Symmetry Lecture 9. 1 Gellmann-Nishijima relation

Size: px
Start display at page:

Download "Symmetry Lecture 9. 1 Gellmann-Nishijima relation"

Transcription

1 Symmetry Lecture 9 1 Gellmann-Nihijima relation In the lat lecture we found that the Gell-mann and Nihijima relation related Baryon number, charge, and the third component of iopin. Q = [(1/2)B + T 3 ] But thi relation wa not valid for hyperon. Now we alo know that hyperon are different from nucleon and nuclear reonance. They have long lifetime, which are more like lifetime aociated with the weak interaction. Thu Pai uggeted that thee paticle poeed another quantum number which wa called trangene, S. The Gell-mann and Nihijima relation wa then extended to include trangene through the expreion; Q = [(1/2)(B + S) + T 3 ] An aignment of trangene or anti-trangene wa aigned to each of the hyperon and hyperon reonance. The quanty B + S i called hypercharge, Y. 1

2 2 Extenion of SU(2) to SU(3) The fact that neutron and proton can t be ditinguihed under the trong interaction i now extended to include hyperon. The fundamental doublet; ( u d ) i extended to include the lowet ma hyperon Λ, to form a triplet. Thi i the lowet fundamental repreentation of the pecial unitary group, SU(3). u d Λ Thi ymmetry i violated more trongly than that of iopin. One certainly oberve that the ma of the Λ i much larger than that of the nucleon, 1115 to 939 MeV. Still thi triplet of tate i an approximate ymmetry. In thi cae we have an operator, U, that tranform a triplet tate, ψ into an equivalent tate; ψ = Uψ The operator U mut be 3 3 unitary, tracele matricie a are the Pauli matricie in 2 dimenion. There are 8 independent Hermitian, tracele 3 3 matricie λ i, and they atify the commutation rule; 2

3 0 K +1 Y K + π π η π +1 I z _ K 1 K 0 SU(3) Octet for J P= 0 Meon Figure 1: An SU f (3) weight diagram for meon [λ i, λ j ] = i ǫ ijk f ifk λ k where the f ifk are the tructure contant of the SU(3) group. A graphical repreentation of the group tructure i a weight diagram of the group element. Thi i illutrated by the weight diagram for meon and baryon in Figure 1 and 2, repectively. it i important to note here that the application of the SU(3) group applie to flavor. Thi i a reference to a cla of quark familie which will be dicued later. The more commonly known application of SU(3) applie to color which i a different characteriitic of quark that will be dicued later. 3

4 d Ξ 0 1 Y Ξ + u Σ 1 0 dd Λ Σ ud uu Σ +1 + I z udd N +1 P uud Baryon Octet Figure 2: An SU f (3) weight diagram for baryon 4

5 Even Odd The Strong interaction, which include nucleon and hyperon, i approximately ymmetric under SU f (3) 3 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found for the harmonic ocillator that there were 2 ditinct type of wave function olution characterized by the election of the tarting integer in their erie repreentation. Thi election produced a erie in odd or even power of the coordiante o that the wave function wa either odd or even upon reflection about the origin, x = 0. Since the potential energy function depend on the quare of the poition, x 2, the energy eignevalue wa alway poitive and independent of whether the eigenfunction were odd or even under reflection. In 1-D parity i the ymmetry operation, x x. In 3-D the trong interaction i invarient under the ymmetry of parity. r r Parity i a mirror reflection plu a rotation of 180, and tranform a right-handed coordinate ytem into a left-handed one. Our Macro- 5

6 copic world i clearly handed, but handedne in fundamental interaction i more involved. Vector (tenor of rank 1), a illutrated in the definition above, change ign under Parity. Scalar (tenor of rank 0) do not. One can then contruct, uing tenor algebra, new tenor which reduce the tenor rank and/or change the ymmetry of the tenor. Thu a dual of a ymmetric tenor of rank 2 i a peudovector (cro product of two vector), and a calar product of a peudovector and a vector create a peudocalar. We will contruct bilinear form below which have thee rotational and reflection characteritic. 4 Time reveral Time reveral i the mathematical operation; t t; with the exchange of initial and final tate. Macrocopically T i not a good ymmetry. However, For Quantum Mechanic; T HT = H; Hψ = i t ψ; THψ = [Tψ]; H[Tψ] = i [Tψ]. 6

