Lesson 11. Functional Genomics I: Microarray Analysis

Size: px
Start display at page:

Download "Lesson 11. Functional Genomics I: Microarray Analysis"

Transcription

1 Lesson 11 Functional Genomics I: Microarray Analysis

2 Transcription of DNA and translation of RNA vary with biological conditions

3 3 kinds of microarray platforms Spotted Array - 2 color - Pat Brown (Stanford) Synthesized Oligonucleotide - 1 color Affymetrix Synthesized Oligonucleotide - 2 color Agilent

4 Spotted (2 Color) Arrays

5 Agilent 2 color Arrays Synthesized oligonucleotides like Affymetrix arrays but 2 colors like spotted arrays.

6 Concentrations from 2 Color Experiments RNA(Experiment) RNA(Control) = IntensityRed IntensityGreen

7

8 Gene Expression Arrays Measurement of mrna levels for all genes.

9 Gene Expression Arrays

10 Affymetrix 1 Color Arrays

11 Spotted vs Affymetrix vs Agilent Spotted Arrays: Advantages: Long pieces. Disadvantages: Uncertainties in spot reading. Affymetrix Arrays: Advantages: Probes in same place, can be read precisely. Disadvantages: Short pieces. Must assemble probe information. Agilent: Advantages: Medium pieces. Advantages of Affymetrix and Agilent. Disadvantages: None in principle.

12 Concentrations from 1 Color Experiments RNA experiment RNA control = Intensity experiment Intensity control

13 Probeset intensity as an average of probe intensities Iprobeset = j=1,k log 2 (PM j MM j ) k

14 Problems with averaging probes 1. Var(probes within probeset) > Var(The same probe across slides) 2. MM>PM (40% of slides)

15 Problems to be solved in chip reading 1. Highly variable probe intensities compared to probes set intensity. 2. Correct for nonspecific binding realistically. 3. Correct for background within chips. 4. Correct for intensity variation between chips.

16 Steps in RMA 1. Background correction- in each chip. 2. Normalization - between chips. 3. Summarization of probes to probe sets.

17 RMA Background Correction

18 Boxplot of Unnormalized Chips

19 Quantile Normalization

20 Intensity Plots

21 Contributions to probe intensity Y ijn = µ in +α jn +ε ijn

22 Constraint on probe-effects α 0 jn j =1, J

23 1 probeset, 3 probes/probeset 2 chips Simple Example Y 11 =µ 1 + α 1 "Y 21 =µ 2 + α 1" Y 12 =µ 1 + α 2 " Y 22 =µ 2 + α 2" Y 13 =µ 1 + α 3 " Y 23 =µ 2 + α 3" α 1 + α 2 + α 3 =0 5 unknowns, 7 equations

24 Median polish algorithm Y ijn = µ in +α jn +ε ijn

25 GCRMA Similar to RMA but has a probe composition dependent background correction. GC base-pair 3 hydrogen bonds. AT base-pair 2 hydrogen bonds. Non-specific binding to GC higher than to AT. GCRMA implements RMA-type background correction dependent on GC content. Mismatch intensities of probes with the same GC content are pooled.

26 Expression ratios x 2 2,OR x 2 1 x x 2 1 1

27 Need for a measure of variability Experiment Replicate A Replicate B Average 1 2 x x 2 x 1 = " 1+15 % $ ' # 2 & = " % $ ' # 2 & " 16 % $ ' # 2 & = 8 " 8 % 4 = 2 $ ' # 2 &

28 Approximation of the normal distribution

29 Equation of the normal distribution σ 1 2π e µ= mean(average) σ= (x µ ) 2 2σ standard deviation

30 Effect of the standard deviation

31 Standard deviation and percent

32 Estimates of the mean and standard deviation of the mean x = x i i =1, N N s x = (x i x ) 2 i =1, N N( N 1)

33 Standard deviation of the mean σ = x σ n 68% of all of the means within 1 standard deviation of the mean. 95% of all of the means within 2 standard deviation of the mean.

