A time series study of the carbon isotopic composition of deep-sea benthic foraminifera

Size: px
Start display at page:

Download "A time series study of the carbon isotopic composition of deep-sea benthic foraminifera"

Transcription

1 PALEOCEANOGRAPHY, VOL. 17, NO. 3, 1036, /2001PA000664, 2002 A time series study of the carbon isotopic composition of deep-sea benthic foraminifera Bruce H. Corliss Division of Earth and Ocean Sciences, Nicholas School of the Environment and Earth Sciences, Duke University, Durham, North Carolina, USA Daniel C. McCorkle Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA David M. Higdon Institute of Statistics and Decision Sciences, Duke University, Durham, North Carolina, USA Received 8 June 2001; revised 13 March 2002; accepted 13 March 2002; published 14 August [1] Variation of the d 13 C of living (Rose Bengal stained) deep-sea benthic foraminifera is documented from two deep-water sites (2430 and 3010 m) from a northwest Atlantic Ocean study area 275 km south of Nantucket Island. The carbon isotopic data of Hoeglundina elegans and Uvigerina peregrina from five sets of Multicorer and Soutar Box Core samples taken over a 10-month interval (March, May, July, and October 1996 and January 1997) are compared with an 11.5 month time series of organic carbon flux to assess the effect of organic carbon flux on the carbon isotopic composition of dominant taxa. Carbon isotopic data of Hoeglundina elegans at 3010 m show 0.3% lower mean values following an organic carbon flux maximum resulting from a spring phytoplankton bloom. This d 13 C change following the spring bloom is suggested to be due to the presence of a phytodetritus layer on the seafloor and the subsequent depletion of d 13 C in the pore waters within the phytodetritus and overlying the sediment surface. Carbon isotopic data of H. elegans from the 2430 m site show an opposite pattern to that found at 3010 m with a d 13 C enrichment following the spring bloom. This different pattern may be due to spatial variation in phytodetritus deposition and resuspension or to a limited number of specimens recovered from the March 1996 cruise. The d 13 CofUvigerina peregrina at 2430 m shows variation over the 10 month interval, but an analysis of variance shows that the variability is more consistent with core and subcore variability than with seasonal changes. The isotopic analyses are grouped into 100 mm size classes on the basis of length measurements of individual specimens to evaluate d 13 C ontogenetic changes of each species. The data show no consistent patterns between size classes in the d 13 C of either H. elegans or U. peregrina. These results suggest that variation in organic carbon flux does not preferentially affect particular size classes, nor do d 13 C ontogenetic changes exist within the >250 to >750 mm size range for these species at this locality. On the basis of the lack of ontogenetic changes a range of sizes of specimens from a sample can be used to reconstruct d 13 C in paleoceanographic studies. The prediction standard deviation, which is composed of cruise, core, subcore, and residual (replicate) variability, provides an estimate of the magnitude of variability in fossil d 13 C data; it is 0.27% for H. elegans at 3010 m and 0.4% for U. peregrina at the 2430 m site. Since these standard deviations are based on living specimens, they should be regarded as minimum estimates of variability for fossil data based on single specimen analyses. Most paleoceanographic reconstructions are based on the analysis of multiple specimens, and as a result, the standard error would be expected to be reduced for any particular sample. The reduced standard error resulting from the analysis of multiple specimens would result in the seasonal and spatial variability observed in this study having little impact on carbon isotopic records. INDEX TERMS: 4870 Oceanography: Biological and Chemical: Stable isotopes; 1045 Geochemistry: Low-temperature geochemistry; 3030 Marine Geology and Geophysics: Micropaleontology; 4267 Oceanography: General: Paleoceanography; 4804 Oceanography: Biological and Chemical: Benthic processes/benthos; KEYWORDS: benthic, foraminifera, isotopes, benthos, paleoceanography, micropaleontology 1. Introduction [2] Oceanic circulation plays a critical role in global biogeochemical cycles and influences regional and global Copyright 2002 by the American Geophysical Union /02/2001PA climatic conditions. Changes in deep-ocean ventilation on various timescales, linked to heat transport in the oceans and the global CO 2 cycle, have been suggested to be an important factor influencing large-scale climatic changes. Many reconstructions of the strength and pathways of deepocean circulation have been based on time series of micropaleontological and chemical proxies from deep-sea 8-1

2 8-2 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Figure 1. Bathymetry of the northwest Atlantic Ocean in meters with the location of the sediment trap mooring at 3096 m and coring site at 3010 m indicated by a solid triangle and the coring site at 2430 m indicated by a solid circle. sediments. One geochemical proxy that has been widely used is the carbon stable isotopic composition of fossil benthic foraminifera from sediment sequences, which has provided estimates of the relative age and ventilation rates of deep waters [Rohling and Cooke, 1999]. Carbon isotope paleocirculation studies generally utilize epifaunal benthic foraminiferal taxa that live at the sediment/water interface in direct contact with the overlying bottom waters because these taxa are believed to most accurately reflect bottom water d 13 C. [3] The initial calibrations of benthic foraminiferal d 13 C and bottom water d 13 C, which formed the basis for the use of d 13 C in paleoceanographic reconstructions, were based on live plus dead specimens from core tops taken from throughout the oceans [Woodruff et al., 1980; Belanger et al., 1981; Graham et al., 1981; Grossman, 1984; Wefer and Berger, 1991]. The age of these fossils ranges from Recent to a few thousand years owing to mixing of specimens of varying age in the uppermost sediments as a result of bioturbation by macrobenthos. A more detailed understanding of the relationship between the biology of the organisms and the isotopic signal is based on d 13 C data of living specimens [Mackensen and Douglas, 1989; McCorkle et al., 1990, 1997; Rathburn et al., 1996]. Interspecific differences in d 13 C are attributed primarily to microhabitat effects between epifaunal and infaunal species, although vital effects due to physiological processes are also evident with some taxa [Rohling and Cooke, 1999]. [4] Recently, it has been suggested that seasonal differences in organic carbon flux may influence the carbon isotopic composition of epifaunal taxa owing to pulses of organic matter delivered to the seafloor following phytoplankton blooms ( phytodetritus events) [Mackensen et al., 1993]. The existing d 13 C data based on living specimens are from samples collected during a single cruise to any given site, and as a result, no information exists on seasonal variability of d 13 C in the foraminiferal tests. It is particularly important to determine if seasonal differences do exist because it is critical for the interpretation of d 13 C records used in paleocirculation reconstructions to understand how the benthic foraminiferal d 13 C signal is constructed and what factors control the variability of that signal. [5] To address this question, a study was carried out to determine seasonal changes over a 1 year interval of the biology and chemistry of benthic foraminifera at a deepwater study area ( m) 275 km south of Nantucket Island (Figure 1) in the northwest Atlantic Ocean. A sediment trap mooring with a Parflux Mark 7G 21-cup automated sediment trap was used to obtain an 11.5 month record of organic carbon flux, which is compared with benthic foraminiferal isotopic data based on Multicorer and Soutar Corer samples taken during five cruises (March, May, July, and October 1996 and January 1997] at two sites (2430 m: N, W; 3010 m: N, W). The mooring was located just south of the 3010 m site ( N, W) in 3096 m water depth.