7 Thu Ψ and [T ψ] are not equivalent, and T require t t and i i. However, one contruct obervable in Quantum Mechanic by bilinear form, ( i.e. by product two operator and wave function) o that microcopic time reveribility hold. 5 Charge conjugation Charge Conjugation change a particle to it anti-particle, but without change to it dynamical variable. The ymmetry i baed on the aumption that for every particle there i an antiparticle which ha Q Q, B B, L L, etc. An eigentate of C mut have: Q = B = L = S 0. Thu a π 0 i an eigentate of C but K 0 i not ince it contain S, a quark of the 2 nd generation. The trong and electromagnetic interaction are invarient under C. Under the weak interaction the operation C i not a good ymmetry. 6 The operation of P and T The operation of reflection and time reveral in claical ytem i hown in Table below. 7

8 µ + e + _ C Violation in ν e νµ e + e _ ν e ν µ µ + µ µ C CP _ ν e ν µ e _ ν νµ e Name P T Time + - Poition - + Energy + + Momentum - - Spin + - Helicity - + Electric Field - + Magnetic Field + - Obviouly ome parameter are invarient but ome change ign under thi combined operation. 7 The operation of P and C The operation of CP i compoed of the imultaneou operation of C and P. Suppoe one wihe to ditinguih a galaxy from an anti-galaxy. It i not ufficient to find C violation but one need CP violation a well. 8

9 C and P Tranformation for π + µ + ν µ ν π + µ µ + µ + π + P ν µ C C CP _ ν µ π π _ µ P µ ν µ The weak interaction violate C and P but CP i experimentally conerved except for flavor changing decay. In flavor changing weak decay CP i not preerved. The K 0 and K 0 are eigentate of trangene but not of CP. However tate of the weak interaction ( a preently defined) are invarient under CP. Thu the two poible CP eigentate of the K 0 (K 0 ) have different mae and decay width. However it wa found that the decay of CP eigentate doe not preerve CP. 8 The operation of P and T The operation of reflection and time reveral in claical ytem i hown in Table below. 9

10 Name P T Time + - Poition - + Energy + + Momentum - - Spin + - Helicity - + Electric Field - + Magnetic Field + - Obviouly ome parameter are invarient but ome change ign under thi combined operation. 9 Bilinear form of Dirac wave function We recall that a Dirac wave function ha 4-component, and that γ, α and β are 4 4 matricie ued in the dirac equation. A an aide note that the current j = cψ αψ lead to an expectation value of the velocity. We write the following bilinear form that have the variou lited tranformation properite; In the above, ( ) 0 σ γ = σ 0 ( ) I 0 γ 0 = 0 I 10

11 Bilinear Form Tranformation Property ψ ψ ψ γ n ψ ψ γ 5 ψ ψ γ 5 γ n ψ Scalar Vector Peudocalar Peudovector γ 5 = i ( 0 I I 0 ) where σ are the Pauli pin matricie, I i the 2 2 idenity matrix, and γ 5 = γ 1 γ 2 γ 3 γ 5. Note that the γ i are the component of a relativitic 4-vector, and ψ i the adjoint of the Dirac wave function ψ. The helicity of the wave function i defined a the direction of the particle pin vector relative to the momentum vector. It meaure the handedne of a particle and i a peudocalar invarient under T. Σ = σ p/ p The chirality operator, γ 5, operate on the helicity tate to produce the chirality of the tate. We then find the helicity and chirality of the eigenvector for the variou Dirac tate For E > 0 tate a patial reflection invert the momentum vector and change the ign of the helicity. The Chirality of a tate i 11

12 State Energy Helicity Chirality 1 > > < < optained by the projection operator; P ± = 1/2(1 ± iγ 5 ) The projection operator ha the propertie; P + + P = 0 P 2 ± = 1 P + P = P P + = 0 10 The operation of P, C, and T Conervation of the imultaneou application of C, P, and T i expected under very general condition. In all Lorentz invarient quantum field theorie, CPT i a good ymmetry. Thi mean that if CP i violated then T mut be violated a well. Direct earche for T violation are difficult a null experiment are not eaily deigned. 12