34 The z distribution z = x µ s x

35 x Does experimental CO 2 =10.00mg/m 3 = 10.43( mg µ = 10.00( mg s x = 0.24( mg / m 3 / m / m 3 3 ) ) ) z = = 1.79 p( z 1.79 AND z 1.79) =

36 The t-distribution t = x µ s x

37 The t-distribution of the difference of 2 means t = x 2 x 1 s p 2 2 N 1 + s p N 2 s 2 p = i=1,n 1 (x i1 x 1 ) 2 N 1 + N i=1,n 2 (x i2 x 2 ) 2 N 1 + N 2 2 t = # % $ 1 N N 2 # &% (% '% $ i =1, N 1 x 2 x 1 (x i1 x 1 ) 2 N 1 + N (x i 2 x 2 ) 2 & i =1, N 2 ( ( N 1 + N 2 2 ( '

38 Problems applying t-test to microarrays 1. Multiple tests - thousands of genes. 2. Multiple conditions- more than 2 conditions. Solution: LIMMA LInear Models for Microarray Analysis.

39 The log transformation of x > log 2 (x) intensities # x m = log x log x = log % $ x 1 & ( '

40 The t-distribution of the difference of 2 means t = x 2 x 1 s p 2 2 N 1 + s p N 2 s 2 p = i=1,n 1 (x i1 x 1 ) 2 N 1 + N i=1,n 2 (x i2 x 2 ) 2 N 1 + N 2 2 t = # % $ 1 N N 2 # &% (% '% $ i =1, N 1 x 2 x 1 (x i1 x 1 ) 2 N 1 + N (x i 2 x 2 ) 2 & i =1, N 2 ( ( N 1 + N 2 2 ( '

41 Empirical Bayesian correction t = x 2 x 1 s 2 2 p + s p + s N N Adding S 0 Denominator increases. t decreases. p increases. #false positives decreases.

42 Empirical Bayesian Correction Frequentist Statistics- Standard deviation estimated from data. Bayesian Statistics- Prior estimate of standard deviation modifed from data. Empirical Bayesian Statistics- Prior estimate of standard deviation obtained from from all data and modified for individual data.

43 Benjamini-Hochberg False Discovery Correction Uncorrected p-value= rate of false discovery if only 1 test. Corrected p-value= rate of false discovery if all of the genes above it on the p-value list were tested and accepted.

44 False Discovery vs Raw Pvalue Raw p-value is the probability of getting the t-statistic or a larger one by chance if there is no difference. False discovery rate is the proportion of differences that are accepted at or above a given p-value for which there is really no difference.

45 Multiple Conditions t = # % $ 1 N N 2 # &% (% '% $ i =1, N 1 x 2 x 1 (x i1 x 1 ) 2 N 1 + N i =1, N 2 (x i 2 x 2 ) 2 N 1 + N 2 2 & ( ( ( '

46 Comparing 2 conditions out of 3 t = # % $ 1 N N 2 # &% (% '% $ i =1, N 1 (x i1 x 1 ) 2 N 1 + N 2 + N x 2 x 1 i =1, N 2 (x i 2 x 2 ) 2 N 1 + N 2 + N (x i 3 x 3 ) 2 & i =1, N 3 ( ( N 1 + N 2 + N 3 3( '

47 Cutoffs for differential expression B = ln(odds of differential expression) Cutoff1: p fdr.05 Cutoff2: B = ln(odds) 0 (Cutoff2: odds 1) Cutoff3: p raw.001 But take FDR into account!

48 AffylmGUI R (Statistical Programming Language) Bioconductor (R Programs for Biology) LIMMA AffylmGUI 1 Color Limma GUI 2 Color

Low-Level Analysis of High- Density Oligonucleotide Microarray Data

Low-Level Analysis of High- Density Oligonucleotide Microarray Data Low-Level Analysis of High- Density Oligonucleotide Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley UC Berkeley Feb 23, 2004 Outline

More information

Androgen-independent prostate cancer

Androgen-independent prostate cancer The following tutorial walks through the identification of biological themes in a microarray dataset examining androgen-independent. Visit the GeneSifter Data Center (www.genesifter.net/web/datacenter.html)