3 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-3 The carbon isotopic data are compared with bottom water d 13 C data taken on each cruise from the coring sites. In this report, we assess the d 13 C seasonal record of Hoeglundina elegans, an epifaunal aragonitic species dominant at the 3010 m study site, and Uvigerina peregrina, an inferred infaunal species dominant at the 2430 m site. Data for Planulina wuellerstorfi are also reported, but no conclusions on seasonal variation can be reached because of the low number of analyses. 2. Previous Work 2.1. Phytodetritus Events and Deep-Sea Biology [6] The flux of organic carbon to the seafloor is highly variable and exhibits a seasonal pattern in most regions of the oceans. Changes in the amount of new production are related to upper ocean hydrographic conditions that create suitable conditions for episodic phytoplankton blooms. Most particulate organic carbon formed in the euphotic zone is recycled by organisms within the water column and only a small fraction (1 2%) reaches the seafloor [Suess, 1980; Wefer, 1989] in a matter of a few weeks following phytoplankton blooms [Billett et al., 1983; Lampitt, 1985; Hecker, 1990]. The small amount of organic carbon to reach the seafloor is either consumed by the benthos, providing the energy source for most deep-sea organisms [Smith et al., 1992], or is sequestered within deep-sea sediments. A large part (50 85%) of the organic material to reach the seafloor is thought to be remineralized within 1 year [Cole et al., 1987]. [7] Phytoplankton blooms in the surface waters are followed by the rapid flux ( m d 1 ) of phytoplankton and zooplankton remains that create a fluffy layer of phytodetritus on the seafloor [Billett et al., 1983; Rice et al., 1986; Thiel et al., 1989]. These phytodetritus events occur over wide areas of the ocean and have been observed with deep-sea photography and collected in Multicorer samples. The phytodetritus layers have a patchy distribution and are easily resuspended by bottom currents. Once on the seafloor, the phytodetritus layer serves as a food source and affects bacterial and meiobenthos standing stocks [Lochte and Turley, 1988; Gooday and Turley, 1990; Pfannkuche, 1993; Turley et al., 1995] and is remineralized over an interval of several months [Rice et al., 1994]. [8] The seasonal and variable input of organic carbon to the deep-sea environment [Honjo, 1996] has a dramatic effect on deep-sea benthic foraminifera with changes in species dominance, abundance, and rapid growth over a period of a few months [Gooday, 1988; Gooday and Lambshead, 1989; Gooday, 1993, 1996; Smart and Gooday, 1997; Kitazato and Ohga, 1995; Ohga and Kitazato, 1997; Gooday and Rathburn, 1999; Loubere and Fariduddin, 1999; Kitazato et al., 2000; Bernhard and Reimers, 1992; Corliss and Silva, 1993; Silva et al., 1996] Carbon 13 of Deep-Sea Benthic Foraminifera [9] The d 13 C of epifaunal species reflects the d 13 C gradient found in the bottom waters of the Atlantic and Pacific Oceans [Graham et al., 1981; Duplessy et al., 1984], which provides the basis for using carbon isotopes in paleocirculation studies. A number of geochemical studies of deep-sea benthic foraminifera have documented interspecific differences in d 13 C, however, which reflect disequilibria of some taxa with the overlying bottom water [Woodruff et al., 1980; Belanger et al., 1981; Grossman, 1984, 1987]. These interspecific differences were attributed to either vital effects or species living in different microenvironments. With the recognition that benthic foraminifera have species-specific microhabitat preferences within the upper cm of deep-sea surficial sediments [Corliss, 1985], a comparison of pore water d 13 C and shell composition of both infaunal and epifaunal taxa showed that a microhabitat effect does exist, although vital effects cannot be entirely ruled out for some taxa [McCorkle et al., 1990, 1997; Rathburn et al., 1996]. [10] Distributional studies of living (stained) benthic foraminifera suggest that H. elegans is an epifaunal species [Corliss, 1985; Corliss and Emerson, 1990]. Hoeglundina d 13 C values are consistently enriched by between 1 and 2% relative to bottom water dissolved inorganic carbon (DIC) [Graham et al., 1981; McCorkle et al., 1990, 1997; Rathburn et al., 1996; Sommer and Rye, 1978; Grossman, 1984, 1987], which is thought to reflect the equilibrium carbon isotope enrichment of aragonite [Romanek et al., 1992]. Bottom water temperature and Hoeglundina d 13 C were reported to vary inversely [Grossman, 1984, 1987], but since temperature varies with water depth and other ecological factors, it is difficult to assess the influence of temperature on the carbon isotopic data. Although H. elegans stable isotope data have not been widely used in paleoceanographic reconstructions, Cd/Ca data from this species have been utilized [Boyle et al., 1995; Boyle and Rosenthal, 1996]. Observations on the isotopic behavior of this species can provide information relevant to other biconvex epifaunal taxa. [11] Uvigerina peregrina is generally found in the upper 2 cm of surficial sediments [Corliss, 1985; Corliss and Emerson, 1990; Rathburn et al., 1996] and is inferred to be a shallow-dwelling infaunal species on the basis of its distributional pattern in the sediments and morphological features [Corliss, 1991]. Uvigerina has also been documented at deeper depths in the sediment and attributed to the presence of suitable microhabitats within the sediments due to biological activity [Corliss and van Weering, 1993; Loubere et al., 1995]. Uvigerina d 13 C values range from 0.5 to 2.0% lower than bottom water d 13 C values [Woodruff et al., 1980; Graham et al., 1981; Grossman, 1984, 1987; McCorkle et al., 1990,1997]; this depletion is thought to reflect calcification within the low d 13 C pore waters of the microhabitat that this species occupies in the surficial sediments [McCorkle et al., 1990, 1997]. Core top gradients in pore water d 13 C values reflect the flux of organic carbon to the seafloor, and we have suggested that the range of Uvigerina d 13 C values may thus reflect variations in the productivity of the surface ocean [McCorkle et al., 1990, 1997]. Planulina wuellerstorfi is an epifaunal species that prefers an epibenthic microhabitat [Lutze and Thiel, 1989], attached to rocks, spicules, etc., above the seafloor. This species typically has d 13 C values close to the d 13 C of bottom water dissolved inorganic carbon [Duplessy et al., 1984;

