICS : SG2214 Course requirements (7.5 cr.)! INL 1 (3 cr.)! 3 sets of home work problems (for 10 p. on written exam)! 1 laboration! TEN1 (4.5 cr.)! 1 written

More information

On the generation of a reverse Von Karman street for the controlled cylinder wake in the laminar regime

On the generation of a reverse Von Karman street for the controlled cylinder wake in the laminar regime On the generation of a reverse Von Karman street for the controlled cylinder wake in the laminar regime Michel Bergmann, Laurent Cordier, Jean-Pierre Brancher To cite this version: Michel Bergmann, Laurent

More information

Experimental characterization of flow field around a square prism with a small triangular prism

Experimental characterization of flow field around a square prism with a small triangular prism Journal of Mechanical Science and Technology 29 (4) (2015) 1649~1656 www.springerlink.com/content/1738-494x OI 10.1007/s12206-015-0336-2 Experimental characterization of flow field around a square prism

More information

Laboratory modelling of momentum transport by internal gravity waves and eddies in the Antarctic circumpolar current

Laboratory modelling of momentum transport by internal gravity waves and eddies in the Antarctic circumpolar current Laboratory modelling of momentum transport by internal gravity waves and eddies in the Antarctic circumpolar current Joel Sommeria, Adekunle-Opeoluwa Ajayi, Keshav J. Raja, Chantal Staquet, Samuel Viboud,

More information

Dual Vortex Structure Shedding from Low Aspect Ratio, Surface-mounted Pyramids

Dual Vortex Structure Shedding from Low Aspect Ratio, Surface-mounted Pyramids Dual Vortex Structure Shedding from Low Aspect Ratio, Surface-mounted Pyramids Robert J. Martinuzzi Department of Mechanical and Manufacturing Engineering Schulich School of Engineering University of Calgary

More information

Experimental study of a submerged fountain

Experimental study of a submerged fountain EUROPHYSICS LETTERS 1 September 1997 Europhys. Lett., 39 (5), pp. 503-508 (1997) Experimental study of a submerged fountain A. Maurel 1,S.Cremer 2 and P. Jenffer 2 1 Laboratoire Ondes et Acoustique, ESPCI,

More information

Analysis of jet instability in flute-like instruments by means of image processing: effect of the excitation amplitude.

Analysis of jet instability in flute-like instruments by means of image processing: effect of the excitation amplitude. Proceedings of the International Symposium on Musical Acoustics, March 31st to April 3rd 2004 (ISMA2004), Nara, Japan Analysis of jet instability in flute-like instruments by means of image processing:

More information

Turbulent forcing of gravity waves during the morning transition of the Atmospheric Boundary Layer: analogy with water-tank experiments

Turbulent forcing of gravity waves during the morning transition of the Atmospheric Boundary Layer: analogy with water-tank experiments Turbulent forcing of gravity waves during the morning transition of the Atmospheric Boundary Layer: analogy with water-tank experiments N. Arnault 1, J.-M. Chomaz 2 & P. H. Flamant 1 1 Laboratoire de Météorologie

More information

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation...

3.1 Definition Physical meaning Streamfunction and vorticity The Rankine vortex Circulation... Chapter 3 Vorticity Contents 3.1 Definition.................................. 19 3.2 Physical meaning............................. 19 3.3 Streamfunction and vorticity...................... 21 3.4 The Rankine

More information

Vortex shedding from slender surface mounted pyramids

Vortex shedding from slender surface mounted pyramids Vortex shedding from slender surface mounted pyramids M. J. Morrison 1, R. J. Martinuzzi 3, E. Savory 1, G. A. Kopp 2 1 Department of Mechanical and Materials Engineering, University of Western Ontario,

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

SYNOPTIC RESPONSES TO BREAKING MOUNTAIN GRAVITY WAVES MOMENTUM DEPOSIT AT TURNING CRITICAL LEVELS. 2 Model

SYNOPTIC RESPONSES TO BREAKING MOUNTAIN GRAVITY WAVES MOMENTUM DEPOSIT AT TURNING CRITICAL LEVELS. 2 Model P. SYNOPTIC RESPONSES TO BREAKING MOUNTAIN GRAVITY WAVES MOMENTUM DEPOSIT AT TURNING CRITICAL LEVELS Armel MARTIN and François LOTT Ecole Normale Superieure, Paris, France Abstract The synoptic scale responses