More information

Probe-Level Analysis of Affymetrix GeneChip Microarray Data

Probe-Level Analysis of Affymetrix GeneChip Microarray Data Probe-Level Analysis of Affymetrix GeneChip Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley University of Minnesota Mar 30, 2004 Outline

More information

Probe-Level Analysis of Affymetrix GeneChip Microarray Data

Probe-Level Analysis of Affymetrix GeneChip Microarray Data Probe-Level Analysis of Affymetrix GeneChip Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Biostatistics, University of California, Berkeley Memorial Sloan-Kettering Cancer Center July

More information

Microarray Preprocessing

Microarray Preprocessing Microarray Preprocessing Normaliza$on Normaliza$on is needed to ensure that differences in intensi$es are indeed due to differen$al expression, and not some prin$ng, hybridiza$on, or scanning ar$fact.

More information

Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments

Linear Models and Empirical Bayes Methods for. Assessing Differential Expression in Microarray Experiments Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments by Gordon K. Smyth (as interpreted by Aaron J. Baraff) STAT 572 Intro Talk April 10, 2014 Microarray

More information

Optimal normalization of DNA-microarray data

Optimal normalization of DNA-microarray data Optimal normalization of DNA-microarray data Daniel Faller 1, HD Dr. J. Timmer 1, Dr. H. U. Voss 1, Prof. Dr. Honerkamp 1 and Dr. U. Hobohm 2 1 Freiburg Center for Data Analysis and Modeling 1 F. Hoffman-La

More information

DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING THE FALSE DISCOVERY RATE FOR MICROARRAY DATA

DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING THE FALSE DISCOVERY RATE FOR MICROARRAY DATA University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Statistics Statistics, Department of 2009 DETECTING DIFFERENTIALLY EXPRESSED GENES WHILE CONTROLLING

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Empirical Bayes Moderation of Asymptotically Linear Parameters

Empirical Bayes Moderation of Asymptotically Linear Parameters Empirical Bayes Moderation of Asymptotically Linear Parameters Nima Hejazi Division of Biostatistics University of California, Berkeley stat.berkeley.edu/~nhejazi nimahejazi.org twitter/@nshejazi github/nhejazi

More information

Non-specific filtering and control of false positives

Non-specific filtering and control of false positives Non-specific filtering and control of false positives Richard Bourgon 16 June 2009 bourgon@ebi.ac.uk EBI is an outstation of the European Molecular Biology Laboratory Outline Multiple testing I: overview

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2004 Paper 147 Multiple Testing Methods For ChIP-Chip High Density Oligonucleotide Array Data Sunduz

More information

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001).

Chapter 3: Statistical methods for estimation and testing. Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference: Statistical methods in bioinformatics by Ewens & Grant (2001). Chapter 3: Statistical methods for estimation and testing Key reference:

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Practical Applications and Properties of the Exponentially. Modified Gaussian (EMG) Distribution. A Thesis. Submitted to the Faculty

Practical Applications and Properties of the Exponentially. Modified Gaussian (EMG) Distribution. A Thesis. Submitted to the Faculty Practical Applications and Properties of the Exponentially Modified Gaussian (EMG) Distribution A Thesis Submitted to the Faculty of Drexel University by Scott Haney in partial fulfillment of the requirements

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Bradley Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org

More information

g A n(a, g) n(a, ḡ) = n(a) n(a, g) n(a) B n(b, g) n(a, ḡ) = n(b) n(b, g) n(b) g A,B A, B 2 RNA-seq (D) RNA mrna [3] RNA 2. 2 NGS 2 A, B NGS n(

g A n(a, g) n(a, ḡ) = n(a) n(a, g) n(a) B n(b, g) n(a, ḡ) = n(b) n(b, g) n(b) g A,B A, B 2 RNA-seq (D) RNA mrna [3] RNA 2. 2 NGS 2 A, B NGS n( ,a) RNA-seq RNA-seq Cuffdiff, edger, DESeq Sese Jun,a) Abstract: Frequently used biological experiment technique for observing comprehensive gene expression has been changed from microarray using cdna