4 8-4 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA McCorkle and Keigwin, 1994], although negative offsets have been reported in highly productive regions [Sarnthein et al., 1988; Mackensen et al., 1993]. [12] These studies demonstrated that epifaunal taxa are closest to equilibrium of the overlying bottom water and therefore are the most reliable for reconstructing d 13 C conditions in the deep ocean. This view of the reliability of d 13 C of epifaunal taxa to reflect bottom water d 13 C was recently challenged by Mackensen et al. [1993] on the basis of core top data from the South Atlantic sector of the Southern Ocean. They suggested that the presence of phytodetritus could alter the d 13 C gradient at the sediment-water interface, which in turn, could affect the d 13 C of epifaunal species living in this microhabitat. 3. Study Area [13] The study area was chosen because of relatively high primary productivity of 300 g C m 2 yr 1 [O Reilly et al., 1978] and the seasonal presence of phytodetritus on the seafloor [Hecker, 1990]. The spring phytoplankton bloom in the northwest Atlantic in the vicinity of Georges Bank begins in late March early April and is generally finished by early May [Cura, 1978]. The timing of the cruises provided samples immediately before (March) and after (May) the spring phytoplankton bloom and at intervals during the remainder of the year (July, October, and January). Phytodetritus was previously observed slightly to the north (41 ) of the study area from 500 to 2500 m Table 1. Summary of Cruise Information Cruise Date Number of Subcores Comments EN279 February trap deployment EN281 March EN284 May OC283 July trap turnaround EN289 October EN293 January trap recovery in late April and early May 1985 and consisted of a fluffy layer covering much of the seafloor [Hecker, 1990], similar to what has been observed in the northeast Atlantic and elsewhere [Billett et al., 1983]. Phytodetritus consists primarily of phytoplankton cells (often mostly diatoms), bacteria, and gelatinous aggregates, with lesser amounts of small grazers (dinoflagellates, radiolaria, and foraminifera), and the fecal pellets of larger consumers. This material is transported rapidly from the surface to the seafloor ( m d 1 ). A fluffy green layer up to a few centimeters height blankets the seafloor for a few weeks to months following phytoplankton blooms. The fluff layer is easily resuspended and has a highly variable distribution on the seafloor. [14] Norwegian-Greenland Sea Overflow water, which is a component of North Atlantic Deep Water, is found overlying the seafloor from 2500 to 4000 m in the study area with bottom temperatures of 2 3 C [Pickart, 1992]. Salinities of % and dissolved oxygen values of Table 2. Core Sample Locations and Depths Latitude Longitude Depth Type EN Soutar Soutar Soutar EN MC MC MC MC MC MC MC MC OC MC MC MC MC MC EN Soutar MC MC EN MC MC MC

5 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-5 Table 3. Oxygen and Carbon Isotopic Data of Living (Rose Bengal Stained) H. elegans, U. peregrina, and P. wuellerstorfi From This Study a Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN281 EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN284 EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans

6 8-6 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN EN H.elegans EN H.elegans EN H.elegans EN H.elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans

7 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-7 Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans OC283 OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans

8 8-8 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans OC H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans

9 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-9 Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN293 EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H.elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN * EN H. elegans EN H. elegans EN H. elegans EN H. elegans EN H. elegans

10 8-10 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN * EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN >750 H. elegans EN281 EN EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U.peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN284 EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina

11 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-11 Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina

12 8-12 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN EN U. peregrina OC283 OC * OC U.peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC * OC U. peregrina OC U. peregrina OC U. peregrina OC * OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina

13 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-13 Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O OC U. peregrina OC U. peregrina OC U. peregrina OC * OC U. peregrina OC U. peregrina OC U. peregrina OC U. peregrina EN293 EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U.peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina

14 8-14 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN >750 U. peregrina EN * EN U. peregrina EN U. peregrina EN U. peregrina EN281 EN EN P. wuellerstorfi EN * EN P. wuellerstorfi EN P. wuellerstorfi EN284 EN * EN P. wuellerstorfi EN P. wuellerstorfi EN P.wuellerstorfi EN P. wuellerstorfi EN EN >750 P. wuellerstorfi EN >750 P. wuellerstorfi EN >750 P. wuellerstorfi EN >750 P. wuellerstorfi EN EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN >750 P. wuellerstorfi OC283 OC OC P. wuellerstorfi OC P. wuellerstorfi OC OC P. wuellerstorfi OC P. wuellerstorfi OC P. wuellerstorfi OC P. wuellerstorfi OC OC P. wuellerstorfi OC P. wuellerstorfi OC OC P. wuellerstorfi OC P. wuellerstorfi OC P. wuellerstorfi OC OC P. wuellerstorfi OC P. wuellerstorfi

15 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA 8-15 Table 3. (continued) Core, Subcore, and Interval (cm) Size, mm Species d 13 C d 18 O OC P. wuellerstorfi OC P. wuellerstorfi OC P. wuellerstorfi EN293 EN EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi EN P. wuellerstorfi a Cores marked with an asterisk are from 2430 m; all others are from 3010 m. >270 mmol kg 1 are associated with this water mass [Fuglister, 1960], which overlies fine-grained muds with silt contents of >50% and organic carbon values of % [Doyle et al., 1979]. [15] The first Shelf Edge Exchange Processes experiment (SEEP-I) consisted of an array of sediment traps on a northsouth transect at 71 W, slightly to the west of the study site [Biscaye et al., 1988]. The deepest mooring included a trap at 2700 m (50 m off the bottom) which showed distinct variations in total flux and organic carbon during the 14 month experiment. Although components of the organic flux were suggested to be exported from the continental shelf or transported downslope, the total mass fluxes measured in the sediment traps were representative of the longterm accumulation rates of the slope sediments [Biscaye et al., 1988], indicating that the trap data were reliable measures of the sedimentation in the area. This observation is particularly important in this area where the Deep Western Boundary Current can have an effect on sediment redistribution. 4. Methods [16] Six cruises were carried out over the course of 1 year (Tables 1 and 2) to obtain living (stained) benthic foraminifera and a time series of organic carbon flux. Benthic foraminifera were obtained with a Multicorer for all samples except those in March and one core in October when a Soutar Box Corer was used. We have found from past experience that the Soutar Corer obtains a sample with an undisturbed sediment-water interface [Corliss and Emerson, 1990; McCorkle et al., 1990] and used this corer when weather conditions precluded recovery of sediments with the Multicorer. Sediment samples were not obtained during the February 1996 cruise because of ship equipment problems. Ten cm diameter cores were subsampled at 0.5 cm intervals from 0 to 3 cm and at 1 cm intervals from 3 to 15 cm and stored in a buffered seawater solution with 4% formalin. This study is based on samples from the and 0 1 cm intervals. Samples from the deeper intervals are not analyzed because of time constraints but were archived for future study. Our assumption was that the largest impact of seasonal flux of organic carbon would be on the cm interval, rather than at deeper depths within the sediments. In addition, previous d 13 C data from live specimens show relatively constant values, regardless of the sample depth interval [McCorkle et al., 1997]. In the laboratory, Rose Bengal stain was added to the samples, and each sample was left for a minimum of 7 days before processing [Corliss and Emerson, 1990]. The sediment volume for each sample was determined by subtracting the amount of seawater, formalin, and stain added during processing from the total volume. [17] Stained specimens are recognized as those having bright red or violet coloration in at least one chamber. Specimens with a tint of pink color over the entire test reflecting an organic membrane, spots of red color due to the presence of particles of organic matter, or a thin ribbonlike structure reflecting a worm living in a dead foraminiferal shell were not counted. Rose Bengal is a protein stain that has been widely used in benthic ecological studies for the identification of live organisms. The method does have its limitations, however, since it has been shown to stain dead foraminifera up to 4 weeks after the death of an organism [Bernhard, 1988]. Because of this, we used a conservative interpretation of the staining technique by assuming that stained specimens reflect protoplasm-containing tests which are either alive at the time of collection or have been alive in the recent past. Rose Bengal stain is a suitable stain for this work since our previous work, as well as other studies [Gooday, 1988; Gooday and Lambshead, 1989; Silva et al., 1996; Bernhard and Reimers, 1992; Buzas, 1993], has used this stain and shown changes in foraminiferal standing stocks and species abundances over intervals of only a few months. [18] Once a sample has been stained, it is sieved over 63 and 150 mm sieves, and each size fraction is stored in a 4% formalin solution. The mm fraction is stored for future study; the >150 mm fraction is picked wet in a gridded petri dish, and the specimens are placed on a micropaleontological slide and sorted by species. In this paper, isotopic data are presented for H. elegans, dominant at the 3010 m site and common at the 2430 m site, and U. peregrina, dominant at the 2430 m site, as well as for P. wuellerstorfi from the 3010 m site. [19] The oxygen and carbon isotopic compositions of stained specimens (Table 3) were determined at the Woods Hole Oceanographic Institution in W. Curry s laboratory using a Finnigan MAT 252 Mass Spectrometer with a Kiel Carbonate Preparation Device. The precision for carbon is