13 Symmetry Operation + P T + C + 13

14 11 Zero ma equation In the cae of zero ma the Dirac equation ha the form; [i t + iγ 0 γ ]ψ = 0 Which look like ; [E ( 0 σ σ 0 ) ]ψ = 0 If we divide the 4-component Dirac wave function into 2 two component wave function decribed by upper and lower component ψ u and ψ l repectively, the dirac equation when the ma = 0 form 2 equation; Eψ u σ p ψ l = 0 Eψ l σ p ψ u = 0 Then a pecific chirality tate i not a tate of pecific parity, and can be decribed by a 2-component wave function; ψ = P ψ = ψ + = P + ψ = and ; ( ) 0 φ ( ) φ 0 14

15 γ 5 ψ = ψ γ 5 ψ + = ψ + Thu chirality i a good ymmetry for male particle. It repreent the direction of the pin relative to the momentum vector, and divide mael Dirac tate into left and right handed doublet. 12 Lagrangian The lagrangian which i a Lorentz calar, but be compoed of bilinear form in a way to make a calar. Thu for example a vector form mut be contracted (dot product) with a vector. Two peudo-calar can be multipled together, etc. 15

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9 Even Odd Symmetry Lecture 9 1 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found

More information

Symmetries and Group Theory - Lecture 2

Symmetries and Group Theory - Lecture 2 Symmetries and Group Theory - Lecture 2 1 Introduction Physics attempts to look for the global aspects of a system, since much of system behavior can be understood from general principles without investigating

More information

PHY 396 K. Solutions for problem set #7.

PHY 396 K. Solutions for problem set #7. PHY 396 K. Solution for problem et #7. Problem 1a: γ µ γ ν ±γ ν γ µ where the ign i + for µ ν and otherwie. Hence for any product Γ of the γ matrice, γ µ Γ 1 nµ Γγ µ where n µ i the number of γ ν µ factor

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

p. (The electron is a point particle with radius r = 0.)

p. (The electron is a point particle with radius r = 0.) - pin ½ Recall that in the H-atom olution, we howed that the fact that the wavefunction Ψ(r) i ingle-valued require that the angular momentum quantum nbr be integer: l = 0,,.. However, operator algebra

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Isospin. K.K. Gan L5: Isospin and Parity 1

Isospin. K.K. Gan L5: Isospin and Parity 1 Isospin Isospin is a continuous symmetry invented by Heisenberg: Explain the observation that the strong interaction does not distinguish between neutron and proton. Example: the mass difference between

More information

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo Lecture 2 Quark Model The Eight Fold Way Adnan Bashir, IFM, UMSNH, Mexico August 2014 Culiacán Sinaloa The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry

More information

The statistical properties of the primordial fluctuations

The statistical properties of the primordial fluctuations The tatitical propertie of the primordial fluctuation Lecturer: Prof. Paolo Creminelli Trancriber: Alexander Chen July 5, 0 Content Lecture Lecture 4 3 Lecture 3 6 Primordial Fluctuation Lecture Lecture

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

PHYS 3446 Lecture #17

PHYS 3446 Lecture #17 PHY 3446 Lecture #7 Monday, Nov. 6, 26 Dr.. Elementary Particle Properties Quantum Numbers trangeness Isospin Gell-Mann-Nishijima Relations Production and Decay of Resonances Monday, Nov. 6, 26 PHY 3446,

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Massless fermions living in a non-abelian QCD vortex based on arxiv: [hep-ph]

Massless fermions living in a non-abelian QCD vortex based on arxiv: [hep-ph] Male fermion living in a non-abelian QCD vortex baed on arxiv:1001.3730 [hep-ph] Collaborator : S.Yaui KEK and M. Nitta Keio U. K. Itakura KEK Theory Center, IPNS, KEK New frontier in QCD @ Kyoto March