More information

A Pair of Large-incidence-angle Cylinders in Cross-flow with the Upstream One Subjected to a Transverse Harmonic Oscillation

A Pair of Large-incidence-angle Cylinders in Cross-flow with the Upstream One Subjected to a Transverse Harmonic Oscillation Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 A Pair of Large-incidence-angle Cylinders in Cross-flow with the

More information

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation , pp.49-58 http://dx.doi.org/10.1457/ijast.016.9.06 Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation Mojtaba Daneshi Department of Mechanical Engineering,

More information

VORTICITY GENERATION IN NON-UNIFORM MHD FLOWS

VORTICITY GENERATION IN NON-UNIFORM MHD FLOWS The 15 th Riga and 6 th PAMIR Conference on Fundamental and Applied MHD Invited Lectures VORTICITY GENERATION IN NON-UNIFORM MHD FLOWS S. Cuevas 1,S.Smolentsev 2, M. Abdou 2 1 Center for Energy Research,

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

Flow control. Flow Instability (and control) Vortex Instabilities

Flow control. Flow Instability (and control) Vortex Instabilities Flow control Flow Instability (and control) Tim Colonius CDS 101 Friday, Oct 15, 2004 Many control problems contain fluid systems as components. Dashpot in mass-spring-damper systems HVAC system that thermostat

More information

MATH 566: FINAL PROJECT

MATH 566: FINAL PROJECT MATH 566: FINAL PROJECT December, 010 JAN E.M. FEYS Complex analysis is a standard part of any math curriculum. Less known is the intense connection between the pure complex analysis and fluid dynamics.

More information

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow

Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow Balanced Flow Geostrophic, Inertial, Gradient, and Cyclostrophic Flow The types of atmospheric flows describe here have the following characteristics: 1) Steady state (meaning that the flows do not change

More information

Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers

Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers 18 ème Congrès Français de Mécanique Grenoble, 7-31 août 007 Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers Michael Le Bars, Stéphane Le Dizès & Patrice

More information

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560 FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry

More information

La turbulence en rotation pour les nuls

La turbulence en rotation pour les nuls Tout sur les ondes d inertie! Frédéric Moisy La turbulence en rotation La turbulence en rotation pour les nuls F. Moisy L. Agostini, P.P. Cortet, C. Lamriben, L. Messio, C. Morize, M. Rabaud, G. Tan, J.

More information

WAKE STRUCTURES OF UNSTEADY TWO-DIMENSIONAL FLOWS PAST CYLINDERS WITH TRIANGULAR CROSS-SECTIONS

WAKE STRUCTURES OF UNSTEADY TWO-DIMENSIONAL FLOWS PAST CYLINDERS WITH TRIANGULAR CROSS-SECTIONS Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 2015 WAKE STRUCTURES OF UNSTEADY TWO-DIMENSIONAL FLOWS PAST CYLINDERS WITH TRIANGULAR

More information

Asymmetric inertial instability

Asymmetric inertial instability Asymmetric inertial instability V. Zeitlin Institut Universitaire de France 2 Laboratory of Dynamical Meteorology, University P. and M. Curie, Paris, France UCL, December 2 Instabilities of jets Motivations,

More information

Modeling the atmosphere of Jupiter

Modeling the atmosphere of Jupiter Modeling the atmosphere of Jupiter Bruce Turkington UMass Amherst Collaborators: Richard S. Ellis (UMass Professor) Andrew Majda (NYU Professor) Mark DiBattista (NYU Postdoc) Kyle Haven (UMass PhD Student)

More information

68 Guo Wei-Bin et al Vol. 12 presented, and are thoroughly compared with other numerical data with respect to the Strouhal number, lift and drag coeff