More information

Seminar Microarray-Datenanalyse

Seminar Microarray-Datenanalyse Seminar Microarray- Normalization Hans-Ulrich Klein Christian Ruckert Institut für Medizinische Informatik WWU Münster SS 2011 Organisation 1 09.05.11 Normalisierung 2 10.05.11 Bestimmen diff. expr. Gene,

More information

cdna Microarray Analysis

cdna Microarray Analysis cdna Microarray Analysis with BioConductor packages Nolwenn Le Meur Copyright 2007 Outline Data acquisition Pre-processing Quality assessment Pre-processing background correction normalization summarization

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Gordon Smyth, WEHI Analysis of Replicated Experiments. January 2004 IMS NUS Microarray Tutorial. Some Web Sites. Analysis of Replicated Experiments

Gordon Smyth, WEHI Analysis of Replicated Experiments. January 2004 IMS NUS Microarray Tutorial. Some Web Sites. Analysis of Replicated Experiments Some Web Sites Statistical Methods in Microarray Analysis Tutorial Institute for Mathematical Sciences National University of Sinapore January, 004 Gordon Smyth Walter and Eliza Hall Institute Technical

More information

Data Preprocessing. Data Preprocessing

Data Preprocessing. Data Preprocessing Data Preprocessing 1 Data Preprocessing Normalization: the process of removing sampleto-sample variations in the measurements not due to differential gene expression. Bringing measurements from the different

More information

Laurent Gautier 1, 2. August 18 th, 2009

Laurent Gautier 1, 2. August 18 th, 2009 s Processing of Laurent Gautier 1, 2 1 DTU Multi-Assay Core(DMAC) 2 Center for Biological Sequence (CBS) August 18 th, 2009 s 1 s 2 3 4 s 1 s 2 3 4 Photolithography s Courtesy of The Science Creative Quarterly,

More information

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data

DEGseq: an R package for identifying differentially expressed genes from RNA-seq data DEGseq: an R package for identifying differentially expressed genes from RNA-seq data Likun Wang Zhixing Feng i Wang iaowo Wang * and uegong Zhang * MOE Key Laboratory of Bioinformatics and Bioinformatics

More information

Session 06 (A): Microarray Basic Data Analysis

Session 06 (A): Microarray Basic Data Analysis 1 SJTU-Bioinformatics Summer School 2017 Session 06 (A): Microarray Basic Data Analysis Maoying,Wu ricket.woo@gmail.com Dept. of Bioinformatics & Biostatistics Shanghai Jiao Tong University Summer, 2017

More information

Tools and topics for microarray analysis

Tools and topics for microarray analysis Tools and topics for microarray analysis USSES Conference, Blowing Rock, North Carolina, June, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

Technologie w skali genomowej 2/ Algorytmiczne i statystyczne aspekty sekwencjonowania DNA

Technologie w skali genomowej 2/ Algorytmiczne i statystyczne aspekty sekwencjonowania DNA Technologie w skali genomowej 2/ Algorytmiczne i statystyczne aspekty sekwencjonowania DNA Expression analysis for RNA-seq data Ewa Szczurek Instytut Informatyki Uniwersytet Warszawski 1/35 The problem

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

Processing microarray data with Bioconductor

Processing microarray data with Bioconductor Processing microarray data with Bioconductor Statistical analysis of gene expression data with R and Bioconductor University of Copenhagen Copenhagen Biocenter Laurent Gautier 1, 2 August 17-21 2009 Contents

More information

Normalization and differential analysis of RNA-seq data

Normalization and differential analysis of RNA-seq data Normalization and differential analysis of RNA-seq data Nathalie Villa-Vialaneix INRA, Toulouse, MIAT (Mathématiques et Informatique Appliquées de Toulouse) nathalie.villa@toulouse.inra.fr http://www.nathalievilla.org