More information

arxiv: v2 [nucl-th] 3 May 2018

arxiv: v2 [nucl-th] 3 May 2018 DAMTP-207-44 An Alpha Particle Model for Carbon-2 J. I. Rawlinon arxiv:72.05658v2 [nucl-th] 3 May 208 Department of Applied Mathematic and Theoretical Phyic, Univerity of Cambridge, Wilberforce Road, Cambridge

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Previous lecture New unstable particles discovered in 40s-50s. First hyperons (particles

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses January 3, 08 PHY357 Lecture 8 Quark composition of hadrons Hadron magnetic moments Hadron masses January 3, 08 Quark rules for building Hadrons! Three types of stable quark configurations established!

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCoureWare http://ocw.mit.edu 8.33 Relativitic Quantum Field Theory I Spring 008 For information about citing thee material or our Term Ue, viit: http://ocw.mit.edu/term. , 8.33 Lecture, April 4

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

wave functions PhD seminar- FZ Juelich, Feb 2013

wave functions PhD seminar- FZ Juelich, Feb 2013 SU(3) symmetry and Baryon wave functions Sedigheh Jowzaee PhD seminar- FZ Juelich, Feb 2013 Introduction Fundamental symmetries of our universe Symmetry to the quark model: Hadron wave functions q q Existence

More information

Quantum Field Theory 2011 Solutions

Quantum Field Theory 2011 Solutions Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

& & #!" # BABAR $ % Belle Conversano - 15 June 03

& & #! # BABAR $ % Belle Conversano - 15 June 03 & & # ' (!" # BABAR $ % Belle QC@Work Converano - 15 June 3 Outline c )) & '# )', - "#'(" '&, " (/) ' %( (&, "."##(" Spectrocopy of c tate Potential model of [heavy-quark light-quark] meon have had o far

More information

Physics 443 Homework 2 Solutions

Physics 443 Homework 2 Solutions Phyic 3 Homework Solution Problem 1 a Under the tranformation φx φ x λ a φλx Lagrangian Lx 1 µφx ρφx tranform a Lx 1 µ λ a φλx ρλ a φλx 1 λ +a 1 µφ λx ρλ a φλx. Moreover, note that action S d xlx i invariant

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Atom and molecular structure Quantum level of matter

Atom and molecular structure Quantum level of matter Computer imulation of advanced material International Summer School Atom and molecular tructure Quantum level of matter Alexander Nemukhin Department of Chemitry, M.V. omonoov Mocow State Univerity and

More information

Gian Gopal Particle Attributes Quantum Numbers 1

Gian Gopal Particle Attributes Quantum Numbers 1 Particle Attributes Quantum Numbers Intro Lecture Quantum numbers (Quantised Attributes subject to conservation laws and hence related to Symmetries) listed NOT explained. Now we cover Electric Charge

More information

SU(3) symmetry and Baryon wave functions

SU(3) symmetry and Baryon wave functions INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science MPD program, co-financed by the European Union within the

More information

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers. 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline : Number Conservation Rules Based on the experimental observation of particle interactions a number of particle

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Lecture 9. Isospin The quark model

Lecture 9. Isospin The quark model Lecture 9 Isospin The quark model There is one more symmetry that applies to strong interactions. isospin or isotopic spin It was useful in formulation of the quark picture of known particles. We can consider

More information

Codes Correcting Two Deletions

Codes Correcting Two Deletions 1 Code Correcting Two Deletion Ryan Gabry and Frederic Sala Spawar Sytem Center Univerity of California, Lo Angele ryan.gabry@navy.mil fredala@ucla.edu Abtract In thi work, we invetigate the problem of

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

T 1! p k. = T r! k., s k. ', x' ] = i!, s y. ', s y

T 1! p k. = T r! k., s k. ', x' ] = i!, s y. ', s y Time Reversal r k ' = r k = T r k T 1 p k ' = p k, s k ' = s k T cannot be represented by an unitary operator. Unitary opera$ons preserve algebraic rela$ons between operators, while T changes the sign

More information

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron.