68 Guo Wei-Bin et al Vol. 12 presented, and are thoroughly compared with other numerical data with respect to the Strouhal number, lift and drag coeff Vol 12 No 1, January 2003 cfl 2003 Chin. Phys. Soc. 1009-1963/2003/12(01)/0067-08 Chinese Physics and IOP Publishing Ltd Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder

More information

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT 2th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT Wang T.*, Gao S.F., Liu Y.W., Lu Z.H. and Hu H.P. *Author

More information

Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders

Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders Influence of After Body Shape on the Performance of Blunt Shaped Bodies as Vortex Shedders Lavish Ordia, A. Venugopal, Amit Agrawal, S. V. Prabhu Abstract The present study explores flow visualization

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 1, No 3, 2010 CFD analysis of 2D unsteady flow around a square cylinder Gera.B, Pavan K. Sharma, Singh R.K Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India 400085 pa1.sharma@gmail.com ABSTRACT

More information

ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES IN LAGRANGIAN VORTEX METHODS FOR 2D FSI PROBLEMS

ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES IN LAGRANGIAN VORTEX METHODS FOR 2D FSI PROBLEMS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 2018, Glasgow, UK ON PARTITIONED AND MONOLITHIC COUPLING STRATEGIES

More information

Available online at ScienceDirect. Procedia IUTAM 14 (2015 ) IUTAM ABCM Symposium on Laminar Turbulent Transition

Available online at  ScienceDirect. Procedia IUTAM 14 (2015 ) IUTAM ABCM Symposium on Laminar Turbulent Transition Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 14 (2015 ) 115 121 IUTAM ABCM Symposium on Laminar Turbulent Transition Stabilisation of the absolute instability of a flow past a

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Numerical simulation of pulsating flow around a cube C. Dargent, D. Dartus, J. George Institut de Mecanique des Fluides de Toulouse, Avenue du Professeur Camille Soula, 31400 Toulouse, France ABSTRACT

More information

SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION

SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9- December 9 SHEAR LAYER REATTACHMENT ON A SQUARE CYLINDER WITH INCIDENCE ANGLE VARIATION Priyanka

More information

Measuring the Vortex-Shedding Frequency Behind Staggered Cylinders in Cross-Flow

Measuring the Vortex-Shedding Frequency Behind Staggered Cylinders in Cross-Flow Santa Clara University Scholar Commons Mechanical Engineering Master's Theses Engineering Master's Theses 8-2018 Measuring the Vortex-Shedding Frequency Behind Staggered Cylinders in Cross-Flow Christopher

More information

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number

Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number ANZIAM J. 46 (E) ppc181 C195, 2005 C181 Vortex wake and energy transitions of an oscillating cylinder at low Reynolds number B. Stewart J. Leontini K. Hourigan M. C. Thompson (Received 25 October 2004,

More information

Scaling laws for planetary dynamos driven by helical waves

Scaling laws for planetary dynamos driven by helical waves Scaling laws for planetary dynamos driven by helical waves P. A. Davidson A. Ranjan Cambridge What keeps planetary magnetic fields alive? (Earth, Mercury, Gas giants) Two ingredients of the early theories:

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

NONLINEAR GEOSTROPHIC ADJUSTMENT OF DENSITY FRONT

NONLINEAR GEOSTROPHIC ADJUSTMENT OF DENSITY FRONT NONLINEAR GEOSTROPHIC ADJUSTMENT OF DENSITY FRONT A. Stegner (), P. Bouruet-Aubertot (2), T. Pichon (3) () Laboratoire de Météorologie Dynamique, IPSL, ENS, 24 Rue Lhomond, 755 Paris, France. Email: stegner@lmd.ens.fr

More information

Rotating stratified turbulence in the Earth s atmosphere

Rotating stratified turbulence in the Earth s atmosphere Rotating stratified turbulence in the Earth s atmosphere Peter Haynes, Centre for Atmospheric Science, DAMTP, University of Cambridge. Outline 1. Introduction 2. Momentum transport in the atmosphere 3.

More information

Three-dimensional Floquet stability analysis of the wake in cylinder arrays

Three-dimensional Floquet stability analysis of the wake in cylinder arrays J. Fluid Mech. (7), vol. 59, pp. 79 88. c 7 Cambridge University Press doi:.7/s78798 Printed in the United Kingdom 79 Three-dimensional Floquet stability analysis of the wake in cylinder arrays N. K.-R.