More information

CMARRT: A TOOL FOR THE ANALYSIS OF CHIP-CHIP DATA FROM TILING ARRAYS BY INCORPORATING THE CORRELATION STRUCTURE

CMARRT: A TOOL FOR THE ANALYSIS OF CHIP-CHIP DATA FROM TILING ARRAYS BY INCORPORATING THE CORRELATION STRUCTURE CMARRT: A TOOL FOR THE ANALYSIS OF CHIP-CHIP DATA FROM TILING ARRAYS BY INCORPORATING THE CORRELATION STRUCTURE PEI FEN KUAN 1, HYONHO CHUN 1, SÜNDÜZ KELEŞ1,2 1 Department of Statistics, 2 Department of

More information

Analyses biostatistiques de données RNA-seq

Analyses biostatistiques de données RNA-seq Analyses biostatistiques de données RNA-seq Ignacio Gonzàlez, Annick Moisan & Nathalie Villa-Vialaneix prenom.nom@toulouse.inra.fr Toulouse, 18/19 mai 2017 IG, AM, NV 2 (INRA) Biostatistique RNA-seq Toulouse,

More information

Exam: high-dimensional data analysis January 20, 2014

Exam: high-dimensional data analysis January 20, 2014 Exam: high-dimensional data analysis January 20, 204 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question not the subquestions on a separate piece of paper. - Finish

More information

BTRY 7210: Topics in Quantitative Genomics and Genetics

BTRY 7210: Topics in Quantitative Genomics and Genetics BTRY 7210: Topics in Quantitative Genomics and Genetics Jason Mezey Biological Statistics and Computational Biology (BSCB) Department of Genetic Medicine jgm45@cornell.edu February 12, 2015 Lecture 3:

More information

Improving the identification of differentially expressed genes in cdna microarray experiments

Improving the identification of differentially expressed genes in cdna microarray experiments Improving the identification of differentially expressed genes in cdna microarray experiments Databionics Research Group University of Marburg 33 Marburg, Germany Alfred Ultsch Abstract. The identification

More information

ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences

ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences Wentao Yang October 30, 2018 1 Introduction This vignette is intended to give a brief introduction of the ABSSeq

More information

Lecture 1: The Structure of Microarray Data

Lecture 1: The Structure of Microarray Data INTRODUCTION TO MICROARRAYS 1 Lecture 1: The Structure of Microarray Data So, Why are we here? What are we trying to measure, and how? Mechanics the data files produced and used Getting numbers: normalization

More information

Journal Club: Higher Criticism

Journal Club: Higher Criticism Journal Club: Higher Criticism David Donoho (2002): Higher Criticism for Heterogeneous Mixtures, Technical Report No. 2002-12, Dept. of Statistics, Stanford University. Introduction John Tukey (1976):

More information

The miss rate for the analysis of gene expression data

The miss rate for the analysis of gene expression data Biostatistics (2005), 6, 1,pp. 111 117 doi: 10.1093/biostatistics/kxh021 The miss rate for the analysis of gene expression data JONATHAN TAYLOR Department of Statistics, Stanford University, Stanford,

More information

Single gene analysis of differential expression

Single gene analysis of differential expression Single gene analysis of differential expression Giorgio Valentini DSI Dipartimento di Scienze dell Informazione Università degli Studi di Milano valentini@dsi.unimi.it Comparing two conditions Each condition

More information

Exploratory statistical analysis of multi-species time course gene expression

Exploratory statistical analysis of multi-species time course gene expression Exploratory statistical analysis of multi-species time course gene expression data Eng, Kevin H. University of Wisconsin, Department of Statistics 1300 University Avenue, Madison, WI 53706, USA. E-mail:

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

Statistical analysis of microarray data: a Bayesian approach

Statistical analysis of microarray data: a Bayesian approach Biostatistics (003), 4, 4,pp. 597 60 Printed in Great Britain Statistical analysis of microarray data: a Bayesian approach RAPHAEL GTTARD University of Washington, Department of Statistics, Box 3543, Seattle,

More information

Network Biology-part II

Network Biology-part II Network Biology-part II Jun Zhu, Ph. D. Professor of Genomics and Genetic Sciences Icahn Institute of Genomics and Multi-scale Biology The Tisch Cancer Institute Icahn Medical School at Mount Sinai New