16 8-16 CORLISS ET AL.: d 13 C TIME SERIES OF BENTHIC FORAMINIFERA Figure 2. Scanning electron micrographs of H. elegans and U. peregrina with the length measurement taken of each specimen indicated by the white bar. ±0.03%, and for oxygen it is ±0.08%. All isotopic values are reported as per mil differences from the Peedee belemnite (PDB) international standard. [20] All specimens were measured (Figure 2) and grouped into 100 mm size classes for isotopic analysis. The measurements were also used to assess changes in population structure during the 1 year interval, which will be reported elsewhere. Most isotopic measurements are based on the analysis of single specimens with a minimum weight of 15 mg; specimens >350 mmofh. elegans and >450 mmfor U. peregrina were all analyzed as single specimens, and data from smaller size classes are based on two to three specimens. [21] In order to estimate the standard deviations assigned to the various factors in the data for a given species a nested mixed effects model [Hocking, 1985] was fit to the data. This model treats the measured response as a sum of effects due to cruise t i, core c j(i), subcore s k( j) and noise e ijkl so that y ijkl = t i + c j(i) + s k( j) + e ijkl, where i indexes cruises, j indexes cores, k indexes subcores, and l indexes replicates within subcore. The notation j(i) and k( j) reminds us that the cores j are nested within cruises i, and the subcores k are nested within cores j. In addition, the core values are modeled as independent draws from a N(0, s c 2 ) distribution, the subcore values are modeled as independent draws from a N(0, s s 2 ) distribution, and the noise components e ijkl are modeled as independent draws from a N(0, s e 2 ) distribution. Variance estimates for the model were obtained using proc mixed in SAS, version 6.2 (See Littell et al. [1996, section 4.4] for an example). This procedure makes use of maximum likelihood, and therefore the likelihood ratio test is appropriate for testing for the presence of nonzero variance components. [22] The carbon isotopic composition of the bottom water was determined on samples obtained from a Niskin bottle attached to the frame of the corer and rigged to trip when the corer hit the bottom. Small samples (5 ml) were sealed into prepoisoned glass ampules immediately upon core recovery using methods developed for pore water sampling [McCorkle et al., 1995, 1997]. The dissolved inorganic carbon was extracted on shore, and the isotopic composition of the extracted CO 2 was determined on the VG-PRISM mass spectrometer at the National Ocean Sciences Accelerator Mass Spectrometer Facility at the Woods Hole Oceanographic Institution. The standard deviation of replicate bottom water samples (collection, extraction, and analysis) averaged ±0.05%. Figure 3. A record of organic carbon flux (mg m 2 d 1 ) at 3096 m from February 1996 to January Vertical lines indicate the time of the six cruises with the cruise numbers shown. Note the maxima in organic carbon flux in late April and from middle August through October. The trap was recovered and redeployed in July The record from February to July is based on an 8 day sampling interval and from July to January on an 8.5 day interval.

Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability

Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability Marine Micropaleontology 58 (2006) 159 183 www.elsevier.com/locate/marmicro Stable oxygen and carbon isotopes of live benthic foraminifera from the Bay of Biscay: Microhabitat impact and seasonal variability

More information

6.16 Tracers of Past Ocean Circulation

6.16 Tracers of Past Ocean Circulation 6.16 J. Lynch-Stieglitz Columbia University, Palisades, NY, USA 6.16.1 INTRODUCTION 433 6.16.2 NUTRIENT WATER MASS TRACERS 434 6.16.2.1 Carbon Isotopes 434 6.16.2.1.1 Controls on d 13 C of oceanic carbon

More information

11. OXYGEN AND CARBON ISOTOPIC VARIATION IN PLIOCENE BENTHIC FORAMINIFERS OF THE EQUATORIAL ATLANTIC 1

11. OXYGEN AND CARBON ISOTOPIC VARIATION IN PLIOCENE BENTHIC FORAMINIFERS OF THE EQUATORIAL ATLANTIC 1 Ruddiman, W., Sarnthein M., et al., 1989 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 108 11. OXYGEN AND CARBON ISOTOPIC VARIATION IN PLIOCENE BENTHIC FORAMINIFERS OF THE EQUATORIAL

More information

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson Objectives: Introduces students to the different kinds of ice found in Antarctica, Students will become familiar

More information

COMPARISONS OF DISTRIBUTIONS AND ISOTOPIC GEOCHEMISTRY OF BENTHIC FORAMINIFERA FROM SEEP AND NON-SEEP ENVIRONMENTS, OFFSHORE OF COSTA RICA.

COMPARISONS OF DISTRIBUTIONS AND ISOTOPIC GEOCHEMISTRY OF BENTHIC FORAMINIFERA FROM SEEP AND NON-SEEP ENVIRONMENTS, OFFSHORE OF COSTA RICA. COMPARISONS OF DISTRIBUTIONS AND ISOTOPIC GEOCHEMISTRY OF BENTHIC FORAMINIFERA FROM SEEP AND NON-SEEP ENVIRONMENTS, OFFSHORE OF COSTA RICA A thesis Presented to The College of Graduate and Professional

More information

Response of Benthic Foraminifera to Organic Carbon Accumulation Rates in the Okinawa Trough

Response of Benthic Foraminifera to Organic Carbon Accumulation Rates in the Okinawa Trough Journal of Oceanography, Vol. 53, pp. 411 to 420. 1997 Response of Benthic Foraminifera to Organic Carbon Accumulation Rates in the Okinawa Trough WAHYUDI* and MASAO MINAGAWA Graduate School of Environmental

More information

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) Ocean 421 Your Name Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) 1. Due to the water molecule's (H 2 O) great abundance in

More information

Bruce Hayward Corliss Education Employment Research Interests

Bruce Hayward Corliss Education Employment Research Interests Bruce Hayward Corliss Professor Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, North Carolina 27708 and Director, Duke/University of North Carolina Oceanographic

More information

Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic

Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic PALEOCEANOGRAPHY, VOL. 19,, doi:10.1029/2004pa001029, 2004 Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic Lloyd D. Keigwin

More information

2001 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Newfoundland Region

2001 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Newfoundland Region Stock Status Report G2-2 (2) 1 State of the Ocean: Chemical and Biological Oceanographic Conditions in the Background The Altantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of

More information

INSIGHTS INTO PARTICLE FORMATION AND REMINERALIZATION USING THE SHORT-LIVED RADIONUCLIDE, THORUIM-234 LA Woods Hole, MA 02543