Electron-positron pairs can be produced from a photon of energy > twice the rest energy of the electron. Particle Physics Positron - discovered in 1932, same mass as electron, same charge but opposite sign, same spin but magnetic moment is parallel to angular momentum. Electron-positron pairs can be produced

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

arxiv:hep-ph/ v1 7 May 2001

arxiv:hep-ph/ v1 7 May 2001 A Grand Canonical Enemble Approach to the Thermodynamic Propertie of the Nucleon in the Quark-Gluon Coupling Model arxiv:hep-ph/0105050v1 7 May 2001 Hai Lin (April 2001) Department of P hyic, P eking Univerity,

More information

129 Lecture Notes More on Dirac Equation

129 Lecture Notes More on Dirac Equation 19 Lecture Notes More on Dirac Equation 1 Ultra-relativistic Limit We have solved the Diraction in the Lecture Notes on Relativistic Quantum Mechanics, and saw that the upper lower two components are large

More information

Problem Set # 1 SOLUTIONS

Problem Set # 1 SOLUTIONS Wissink P640 Subatomic Physics I Fall 2007 Problem Set # 1 S 1. Iso-Confused! In lecture we discussed the family of π-mesons, which have spin J = 0 and isospin I = 1, i.e., they form the isospin triplet

More information

The Secret Life of the ax + b Group

The Secret Life of the ax + b Group The Secret Life of the ax + b Group Linear function x ax + b are prominent if not ubiquitou in high chool mathematic, beginning in, or now before, Algebra I. In particular, they are prime exhibit in any

More information

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009 Lecture 0 /6/09 /Univerity of Wahington Department of Chemitry Chemitry 453 Winter Quarter 009. Wave Function and Molecule Can quantum mechanic explain the tructure of molecule by determining wave function

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS. Volker Ziegler Technische Universität Graz, Austria

ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS. Volker Ziegler Technische Universität Graz, Austria GLASNIK MATEMATIČKI Vol. 1(61)(006), 9 30 ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS Volker Ziegler Techniche Univerität Graz, Autria Abtract. We conider the parameterized Thue

More information

Noether symmetry and non-noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations

Noether symmetry and non-noether conserved quantity of the relativistic holonomic nonconservative systems in general Lie transformations Vol 16 No 11, November 2007 c 2007 Chin. Phy. Soc. 1009-1963/2007/1611/3182-05 Chinee Phyic and IOP Publihing Ltd Noether ymmetry and non-noether conerved quantity of the relativitic holonomic nonconervative

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

THE THERMOELASTIC SQUARE

THE THERMOELASTIC SQUARE HE HERMOELASIC SQUARE A mnemonic for remembering thermodynamic identitie he tate of a material i the collection of variable uch a tre, train, temperature, entropy. A variable i a tate variable if it integral

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Clebsch-Gordan Coefficients

Clebsch-Gordan Coefficients Phy489 Lecture 7 Clebsch-Gordan Coefficients 2 j j j2 m m m 2 j= j j2 j + j j m > j m > = C jm > m = m + m 2 2 2 Two systems with spin j and j 2 and z components m and m 2 can combine to give a system

More information

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations

Nuclear and Particle Physics - Lecture 16 Neutral kaon decays and oscillations 1 Introction Nclear an Particle Phyic - Lectre 16 Netral kaon ecay an ocillation e have alreay een that the netral kaon will have em-leptonic an haronic ecay. However, they alo exhibit the phenomenon of

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS

ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS ON A CERTAIN FAMILY OF QUARTIC THUE EQUATIONS WITH THREE PARAMETERS VOLKER ZIEGLER Abtract We conider the parameterized Thue equation X X 3 Y (ab + (a + bx Y abxy 3 + a b Y = ±1, where a, b 1 Z uch that

More information

arxiv:nucl-th/ v1 24 Oct 2003

arxiv:nucl-th/ v1 24 Oct 2003 J/ψ-kaon cro ection in meon exchange model R.S. Azevedo and M. Nielen Intituto de Fíica, Univeridade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil Abtract arxiv:nucl-th/0310061v1 24 Oct 2003

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

PROPERTIES CONSERVED IN STRONG AND EM INTERACTIONS

PROPERTIES CONSERVED IN STRONG AND EM INTERACTIONS MISN-0-277 PROPERTIES CONSERVED IN STRONG AND EM INTERACTIONS by J. Chritman 1. Abtract................................................... 1 PROPERTIES CONSERVED IN STRONG AND EM INTERACTIONS 2. Reaing..................................................