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday

Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday Complete all warm up questions Focus on operon functioning we will be creating operon models on Monday 1. What is the Central Dogma? 2. How does prokaryotic DNA compare to eukaryotic DNA? 3. How is DNA

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Bradley Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org

More information

Use of Agilent Feature Extraction Software (v8.1) QC Report to Evaluate Microarray Performance

Use of Agilent Feature Extraction Software (v8.1) QC Report to Evaluate Microarray Performance Use of Agilent Feature Extraction Software (v8.1) QC Report to Evaluate Microarray Performance Anthea Dokidis Glenda Delenstarr Abstract The performance of the Agilent microarray system can now be evaluated

More information

Biological Mass Spectrometry

Biological Mass Spectrometry Biochemistry 412 Biological Mass Spectrometry February 13 th, 2007 Proteomics The study of the complete complement of proteins found in an organism Degrees of Freedom for Protein Variability Covalent Modifications

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Bradley Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org

More information

RNASeq Differential Expression

RNASeq Differential Expression 12/06/2014 RNASeq Differential Expression Le Corguillé v1.01 1 Introduction RNASeq No previous genomic sequence information is needed In RNA-seq the expression signal of a transcript is limited by the

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 6, Issue 1 2007 Article 28 A Comparison of Methods to Control Type I Errors in Microarray Studies Jinsong Chen Mark J. van der Laan Martyn

More information

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database

Overview - MS Proteomics in One Slide. MS masses of peptides. MS/MS fragments of a peptide. Results! Match to sequence database Overview - MS Proteomics in One Slide Obtain protein Digest into peptides Acquire spectra in mass spectrometer MS masses of peptides MS/MS fragments of a peptide Results! Match to sequence database 2 But

More information

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models

Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models Simultaneous Inference for Multiple Testing and Clustering via Dirichlet Process Mixture Models David B. Dahl Department of Statistics Texas A&M University Marina Vannucci, Michael Newton, & Qianxing Mo

More information

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry

Normalization. Example of Replicate Data. Biostatistics Rafael A. Irizarry This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Estimation of Transformations for Microarray Data Using Maximum Likelihood and Related Methods

Estimation of Transformations for Microarray Data Using Maximum Likelihood and Related Methods Estimation of Transformations for Microarray Data Using Maximum Likelihood and Related Methods Blythe Durbin, Department of Statistics, UC Davis, Davis, CA 95616 David M. Rocke, Department of Applied Science,

More information

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Microarray experiment: Question: Gene expression - when is the DNA in

More information

Design of Microarray Experiments. Xiangqin Cui

Design of Microarray Experiments. Xiangqin Cui Design of Microarray Experiments Xiangqin Cui Experimental design Experimental design: is a term used about efficient methods for planning the collection of data, in order to obtain the maximum amount

More information

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop

Inferential Statistical Analysis of Microarray Experiments 2007 Arizona Microarray Workshop Inferential Statistical Analysis of Microarray Experiments 007 Arizona Microarray Workshop μ!! Robert J Tempelman Department of Animal Science tempelma@msuedu HYPOTHESIS TESTING (as if there was only one

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Quantile based Permutation Thresholds for QTL Hotspots. Brian S Yandell and Elias Chaibub Neto 17 March 2012

Quantile based Permutation Thresholds for QTL Hotspots. Brian S Yandell and Elias Chaibub Neto 17 March 2012 Quantile based Permutation Thresholds for QTL Hotspots Brian S Yandell and Elias Chaibub Neto 17 March 2012 2012 Yandell 1 Fisher on inference We may at once admit that any inference from the particular

More information

Translation Part 2 of Protein Synthesis

Translation Part 2 of Protein Synthesis Translation Part 2 of Protein Synthesis IN: How is transcription like making a jello mold? (be specific) What process does this diagram represent? A. Mutation B. Replication C.Transcription D.Translation

More information

Sta$s$cs for Genomics ( )

Sta$s$cs for Genomics ( ) Sta$s$cs for Genomics (140.688) Instructor: Jeff Leek Slide Credits: Rafael Irizarry, John Storey No announcements today. Hypothesis testing Once you have a given score for each gene, how do you decide