INSIGHTS INTO PARTICLE FORMATION AND REMINERALIZATION USING THE SHORT-LIVED RADIONUCLIDE, THORUIM-234 LA Woods Hole, MA 02543 1 1 2 3 4 INSIGHTS INTO PARTICLE FORMATION AND REMINERALIZATION USING THE SHORT-LIVED RADIONUCLIDE, THORUIM-234 Kanchan Maiti 1,2, Claudia R. Benitez-Nelson 3 and Ken O. Buesseler 2 5 6 7 8 9 10 1 Department

More information

The North Atlantic Bloom: Species composition and vertical fluxes

The North Atlantic Bloom: Species composition and vertical fluxes The North Atlantic Bloom: Species composition and vertical fluxes T. Rynearson Graduate School of Oceanography, University of Rhode Island North Atlantic-Arctic ecocsystems Develop a process-based understanding

More information

Glacial water mass geometry and the distribution of D 13 Cof2CO 2 in the western Atlantic Ocean

Glacial water mass geometry and the distribution of D 13 Cof2CO 2 in the western Atlantic Ocean PALEOCEANOGRAPHY, VOL. 20,, doi:10.1029/2004pa001021, 2005 Glacial water mass geometry and the distribution of D 13 Cof2CO 2 in the western Atlantic Ocean W. B. Curry and D. W. Oppo Department of Geology

More information

SCOPE 35 Scales and Global Change (1988)

SCOPE 35 Scales and Global Change (1988) 1. Types and origins of marine sediments 2. Distribution of sediments: controls and patterns 3. Sedimentary diagenesis: (a) Sedimentary and organic matter burial (b) Aerobic and anaerobic decomposition

More information

Is methane venting at the seafloor recorded by D 13 C of benthic foraminifera shells?

Is methane venting at the seafloor recorded by D 13 C of benthic foraminifera shells? PALEOCEANOGRAPHY, VOL. 18, NO. 3, 1062, doi:10.1029/2002pa000824, 2003 Is methane venting at the seafloor recorded by D 13 C of benthic foraminifera shells? M. E. Torres, 1 A. C. Mix, 1 K. Kinports, 1

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 4, Number 12 20 December 2003 1106, doi:10.1029/2003gc000595 ISSN: 1525-2027 Relationships

More information

The Water Planet Ch. 22

The Water Planet Ch. 22 The Water Planet Ch. 22 What is Oceanography? the study of the Earth s oceans using chemistry, biology, geology, and physics. Oceans cover 70% of the Earth s surface Ocean Research 22.1 The use of submarines

More information

Chapter 14 Ocean Particle Fluxes Jim Murray (5/7/01) Univ. Washington

Chapter 14 Ocean Particle Fluxes Jim Murray (5/7/01) Univ. Washington Chapter 14 Ocean Particle Fluxes Jim Murray (5/7/01) Univ. Washington The flux of particulate material to the deep sea is dominated by large rapidly settling particles, especially: zooplankton fecal pellets

More information

Geography of the world s oceans and major current systems. Lecture 2

Geography of the world s oceans and major current systems. Lecture 2 Geography of the world s oceans and major current systems Lecture 2 WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important? (in the context of Oceanography) WHY is the GEOMORPHOLOGY OF THE OCEAN FLOOR important?

More information

STABLE ISOTOPE/TEST SIZE RELATIONSHIP IN Cibicidoides wuellerstorfi

STABLE ISOTOPE/TEST SIZE RELATIONSHIP IN Cibicidoides wuellerstorfi NOTE BRAZILIAN JOURNAL OF OCEANOGRAPHY, 59(3):287-291, 2011 STABLE ISOTOPE/TEST SIZE RELATIONSHIP IN Cibicidoides wuellerstorfi Paula Franco-Fraguas*, Karen Badaraco Costa and Felipe Antonio de Lima Toledo

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION GSA Data Repository 2016346 Breathing more deeply: Deep ocean carbon storage during the mid-pleistocene climate transition Caroline H. Lear et al. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

More information

Arctic Ocean Biology. from the surface to the deep sea

Arctic Ocean Biology. from the surface to the deep sea Arctic Ocean Biology from the surface to the deep sea Christina Bienhold Helmholtz Max Planck Research Group for Deep Sea Ecology and Technology cbienhol@mpi-bremen.de ACCESS Summerschool, Bremen, Germany

More information

Biogeochemical changes over long time scales

Biogeochemical changes over long time scales Biogeochemical changes over long time scales Eric Galbraith McGill University, Montreal, Canada Overview What is a long time? Long timescale observations from marine sediments Very quick look at biogeochemical

More information

Middle Eocene western north Atlantic biostratigraphy and environmental conditions

Middle Eocene western north Atlantic biostratigraphy and environmental conditions Shari Hilding-Kronforst Shari Hilding-Kronforst is currently a Ph.D. candidate at Texas A&M University. Born in Illinois, she received a microscope at age 8 and dinosaur models at age 9. She completed

More information

M. Wary et al. Correspondence to: M. Wary

M. Wary et al. Correspondence to: M. Wary Supplement of Clim. Past, 11, 1507 1525, 2015 http://www.clim-past.net/11/1507/2015/ doi:10.5194/cp-11-1507-2015-supplement Author(s) 2015. CC Attribution 3.0 License. Supplement of Stratification of surface

More information

On the Abyssal Circulation in the Glacial Atlantic

On the Abyssal Circulation in the Glacial Atlantic 2014 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38 On the Abyssal Circulation in the Glacial Atlantic OLIVIER MARCHAL AND WILLIAM B. CURRY Woods Hole Oceanographic Institution, Woods

More information

Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p.

Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p. Physiography Ocean Provinces p. 1 Dimensions p. 1 Physiographic Provinces p. 2 Continental Margin Province p. 2 Deep-Ocean Basin Province p. 2 Mid-Ocean Ridge Province p. 3 Benthic and Pelagic Provinces

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore PL ANKTO N REVEALED A critical component of life on Earth For the

More information

A TALE OF TWO BOUNDARIES: BEGINNING AND END OF THE PALEOCENE

A TALE OF TWO BOUNDARIES: BEGINNING AND END OF THE PALEOCENE A TALE OF TWO BOUNDARIES: BEGINNING AND END OF THE PALEOCENE Ellen Thomas Geology & Geophysics, Yale University Earth & Environmental Sciences, Wesleyan University Cross sec(on benthic foraminifer Nu#allides

More information

Sediments, Sedimentation, and Paleoceanography. -Types of sediments -Distribution of ocean sediments and Processes of sedimentation -Paleoceanography

Sediments, Sedimentation, and Paleoceanography. -Types of sediments -Distribution of ocean sediments and Processes of sedimentation -Paleoceanography Sediments, Sedimentation, and Paleoceanography -Types of sediments -Distribution of ocean sediments and Processes of sedimentation -Paleoceanography Sediments Sources of sediment: 1. living organisms (biogenic:

More information

The effects of iron fertilization on carbon sequestration in the Southern Ocean

The effects of iron fertilization on carbon sequestration in the Southern Ocean The effects of iron fertilization on carbon sequestration in the Southern Ocean Ken O. Buesseler, John E. Andrews, Steven M. Pike and Matthew A. Charette Department of Marine Chemistry and Geochemistry

More information

GSA DATA REPOSITORY Table DR1 displays the station locations and number of specimens employed in each

GSA DATA REPOSITORY Table DR1 displays the station locations and number of specimens employed in each GSA DATA REPOSITORY 2010022 Beer et al. Station Locations and Number of Specimens Table DR1 displays the station locations and number of specimens employed in each aliquot. A mean of 24 specimens were