More information

Invariance Principles and Conservation Laws

Invariance Principles and Conservation Laws Invariance Principles and Conservation Laws Outline Translation and rotation Parity Charge Conjugation Charge Conservation and Gauge Invariance Baryon and lepton conservation CPT Theorem CP violation and

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Lateral vibration of footbridges under crowd-loading: Continuous crowd modeling approach

Lateral vibration of footbridges under crowd-loading: Continuous crowd modeling approach ateral vibration of footbridge under crowd-loading: Continuou crowd modeling approach Joanna Bodgi, a, Silvano Erlicher,b and Pierre Argoul,c Intitut NAVIER, ENPC, 6 et 8 av. B. Pacal, Cité Decarte, Champ

More information

.! " # e " + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions).

.!  # e  + $ e. have the same spin as electron neutrinos, and is ½ integer (fermions). Conservation Laws For every conservation of some quantity, this is equivalent to an invariance under some transformation. Invariance under space displacement leads to (and from) conservation of linear

More information

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner Lecture 3 Pions as Goldstone Bosons of Chiral Symmetry Breaking Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and

More information

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES 15 TH INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS 0 ISGG 1-5 AUGUST, 0, MONTREAL, CANADA HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES Peter MAYRHOFER and Dominic WALTER The Univerity of Innbruck,

More information

Flavour physics Lecture 1

Flavour physics Lecture 1 Flavour physics Lecture 1 Jim Libby (IITM) XI th SERC school on EHEP NISER Bhubaneswar November 2017 Lecture 1 1 Outline What is flavour physics? Some theory and history CKM matrix Lecture 1 2 What is

More information

arxiv: v2 [cond-mat.mes-hall] 28 Aug 2008

arxiv: v2 [cond-mat.mes-hall] 28 Aug 2008 Dynamic in the quantum Hall effect and the phae diagram of graphene UWO-H-08/10 arxiv:0806.0846v [cond-mat.me-hall] 8 Aug 008 E.V. Gorbar, 1, V.P. Guynin, 1, V.A. Miranky,, and I.A. Shovkovy 3, 1 Bogolyubov

More information

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14 Quantum Field Theory Ling-Fong Li (Institute) Quark Model 1 / 14 QCD Quark Model Isospin symmetry To a good approximation, nuclear force is independent of the electromagnetic charge carried by the nucleons

More information

The Quark Parton Model

The Quark Parton Model The Quark Parton Model Quark Model Pseudoscalar J P = 0 Mesons Vector J P = 1 Mesons Meson Masses J P = 3 /2 + Baryons J P = ½ + Baryons Resonances Resonance Detection Discovery of the ω meson Dalitz Plots

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS Otto J. Roech, Hubert Roth, Aif Iqbal Intitute of Automatic Control Engineering Univerity Siegen, Germany {otto.roech,

More information

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations Hyperbolic Partial Differential Equation Evolution equation aociated with irreverible phyical procee like diffuion heat conduction lead to parabolic partial differential equation. When the equation i a

More information

General Field Equation for Electromagnetism and Gravitation

General Field Equation for Electromagnetism and Gravitation International Journal of Modern Phyic and Application 07; 4(5: 44-48 http://www.aacit.org/journal/ijmpa ISSN: 375-3870 General Field Equation for Electromagnetim and Gravitation Sadegh Mouavi Department

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Particle Physics. Michaelmas Term 2009 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims Particle Physics Michaelmas Term 2009 Prof Mark Thomson Handout 7 : Symmetries and the Quark Model Prof. M.A. Thomson Michaelmas 2009 205 Introduction/Aims Symmetries play a central role in particle physics;