More information

Estimation of the False Discovery Rate

Estimation of the False Discovery Rate Estimation of the False Discovery Rate Coffee Talk, Bioinformatics Research Center, Sept, 2005 Jason A. Osborne, osborne@stat.ncsu.edu Department of Statistics, North Carolina State University 1 Outline

More information

Error models and normalization. Wolfgang Huber DKFZ Heidelberg

Error models and normalization. Wolfgang Huber DKFZ Heidelberg Error models and normalization Wolfgang Huber DKFZ Heidelberg Acknowledgements Anja von Heydebreck, Martin Vingron Andreas Buness, Markus Ruschhaupt, Klaus Steiner, Jörg Schneider, Katharina Finis, Anke

More information

Single gene analysis of differential expression. Giorgio Valentini

Single gene analysis of differential expression. Giorgio Valentini Single gene analysis of differential expression Giorgio Valentini valenti@disi.unige.it Comparing two conditions Each condition may be represented by one or more RNA samples. Using cdna microarrays, samples

More information

Zhiguang Huo 1, Chi Song 2, George Tseng 3. July 30, 2018

Zhiguang Huo 1, Chi Song 2, George Tseng 3. July 30, 2018 Bayesian latent hierarchical model for transcriptomic meta-analysis to detect biomarkers with clustered meta-patterns of differential expression signals BayesMP Zhiguang Huo 1, Chi Song 2, George Tseng

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Statistics for Differential Expression in Sequencing Studies. Naomi Altman

Statistics for Differential Expression in Sequencing Studies. Naomi Altman Statistics for Differential Expression in Sequencing Studies Naomi Altman naomi@stat.psu.edu Outline Preliminaries what you need to do before the DE analysis Stat Background what you need to know to understand

More information

Unit 3 - Molecular Biology & Genetics - Review Packet

Unit 3 - Molecular Biology & Genetics - Review Packet Name Date Hour Unit 3 - Molecular Biology & Genetics - Review Packet True / False Questions - Indicate True or False for the following statements. 1. Eye color, hair color and the shape of your ears can

More information

Statistical Learning and Behrens Fisher Distribution Methods for Heteroscedastic Data in Microarray Analysis

Statistical Learning and Behrens Fisher Distribution Methods for Heteroscedastic Data in Microarray Analysis University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-29-2010 Statistical Learning and Behrens Fisher Distribution Methods for Heteroscedastic Data in Microarray

More information

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays

Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Comparison of the Empirical Bayes and the Significance Analysis of Microarrays Holger Schwender, Andreas Krause, and Katja Ickstadt Abstract Microarrays enable to measure the expression levels of tens

More information

Statistical Inferences for Isoform Expression in RNA-Seq

Statistical Inferences for Isoform Expression in RNA-Seq Statistical Inferences for Isoform Expression in RNA-Seq Hui Jiang and Wing Hung Wong February 25, 2009 Abstract The development of RNA sequencing (RNA-Seq) makes it possible for us to measure transcription

More information

Biochip informatics-(i)

Biochip informatics-(i) Biochip informatics-(i) : biochip normalization & differential expression Ju Han Kim, M.D., Ph.D. SNUBI: SNUBiomedical Informatics http://www.snubi snubi.org/ Biochip Informatics - (I) Biochip basics Preprocessing

More information

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.

Videos. Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu. Translation Translation Videos Bozeman, transcription and translation: https://youtu.be/h3b9arupxzg Crashcourse: Transcription and Translation - https://youtu.be/itsb2sqr-r0 Translation Translation The

More information

Probabilistic Inference for Multiple Testing

Probabilistic Inference for Multiple Testing This is the title page! This is the title page! Probabilistic Inference for Multiple Testing Chuanhai Liu and Jun Xie Department of Statistics, Purdue University, West Lafayette, IN 47907. E-mail: chuanhai,

More information

A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information

A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information University of Massachusetts Amherst From the SelectedWorks of Erin M. Conlon December 28, 2012 A Bayesian Model for Pooling Gene Expression Studies That Incorporates Co-Regulation Information Erin M. Conlon,