More information

Stable Isotope Tracers

Stable Isotope Tracers Stable Isotope Tracers OCN 623 Chemical Oceanography 5 March 2015 Reading: Emerson and Hedges, Chapter 5, p.134-153 (c) 2015 David Ho and Frank Sansone Outline Stable Isotopes - Introduction & Notation

More information

A bit of background on carbonates. CaCO 3 (solid)

A bit of background on carbonates. CaCO 3 (solid) A bit of background on carbonates CaCO 3 (solid) Organisms need both carbon dioxide and carbonate Kleypas et al 2005 The two pumps put CO 2 into the deep ocean The long term record of climate change Or:

More information

Ratio of coccolith CaCO 3 to foraminifera CaCO 3 in late Holocene deep sea sediments

Ratio of coccolith CaCO 3 to foraminifera CaCO 3 in late Holocene deep sea sediments PALEOCEANOGRAPHY, VOL. 24,, doi:10.1029/2009pa001731, 2009 Ratio of coccolith CaCO 3 to foraminifera CaCO 3 in late Holocene deep sea sediments Wallace Broecker 1 and Elizabeth Clark 1 Received 30 December

More information

Phytoplankton. Zooplankton. Nutrients

Phytoplankton. Zooplankton. Nutrients Phytoplankton Zooplankton Nutrients Patterns of Productivity There is a large Spring Bloom in the North Atlantic (temperate latitudes remember the Gulf Stream!) What is a bloom? Analogy to terrestrial

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Site Information: Table S1: Sites Modern Location Modern SST ( C) PO4(µM)-0m PO4(µM)-75m 130-806 0.5N, 159.5E 29.2 0.24 0.34 *(6) 154-925 4.5N, 43.5W 27.4 0.24 0.35 *(S35) 198-1208

More information

Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error

Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error of measurement (s.e.m.). 1 Supplementary Figure 2. Particle

More information

Oceans I Notes. Oceanography

Oceans I Notes. Oceanography Oceans I Notes Outlines on the front table Oceanography the science of our oceans that mixes biology, geology, chemistry, and physics (among other sciences) to unravel the mysteries of our seas. Divisions

More information

Primary Productivity (Phytoplankton) Lab

Primary Productivity (Phytoplankton) Lab Name: Section: Due Date: Lab 10A-1 Primary Productivity (Phytoplankton) Lab Before Coming to Lab: Read Chapter 13 (387-424) in Thurman & Trujillo, 11 th ed. The purpose of this lab is to familiarize you

More information

Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India

Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India The Second GEOSS Asia-Pacific Symposium, Tokyo, 14-16 th April 28 Time-series observations in the Northern Indian Ocean V.V.S.S. Sarma National Institute of Oceanography Visakhapatnam, India Seasonal variations

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Data Brief Volume 5, Number 12 30 December 2004 Q12013, doi:10.1029/2004gc000808 ISSN: 1525-2027

More information

A Broecker Brief Origin of the Atlantic s glacial age lower deep water

A Broecker Brief Origin of the Atlantic s glacial age lower deep water A Broecker Brief Origin of the Atlantic s glacial age lower deep water Today s deep Atlantic shows no hint of nutrient stratification (see Figure 1). By contrast, during the last glacial maximum (LGM),

More information

Water, that currently bathes Site 593, forms between the two fronts. Map adapted from

Water, that currently bathes Site 593, forms between the two fronts. Map adapted from Supplementary Figure 1. Location bathymetry map of DSDP Site 593 (this study) in the Tasman Sea. Position of important frontal regions is also shown. Antarctic Intermediate Water, that currently bathes

More information

North Atlantic Deep Water and Climate Variability During the Younger Dryas Cold Period A.C. Elmore and J.D. Wright

North Atlantic Deep Water and Climate Variability During the Younger Dryas Cold Period A.C. Elmore and J.D. Wright GSA DATA REPOSITORY 2011052 North Atlantic Deep Water and Climate Variability During the Younger Dryas Cold Period A.C. Elmore and J.D. Wright APPENDIX 1: Methods Data Methods: Jumbo piston core 11JPC

More information

Lecture 16 - Stable isotopes

Lecture 16 - Stable isotopes Lecture 16 - Stable isotopes 1. The fractionation of different isotopes of oxygen and their measurement in sediment cores has shown scientists that: (a) ice ages are common and lasted for hundreds of millions

More information

5 Stable and radioactive isotopes

5 Stable and radioactive isotopes 5 Stable and radioactive isotopes Outline 1 Stable isotopes Measuring stable isotopic abundances Equilibrium isotope effects Kinetic isotope effects Rayleigh distillation Isotopes: a mainstay of chemical

More information

Global phosphorus cycle

Global phosphorus cycle Global phosphorus cycle OCN 623 Chemical Oceanography 11 April 2013 2013 Arisa Okazaki and Kathleen Ruttenberg Outline 1. Introduction on global phosphorus (P) cycle 2. Terrestrial environment 3. Atmospheric

More information

Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic

Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic PALEOCEANOGRAPHY, VOL. 17, NO. 3, 1038, 10.1029/2000PA000598, 2002 Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic

More information

BIOLOGICAL OCEANOGRAPHY

BIOLOGICAL OCEANOGRAPHY BIOLOGICAL OCEANOGRAPHY AN INTRODUCTION 0 ^ J ty - y\ 2 S CAROL M. LALLI and TIMOTHY R. PARSONS University of British Columbia, Vancouver, Canada PERGAMON PRESS OXFORD NEW YORK SEOUL TOKYO ABOUT THIS VOLUME

More information

Soft-shelled benthic foraminifera from a hadal site (7800 m water depth) in the Atacama Trench (SE Pacific): preliminary observations

Soft-shelled benthic foraminifera from a hadal site (7800 m water depth) in the Atacama Trench (SE Pacific): preliminary observations Journal of Micropalaeontology, 21: 131 135. 0262-821X/02 $15.00 2002 The Micropalaeontological Society Soft-shelled benthic foraminifera from a hadal site (7800 m water depth) in the Atacama Trench (SE

More information

Development of the Global Environment

Development of the Global Environment Development of the Global Environment G302: Spring 2004 A course focused on exploration of changes in the Earth system through geological history Simon C. Brassell Geological Sciences simon@indiana.edu

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 7, Number 12 15 December 2006 Q12003, doi:10.1029/2006gc001323 ISSN: 1525-2027 Click

More information

TRADITIONAL AND EMERGING GEOCHEMICAL PROXIES IN FORAMINIFERA

TRADITIONAL AND EMERGING GEOCHEMICAL PROXIES IN FORAMINIFERA Journal of Foraminiferal Research, v. 40, no. 2, p. 165 192, April 2010 TRADITIONAL AND EMERGING GEOCHEMICAL PROXIES IN FORAMINIFERA MIRIAM E. KATZ 1,6,BENJAMIN S. CRAMER 2,ALLISON FRANZESE 3,BÄRBEL HÖNISCH

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I Reservoirs and Fluxes OCN 401 - Biogeochemical Systems 13 November 2012 Reading: Schlesinger, Chapter 11 Outline 1. Overview of global C cycle 2. Global C reservoirs 3. The contemporary