More information

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004

Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 CEE 331 Lab 4 Page 1 of 6 Lab #4 Similitude: The Kármán Vortex Street CEE 331 Fall 2004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water and

More information

Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four

Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four You Qin Wang 1, Peter L. Jackson 2 and Jueyi Sui 2 1 High Performance Computing Laboratory, College of Science and

More information

VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS

VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS THERMAL SCIENCE, Year 2012, Vol. 16, No. 5, pp. 1395-1399 1395 VORTEX SHEDDING PATTERNS IN FLOW PAST INLINE OSCILLATING ELLIPTICAL CYLINDERS by Li-Zhong HUANG a* and De-Ming NIE b a State Key Laboratory

More information

Rayleigh-Taylor Unstable Flames

Rayleigh-Taylor Unstable Flames Rayleigh-Taylor Unstable Flames Elizabeth P. Hicks 1,2 and Robert Rosner 2 CIERA, Northwestern University 1 University of Chicago 2 CIERA Conference: September 2, 2011 1 Type Ia Supernovae Image: NASA

More information

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation

Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Spherical Shallow Water Turbulence: Cyclone-Anticyclone Asymmetry, Potential Vorticity Homogenisation and Jet Formation Jemma Shipton Department of Atmospheric, Oceanic and Planetary Physics, University

More information

PIV study for the analysis of planar jets in cross-flow at low Reynolds number

PIV study for the analysis of planar jets in cross-flow at low Reynolds number PIV study for the analysis of planar jets in cross-flow at low Reynolds number Vincenti I., Guj G., Camussi R., Giulietti E. University Roma TRE, Department of Ingegneria Meccanica e Industriale (DIMI),

More information

Energy dissipation caused by boundary layer instability at vanishing viscosity

Energy dissipation caused by boundary layer instability at vanishing viscosity Energy dissipation caused by boundary layer instability at vanishing viscosity Marie Farge, Ecole Normale Supérieure, Paris Kai Schneider, Université d Aix-Marseille in collaboration with Romain Nguyen-Nouch

More information

Suppression of 3D flow instabilities in tightly packed tube bundles

Suppression of 3D flow instabilities in tightly packed tube bundles Suppression of 3D flow instabilities in tightly packed tube bundles Nicholas Kevlahan kevlahan@mcmaster.ca Department of Mathematics & Statistics CSFD, June 13 15 2004 p.1/33 Collaborators CSFD, June 13

More information

Numerical and Experimental Study of Effects of Upstream Disturbance on Accuracy of Vortex-Shedding Flow Meter

Numerical and Experimental Study of Effects of Upstream Disturbance on Accuracy of Vortex-Shedding Flow Meter XIX IMEKO World Congress Fundamental and Applied Metrology September 6-11, 2009, Lisbon, Portugal Numerical and Experimental Study of Effects of Upstream Disturbance on Accuracy of Vortex-Shedding Flow

More information

Frequency lock-in is caused by coupled-mode flutter

Frequency lock-in is caused by coupled-mode flutter Journal of Fluids and Structures (6) 78 79 www.elsevier.com/locate/jfs Frequency lock-in is caused by coupled-mode flutter E. de Langre Département de Mécanique, LadHyX, Ecole Polytechnique, 98 Palaiseau,

More information

Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C5: PHYSICS OF ATMOSPHERES AND OCEANS TRINITY TERM 2016

Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C5: PHYSICS OF ATMOSPHERES AND OCEANS TRINITY TERM 2016 A11048W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C5: PHYSICS OF ATMOSPHERES AND OCEANS TRINITY TERM 2016 Tuesday, 14 June,

More information

Self-Excited Vibration in Hydraulic Ball Check Valve

Self-Excited Vibration in Hydraulic Ball Check Valve Self-Excited Vibration in Hydraulic Ball Check Valve L. Grinis, V. Haslavsky, U. Tzadka Abstract This paper describes an experimental, theoretical model and numerical study of concentrated vortex flow