More information

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia

REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS. Logic and Applications 2015 (LAP 2015) September 21-25, 2015, Dubrovnik, Croatia REPRESENTATION OF ALGEBRAIC STRUCTURES BY BOOLEAN FUNCTIONS SMILE MARKOVSKI Faculty of Computer Science and Engineering, S Ciryl and Methodiu Univerity in Skopje, MACEDONIA mile.markovki@gmail.com Logic

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

1. The F-test for Equality of Two Variances

1. The F-test for Equality of Two Variances . The F-tet for Equality of Two Variance Previouly we've learned how to tet whether two population mean are equal, uing data from two independent ample. We can alo tet whether two population variance are

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

arxiv: v1 [quant-ph] 22 Oct 2010

arxiv: v1 [quant-ph] 22 Oct 2010 The extenion problem for partial Boolean tructure in Quantum Mechanic Cotantino Budroni 1 and Giovanni Morchio 1, 2 1) Dipartimento di Fiica, Univerità di Pia, Italy 2) INFN, Sezione di Pia, Italy Alternative

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS

OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS FIELD THEORY, GRAVITATION AND PARTICLE PHYSICS OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS IRINEL CAPRINI National Intitute of Phyic and Nuclear Engineering POB MG 6, Bucharet,

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions

Stochastic Optimization with Inequality Constraints Using Simultaneous Perturbations and Penalty Functions Stochatic Optimization with Inequality Contraint Uing Simultaneou Perturbation and Penalty Function I-Jeng Wang* and Jame C. Spall** The John Hopkin Univerity Applied Phyic Laboratory 11100 John Hopkin

More information

arxiv:hep-th/ v1 27 Jul 2005

arxiv:hep-th/ v1 27 Jul 2005 Fermi Field without Tear arxiv:hep-th/57259v1 27 Jul 25 Peter Cahill Department of Mechanical Engineering, Univerity of New Mexico, Albuquerque, NM 87131 E-mail: pedo@unm.edu Kevin Cahill New Mexico Center

More information

Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits Contemporary Mathematic Symmetric Determinantal Repreentation of Formula and Weakly Skew Circuit Bruno Grenet, Erich L. Kaltofen, Pacal Koiran, and Natacha Portier Abtract. We deploy algebraic complexity

More information

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS SOLVING THE KONDO POBLEM FO COMPLEX MESOSCOPIC SYSTEMS V. DINU and M. ÞOLEA National Intitute of Material Phyic, Bucharet-Magurele P.O. Box MG-7, omania eceived February 21, 2005 Firt we preent the calculation

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

arxiv: v3 [hep-ph] 15 Sep 2009

arxiv: v3 [hep-ph] 15 Sep 2009 Determination of β in B J/ψK+ K Decay in the Preence of a K + K S-Wave Contribution Yuehong Xie, a Peter Clarke, b Greig Cowan c and Franz Muheim d arxiv:98.367v3 [hep-ph 15 Sep 9 School of Phyic and Atronomy,

More information

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of

696 Fu Jing-Li et al Vol. 12 form in generalized coordinate Q  ffiq dt = 0 ( = 1; ;n): (3) For nonholonomic ytem, ffiq are not independent of Vol 12 No 7, July 2003 cfl 2003 Chin. Phy. Soc. 1009-1963/2003/12(07)/0695-05 Chinee Phyic and IOP Publihing Ltd Lie ymmetrie and conerved quantitie of controllable nonholonomic dynamical ytem Fu Jing-Li(ΛΠ±)

More information

The Fundamental Invariants of the Evans Field Theory

The Fundamental Invariants of the Evans Field Theory 24 The Fundamental Invariant of the Evan Field Theory Summary. The fundamental invariant of the Evan field theory are contructed by uing the Stoke formula in the tructure equation and Bianchi identitie

More information

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model

Lecture 8. September 21, General plan for construction of Standard Model theory. Choice of gauge symmetries for the Standard Model Lecture 8 September 21, 2017 Today General plan for construction of Standard Model theory Properties of SU(n) transformations (review) Choice of gauge symmetries for the Standard Model Use of Lagrangian

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Weak interactions, parity, helicity

Weak interactions, parity, helicity Lecture 10 Weak interactions, parity, helicity SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Weak decay of particles The weak interaction is also responsible for the β + -decay of atomic

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information