More information

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas Jacqueline M. Grebmeier 1, Lee W. Cooper 1, and Karen E. Frey 2 1 University

More information

Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events

Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2045 Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events Jean Lynch-Stieglitz 1, Matthew W. Schmidt 2, L. Gene Henry 1,7,

More information

Supplementary Figure 1 Surface distribution and concentration of the dinoflagellate N. scintillans

Supplementary Figure 1 Surface distribution and concentration of the dinoflagellate N. scintillans Supplementary Figure 1: Surface distribution and concentration of the dinoflagellate N. scintillans (cells l-1) in the Arabian Sea during the winter monsoons of 2000-2011 (1-100 cells l-1, 8000-10,000

More information

SCOPE 57 Particle Flux in the Ocean

SCOPE 57 Particle Flux in the Ocean SCOPE 57 Particle Flux in the Ocean Edited by VENUGOPALAN ITTEKKOT PETRA SCHAFER SCOPEIUNEP International Carbon Unit Universitat Hamburg, Germany SUSUMU HON JO Woods Hole Oceanographic Institution Woods

More information

Biological long-term experiments in 2500 m water depth at the LTER observatory HAUSGARTEN

Biological long-term experiments in 2500 m water depth at the LTER observatory HAUSGARTEN Biological long-term experiments in 2500 m water depth at the LTER observatory HAUSGARTEN T. Soltwedel, C. Hasemann, M. Jacob, I. Schewe Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

More information

Interactive comment on Ocean Biogeochemistry in the warm climate of the Late Paleocene by M. Heinze and T. Ilyina

Interactive comment on Ocean Biogeochemistry in the warm climate of the Late Paleocene by M. Heinze and T. Ilyina Clim. Past Discuss., www.clim-past-discuss.net/10/c1158/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Climate of the Past Discussions Open Access comment

More information

Factors impacting the formation & modification of sinking oil snow : Processes and Pathways

Factors impacting the formation & modification of sinking oil snow : Processes and Pathways Factors impacting the formation & modification of sinking oil snow : Processes and Pathways K.L. Daly 1, U. Passow 2, C. Hu 1, N. Prouty 3, F. Mienis 4,A. Remsen 1, K. Kramer 1, and S. Murasko 5 1 University

More information

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions OCN 623 Chemical Oceanography Reading: Libes, Chapters 15 and 16 Outline I. Deep sea sedimentation Detrital sediments

More information

XI. the natural carbon cycle. with materials from J. Kasting (Penn State)

XI. the natural carbon cycle. with materials from J. Kasting (Penn State) XI. the natural carbon cycle with materials from J. Kasting (Penn State) outline properties of carbon the terrestrial biological cycle of carbon the ocean cycle of carbon carbon in the rock cycle overview

More information

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate Tracers 1. Conservative tracers Temperature, salinity, SiO 2, Nd, 18 O 2. Non-conservative tracers dissolved oxygen, phosphate, nitrate Temperature itself is a tracer but other tracers (like oxygen isotopes)

More information

Carbon Dioxide, Alkalinity and ph

Carbon Dioxide, Alkalinity and ph Carbon Dioxide, Alkalinity and ph OCN 623 Chemical Oceanography 15 March 2018 Reading: Libes, Chapter 15, pp. 383 389 (Remainder of chapter will be used with the classes Global Carbon Dioxide and Biogenic

More information

Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans

Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans PALEOCEANOGRAPHY, VOL. 21,, doi:10.1029/2005pa001158, 2006 Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans Yair Rosenthal,

More information

Ice Ages and Changes in Earth s Orbit. Topic Outline

Ice Ages and Changes in Earth s Orbit. Topic Outline Ice Ages and Changes in Earth s Orbit Topic Outline Introduction to the Quaternary Oxygen isotopes as an indicator of ice volume Temporal variations in ice volume Periodic changes in Earth s orbit Relationship

More information

A multi-proxy study of planktonic foraminifera to identify past millennialscale. climate variability in the East Asian Monsoon and the Western Pacific

A multi-proxy study of planktonic foraminifera to identify past millennialscale. climate variability in the East Asian Monsoon and the Western Pacific This pdf file consists of all pages containing figures within: A multi-proxy study of planktonic foraminifera to identify past millennialscale climate variability in the East Asian Monsoon and the Western

More information

Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy

Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 16, NO. 0, 10.1029/2001GB001634, 2002 Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy Figen

More information

1 Carbon - Motivation

1 Carbon - Motivation 1 Carbon - Motivation Figure 1: Atmospheric pco 2 over the past 400 thousand years as recorded in the ice core from Vostok, Antarctica (Petit et al., 1999). Figure 2: Air-sea flux of CO 2 (mol m 2 yr 1

More information

Early diagenesis in marine sediments

Early diagenesis in marine sediments Early diagenesis in marine sediments Why study this part of the ocean? Particle flux to the sea floor ocean surface sediments early diagenesis layer Biogeochemical reactions Why study this part of the

More information

Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr

Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr ELSEVIER Marine Micropaleontology 38 (2000) 119 147 www.elsevier.com/locate/marmicro Abyssal benthic foraminifera from the northwestern Pacific (Shatsky Rise) during the last 298 kyr Ken ichi Ohkushi a,ł,

More information

Climate Variability Studies in the Ocean

Climate Variability Studies in the Ocean Climate Variability Studies in the Ocean Topic 1. Long-term variations of vertical profiles of nutrients in the western North Pacific Topic 2. Biogeochemical processes related to ocean carbon cycling:

More information

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations?

Actual bathymetry (with vertical exaggeration) Geometry of the ocean 1/17/2018. Patterns and observations? Patterns and observations? Patterns and observations? Patterns and observations? Observations? Patterns? Observations? Patterns? Geometry of the ocean Actual bathymetry (with vertical exaggeration) Continental Continental Basin

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 5, Number 4 16 April 2004 Q04004, doi:10.1029/2003gc000629 ISSN: 1525-2027 Relationships

More information

THE IMPACT OF BIOTURBATION ON AMS 14C DATES ON HANDPICKED FORAMINIFERA: A STATISTICAL MODEL MICHAEL ANDREE

THE IMPACT OF BIOTURBATION ON AMS 14C DATES ON HANDPICKED FORAMINIFERA: A STATISTICAL MODEL MICHAEL ANDREE [RADIOCARBON, VOL 29, No. 2, 1987, P 169-175] THE IMPACT OF BIOTURBATION ON AMS 14C DATES ON HANDPICKED FORAMINIFERA: A STATISTICAL MODEL MICHAEL ANDREE Physics Institute, ljniversity of Berne, Switzerland

More information

Ocean & climate: an introduction and paleoceanographic perspective

Ocean & climate: an introduction and paleoceanographic perspective Ocean & climate: an introduction and paleoceanographic perspective Edouard BARD Chaire de l évolution du climat et de l'océan du Collège de France CEREGE, UMR CNRS, AMU, IRD, CdF Aix-en-Provence The ocean

More information

Geol. 656 Isotope Geochemistry

Geol. 656 Isotope Geochemistry STABLE ISOTOPES IN PALEOCLIMATOLOGY I INTRODUCTION At least since the classic work of Louis Agassiz in 1840, geologists have contemplated the question of how the Earth s climate might have varied in the