More information

The elephant mode between two rotating disks

The elephant mode between two rotating disks The elephant mode between two rotating disks B. Viaud, E. Serre, Jean-Marc Chomaz To cite this version: B. Viaud, E. Serre, Jean-Marc Chomaz. The elephant mode between two rotating disks. Journal of Fluid

More information

ON TURBULENCE AND TRANSPORT IN SHALLOW WAKE FLOWS

ON TURBULENCE AND TRANSPORT IN SHALLOW WAKE FLOWS ON TURBULENCE AND TRANSPORT IN SHALLOW WAKE FLOWS CARL F. V.CARMER &GERHARD H. JIRKA Institute for Hydromechanics, University of Karlsruhe Kaiserstr. 12, 76128 Karlsruhe, Germany carmer@ifh.uni-karlsruhe.de

More information

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics

FINAL REPORT. Office of Naval Research. entitled. Anatol Roshko Theodore Von Karman Professor of Aeronautics to F11 F rnpv FINAL REPORT 4to Office of Naval Research on Contract No. N00014-85-C-0646 Work Unit No. 4328-434 entitled STRUCTURE AND MIXING IN TURBULENT SHEAR FLOWS 1 July 1985-31 October 1988 Anatol

More information

ME332 FLUID MECHANICS LABORATORY (PART I)

ME332 FLUID MECHANICS LABORATORY (PART I) ME332 FLUID MECHANICS LABORATORY (PART I) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: January 14, 2002 Contents Unit 1: Hydrostatics

More information

Turbulence Modeling Applied to Flow over a Hydraulic Ball Check Valve

Turbulence Modeling Applied to Flow over a Hydraulic Ball Check Valve Engineering, 2,, 68-6 http://dx.doi.org/.426/eng.2.88 Published Online August 2 (http://www.scirp.org/journal/eng) Turbulence Modeling Applied to Flow over a Hydraulic Ball Check Valve Leonid Grinis, Vitaly

More information

UNIVERSITY OF CALGARY. Base Region Topology of Turbulent Wake around Finite Wall-Mounted Cylinder with. Application of Low Order Flow Representation

UNIVERSITY OF CALGARY. Base Region Topology of Turbulent Wake around Finite Wall-Mounted Cylinder with. Application of Low Order Flow Representation UNIVERSITY OF CALGARY Base Region Topology of Turbulent Wake around Finite Wall-Mounted Cylinder with Application of Low Order Flow Representation by Golriz Boorboor A THESIS SUBMITTED TO THE FACULTY OF

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc.

FLOW SEPARATION. Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. FLOW SEPARATION Aerodynamics Bridge-Pier Design Combustion Chambers Human Blood Flow Building Design Etc. (Form Drag, Pressure Distribution, Forces and Moments, Heat And Mass Transfer, Vortex Shedding)

More information

INTRODUCTION OBJECTIVES

INTRODUCTION OBJECTIVES INTRODUCTION The transport of particles in laminar and turbulent flows has numerous applications in engineering, biological and environmental systems. The deposition of aerosol particles in channels and

More information

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet

Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet Jean-Baptiste GILET, Matthieu Plu and Gwendal Rivière CNRM/GAME (Météo-France, CNRS) 3rd THORPEX International Science Symposium Monterey,

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

CONVECTIVE AND ABSOLUTE INSTABILITIES IN REACTING BLUFF BODY WAKES

CONVECTIVE AND ABSOLUTE INSTABILITIES IN REACTING BLUFF BODY WAKES Proceedings of ASME Turbo Expo 20 GT20 June 6-0, 20, Vancouver, British Columbia, Canada GT20-453 CONVECTIVE AND ABSOLUTE INSTABILITIES IN REACTING BLUFF BODY WAKES Benjamin Emerson, Julia Lundrigan, Jacqueline

More information

Intermittency in spiral Poiseuille flow

Intermittency in spiral Poiseuille flow Intermittency in spiral Poiseuille flow M. Heise, J. Abshagen, A. Menck, G. Pfister Institute of Experimental and Applied Physics, University of Kiel, 2498 Kiel, Germany E-mail: heise@physik.uni-kiel.de