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Multiple testing: Intro & FWER 1

Multiple testing: Intro & FWER 1 Multiple testing: Intro & FWER 1 Mark van de Wiel mark.vdwiel@vumc.nl Dep of Epidemiology & Biostatistics,VUmc, Amsterdam Dep of Mathematics, VU 1 Some slides courtesy of Jelle Goeman 1 Practical notes

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis

David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis David M. Rocke Division of Biostatistics and Department of Biomedical Engineering University of California, Davis March 18, 2016 UVA Seminar RNA Seq 1 RNA Seq Gene expression is the transcription of the

More information

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering

Proteomics. 2 nd semester, Department of Biotechnology and Bioinformatics Laboratory of Nano-Biotechnology and Artificial Bioengineering Proteomics 2 nd semester, 2013 1 Text book Principles of Proteomics by R. M. Twyman, BIOS Scientific Publications Other Reference books 1) Proteomics by C. David O Connor and B. David Hames, Scion Publishing

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Limma = linear models for microarray data. Linear models and Limma. Expression measures. Questions of Interest. y ga = log 2 (R/G) y ga =

Limma = linear models for microarray data. Linear models and Limma. Expression measures. Questions of Interest. y ga = log 2 (R/G) y ga = Linear models and Limma Københavns Universitet, 19 August 2009 Mark D. Robinson Bioinformatics, Walter+Eliza Hall Institute Epigenetics Laboratory, Garvan Institute (with many slides taken from Gordon

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

A Bayesian Mixture Model for Differential Gene Expression

A Bayesian Mixture Model for Differential Gene Expression A Bayesian Mixture Model for Differential Gene Expression Kim-Anh Do, Peter Müller and Feng Tang 1 Abstract We propose model-based inference for differential gene expression, using a non-parametric Bayesian

More information

Multiple Hypothesis Testing in Microarray Data Analysis

Multiple Hypothesis Testing in Microarray Data Analysis Multiple Hypothesis Testing in Microarray Data Analysis Sandrine Dudoit jointly with Mark van der Laan and Katie Pollard Division of Biostatistics, UC Berkeley www.stat.berkeley.edu/~sandrine Short Course:

More information

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008

6.047 / Computational Biology: Genomes, Networks, Evolution Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Expression arrays, normalization, and error models

Expression arrays, normalization, and error models 1 Epression arrays, normalization, and error models There are a number of different array technologies available for measuring mrna transcript levels in cell populations, from spotted cdna arrays to in

More information

Exhaustive search. CS 466 Saurabh Sinha

Exhaustive search. CS 466 Saurabh Sinha Exhaustive search CS 466 Saurabh Sinha Agenda Two different problems Restriction mapping Motif finding Common theme: exhaustive search of solution space Reading: Chapter 4. Restriction Mapping Restriction

More information

Genome Assembly. Sequencing Output. High Throughput Sequencing

Genome Assembly. Sequencing Output. High Throughput Sequencing Genome High Throughput Sequencing Sequencing Output Example applications: Sequencing a genome (DNA) Sequencing a transcriptome and gene expression studies (RNA) ChIP (chromatin immunoprecipitation) Example

More information

SUPPLEMENTAL DATA: ROBUST ESTIMATORS FOR EXPRESSION ANALYSIS EARL HUBBELL, WEI-MIN LIU, AND RUI MEI

SUPPLEMENTAL DATA: ROBUST ESTIMATORS FOR EXPRESSION ANALYSIS EARL HUBBELL, WEI-MIN LIU, AND RUI MEI SUPPLEMENTAL DATA: ROBUST ESTIMATORS FOR EXPRESSION ANALYSIS EARL HUBBELL, WEI-MIN LIU, AND RUI MEI ABSTRACT. This is supplemental data extracted from the paper Robust Estimators for Expression Analysis

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data

A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data A Practical Approach to Inferring Large Graphical Models from Sparse Microarray Data Juliane Schäfer Department of Statistics, University of Munich Workshop: Practical Analysis of Gene Expression Data

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information