More information

Scholarship 2015 Earth and Space Science

Scholarship 2015 Earth and Space Science S 93104R Scholarship 2015 Earth and Space Science 2.00 p.m. Tuesday 1 December 2015 RESOURCE BOOKLET Refer to this booklet to answer the questions for Scholarship Earth and Space Science 93104. Check that

More information

Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean

Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 16, NO. 4, 1087, doi:10.1029/2001gb001722, 2002 Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean Roger Francois, Susumu Honjo, Richard

More information

Dr. Mark Leckie Scientist

Dr. Mark Leckie Scientist Wanted: Dead and Well-Preserved... Mohawk Guy and his Band of Neogene Planktic Foraminifer Friends Dr. Mark Leckie Scientist Introduction Dr. Mark Leckie has a passion for science and education with a

More information

Paleoclimate indicators

Paleoclimate indicators Paleoclimate indicators Rock types as indicators of climate Accumulation of significant thicknesses of limestone and reef-bearing limestone is restricted to ~20º + - equator Gowganda tillite, Ontario

More information

The Proterozoic Eon (2500 ma to 540 ma)

The Proterozoic Eon (2500 ma to 540 ma) The Proterozoic Eon (2500 ma to 540 ma) December November October September August July June May April March February January 0 Ma Phanerozoic C M P 540 Ma oldest shelly fossils Proterozoic 2500 Ma first

More information

High tide dispersion of marine benthic foraminifera into brackish waters: implications for dispersion processes during sea-level rise

High tide dispersion of marine benthic foraminifera into brackish waters: implications for dispersion processes during sea-level rise Laguna (2010) 17: 15-21 ISSN 2185-2995 High tide dispersion of marine benthic foraminifera into brackish waters: implications for dispersion processes during sea-level rise Ritsuo Nomura 1 Koji Seto 2

More information

2 Respiration patterns in the deep ocean

2 Respiration patterns in the deep ocean 2 Respiration patterns in the deep ocean Johan Henrik Andersson, Jeroen W. M. Wijsman, Peter M. J. Herman, Jack J. Middelburg, Karline Soetaert and Carlo Heip, 2004, Geophysical Research Letters, 31, L03304,

More information

OCEANOGRAPHY CURRICULUM. Unit 1: Introduction to Oceanography

OCEANOGRAPHY CURRICULUM. Unit 1: Introduction to Oceanography Chariho Regional School District - Science Curriculum September, 2016 OCEANOGRAPHY CURRICULUM Unit 1: Introduction to Oceanography OVERVIEW Summary In this unit students will be introduced to the field

More information

CHAPTER 3 SPATIAL DISTRIBUTION OF INTERTIDAL BENTHIC FORAMINIFERA IN THE DUTCH WADDEN SEA. with IAP Duijnstee and GJ van der Zwaan

CHAPTER 3 SPATIAL DISTRIBUTION OF INTERTIDAL BENTHIC FORAMINIFERA IN THE DUTCH WADDEN SEA. with IAP Duijnstee and GJ van der Zwaan SPATIAL DISTRIBUTION OF FORAMINIFERA 21 CHAPTER 3 SPATIAL DISTRIBUTION OF INTERTIDAL BENTHIC FORAMINIFERA IN THE DUTCH WADDEN SEA with IAP Duijnstee and GJ van der Zwaan ABSTRACT Most spatial distributions

More information

Short summary of Project 1 activity during research cruise with RV Poseidon (P408-2b)

Short summary of Project 1 activity during research cruise with RV Poseidon (P408-2b) Short summary of Project 1 activity during research cruise with RV Poseidon (P408-2b) Chief scientist: Dr. Mark Schmidt Shipboard scientific party: Dr. Peter Linke, Dr. Daniel McGinnis, Dr. Alaa Al-Barakati,

More information

Sensitivity of D 15 N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean

Sensitivity of D 15 N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 17, NO. 3, 1081, doi:10.1029/2002gb001973, 2003 Sensitivity of D 15 N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion

More information

Sediment trap time series from the North Pacific

Sediment trap time series from the North Pacific Sediment trap time series from the North Pacific Ocean David Timothy data analyses/ presentation CS Wong Program organiser Frank Whitney lab and sampling logistics Janet Barwell-Clarke John Page Linda

More information

Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea

Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea 278 Research in Marine Sciences Volume 3, Issue 1, 2018 Pages 278-286 Seasonal variations of vertical structure in the deep waters of the Southern Caspian Sea Somayeh Nahavandian 1,*, and Alireza Vasel

More information

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs

Figure 14 p.385 5/11/2016. Plankton Production and Food Webs. Plankton Production and Food Webs Plankton Production and Food Webs (Chapter 12) What is Plankton? Phytoplankton and Zooplankton Food Web: All the feeding relationships of a community including production, consumption, decomposition and

More information

Homework 5: Background Ocean Water Properties & Stratification

Homework 5: Background Ocean Water Properties & Stratification 14 August 2008 MAR 110 HW5: Ocean Properties 1 Homework 5: Background Ocean Water Properties & Stratification The ocean is a heterogeneous mixture of water types - each with its own temperature, salinity,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO168 "Strength and geometry of the glacial Atlantic Meridional Overturning Circulation" S2 Map of core locations Core locations of the Holocene and LGM 231 / 23

More information

Ocean 621 4/27/09. Pelagic-benthic coupling (especially high latitutudes) a) Introduction. 1. Definitions 2. Why care 3. General principles

Ocean 621 4/27/09. Pelagic-benthic coupling (especially high latitutudes) a) Introduction. 1. Definitions 2. Why care 3. General principles Ocean 621 4/27/09 Pelagic-benthic coupling (especially high latitutudes) a) Introduction 1. Definitions 2. Why care 3. General principles b) Pelagic-benthic coupling at high latitudes 1. Nature of the

More information

BI 101: Marine Biology

BI 101: Marine Biology WELCOME BI 101: Marine Biology Contact Info 1. Full Name 2. Student I.D. Number 3. Major 4. Email address 5. Preferred phone contact 6. Have you taken any other BI 101 courses at LBCC? 7. Why did you decide

More information

Radiocarbon LATE QUATERNARY PTEROPOD PRESERVATION IN EASTERN NORTH ATLANTIC SEDIMENTS IN RELATION TO CHANGING CLIMATE

Radiocarbon LATE QUATERNARY PTEROPOD PRESERVATION IN EASTERN NORTH ATLANTIC SEDIMENTS IN RELATION TO CHANGING CLIMATE [RADJOCARBON, VOL. 33, NO. 3, 1991, P. 277-282] Radiocarbon 1991 LATE QUATERNARY PTEROPOD PRESERVATION IN EASTERN NORTH ATLANTIC SEDIMENTS IN RELATION TO CHANGING CLIMATE G. M. GANSSEN, S. R. TROELSTRA

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 8, Number 3 15 March 2007 Q03P21, doi:10.1029/2006gc001425 ISSN: 1525-2027 New spatial

More information

Geoffrey (Jake) Gebbie Research Associate, Harvard University Visiting Scientist, MIT

Geoffrey (Jake) Gebbie Research Associate, Harvard University Visiting Scientist, MIT Our basic understanding of past ocean circulation Geoffrey (Jake) Gebbie Research Associate, Harvard University Visiting Scientist, MIT ACDC Summer School, 5 June 2009 The view down a borehole (Helen Freeman,

More information