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

VORTEX SHEDDING ENHANCEMENT FOR ENERGY HARVESTING APPLICATIONS IN MINIATURE DEVICES

VORTEX SHEDDING ENHANCEMENT FOR ENERGY HARVESTING APPLICATIONS IN MINIATURE DEVICES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 VORTEX SHEDDING ENHANCEMENT FOR ENERGY HARVESTING APPLICATIONS IN MINIATURE DEVICES Dimitrios G. Koubogiannis 1

More information

The direct stratosphere troposphere interaction

The direct stratosphere troposphere interaction Submitted to the Journal of Atmospheric Sciences special issue on Jets, June 2006 The direct stratosphere troposphere interaction MAARTEN H. P. AMBAUM 1 Department of Meteorology, University of Reading,

More information

Comptes Rendus Mecanique

Comptes Rendus Mecanique C. R. Mecanique 338 (2010) 12 17 Contents lists available at ScienceDirect Comptes Rendus Mecanique www.sciencedirect.com Vortex-induced vibration of a square cylinder in wind tunnel Xavier Amandolèse

More information

The equation we worked with for waves and geostrophic adjustment of a 1-layer fluid is η tt

The equation we worked with for waves and geostrophic adjustment of a 1-layer fluid is η tt GEOPHYSICAL FLUID DYNAMICS-I OC512/AS509 2015 P.Rhines LECTUREs 11-12 week 6 9-14 Geostrophic adjustment and overturning circulations with continuous stratification. The equation we worked with for waves

More information

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models

Numerical Study of Natural Unsteadiness Using Wall-Distance-Free Turbulence Models Numerical Study of Natural Unsteadiness Using Wall-Distance-Free urbulence Models Yi-Lung Yang* and Gwo-Lung Wang Department of Mechanical Engineering, Chung Hua University No. 707, Sec 2, Wufu Road, Hsin

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

Lagrangian acceleration in confined 2d turbulent flow

Lagrangian acceleration in confined 2d turbulent flow Lagrangian acceleration in confined 2d turbulent flow Kai Schneider 1 1 Benjamin Kadoch, Wouter Bos & Marie Farge 3 1 CMI, Université Aix-Marseille, France 2 LMFA, Ecole Centrale, Lyon, France 3 LMD, Ecole

More information

To link to this article : DOI: /S URL :

To link to this article : DOI: /S URL : Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Shelf Impact on Buoyant Coastal Current Instabilities

Shelf Impact on Buoyant Coastal Current Instabilities JANUARY 2012 P E N N E L E T A L. 39 Shelf Impact on Buoyant Coastal Current Instabilities ROMAIN PENNEL Unité de Mécanique, ENSTA-ParisTech, Palaiseau, France ALEXANDRE STEGNER Laboratoire de Météorologie

More information

Application of a Virtual-Boundary Method for the Numerical Study of Oscillations Developing Behind a Cylinder Near A Plane Wall

Application of a Virtual-Boundary Method for the Numerical Study of Oscillations Developing Behind a Cylinder Near A Plane Wall Fluid Dynamics, Vol. 39, No. 1, 2004, pp. 61 68. Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2004, pp. 69 77. Original Russian Text Copyright 2004 by Kit, Nikitin,

More information

Non-Synchronous Vibrations of Turbomachinery Airfoils

Non-Synchronous Vibrations of Turbomachinery Airfoils Non-Synchronous Vibrations of Turbomachinery Airfoils 600 500 NSV Frequency,!, hz 400 300 200 F.R. Flutter 100 SFV 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Rotor Speed,!, RPM Kenneth C. Hall,

More information

SHORT-WAVE INSTABILITY GROWTH IN CLOSELY SPACED VORTEX PAIRS

SHORT-WAVE INSTABILITY GROWTH IN CLOSELY SPACED VORTEX PAIRS Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009 SHORT-WAVE INSTABILITY GROWTH IN CLOSELY SPACED VORTEX PAIRS Nicholas BOUSTEAD

More information

COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999

COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999 COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999 1. Introduction Subject of the course: basics of vehicle aerodynamics ground vehicle aerodynamics examples in car, bus,

More information